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Abstract

The ability to estimate future events is essen-
tial for biological systems to adapt themselves
to uncertain situations efficiently. Similarly,
the abilities to estimate tactical movements of
opponents and to perform in an unpredictable
manner against opponents in robot soccer com-
petitions are required in the best interest of the
robot players. However, there is still a need of
approaches that estimate robot players’ future
actions while dealing with complex dynamic
conditions when their behaviors have been al-
tered because of mutual interactions. In this
study, we propose a method based on a deep
autoencoder to estimate actions of soccer play-
ers in an environment with multiple agents and
dynamical conditions. We carried out experi-
ments employing data from the RoboCup 2D
Soccer Simulation League and showed the va-
lidity of the proposed method. Our results sug-
gest that computational models using deep ar-
chitectures may be key to developing new skills
for robots using low-level representations.

1 Introduction

In human soccer the ability to understand the tactics
of opposing teams is crucial to modifying a team’s own
actions, thus achieving better performance. In real soc-
cer, for example, while a player who has an offensive role
might try to move forward and kick the ball directly into
the goal, a midfielder might try to pass the ball to an
offensive player who is near the opponent’s goal. Hu-
man players deal with these situations by estimating the
future action of each player on the opposing team. In
the context of RoboCup soccer competitions, therefore,
learning to estimate the future actions of other players
is also required in the best interest of the robot players.
One of the main challenges of estimating the actions of
robot soccer teams is that the actions of the players dur-
ing a match depend on several complex factors, includ-
ing both teams’ strategies and the skills and role of each

player on both teams. Therefore, in order to estimate
the behavioral patterns of multiple agents in a dynamic
environment, we need to employ a learning process that
considers all of these factors simultaneously.

Among previous works, Visser et al. [1] proposed
classifying the behaviors of the opposing team by infer-
ring the behaviors that players can perform in advance.
Bowling et al. [2] proposed adapting to the opponent by
observing our own team ’ s effectiveness rather than ob-
serving the opponent’ s behavior. For that purpose, they
used multiple team plans that are appropriate for differ-
ent opponents and situations, and rewarded the plans
during the match based on the actual results. Recently
Trevizan and Veloso [3] proposed classifying opponents’
strategies by studying the similarity of the strategies of
two teams by employing feature vectors of the distances
between players and the ball. Yasui et al. [4] proposed a
dissimilarity function that shows the difference between
opponents’ deployments at two different times, and ex-
tends it to the difference between those of two different
time intervals. However, these initial approaches, which
classified players ' behaviors by finding a strategy from
a set of known strategies or learned a strategy assuming
that a team’s own behaviors are independent of the op-
posing teams’ behaviors, can be regarded as top-down
oriented and thus are not sufficiently robust to deal with
complex dynamic conditions when the players’ behav-
iors have been altered because of their mutual interac-
tions. Therefore, there is still a need of approaches em-
ploying bottom-up procedures to provide low-level be-
havioral features (e.g., anticipation of players’ motions)
that are needed at higher-level representations to model
teams’ strategies.

In this study, we proposed a method to estimate play-
ers’ actions that does not rely on a priori knowledge of
teams’ actions or strategies. Specifically, we proposed a
method to estimate the trajectory of players during ball
motion and the direction of the ball after being kicked.
We used dynamical prediction (that is, a mathematical
model describing a physical system that changed over
time) to estimate the future position of both players and
ball. This estimation is desired because both the players



and the ball move; they are dynamic. In our model, we
employed deep neural networks to represent the complex
dynamics of temporal sequences of player positions and
a one-hidden-layer neural network to estimate the orien-
tation of the ball movement. We applied our model to
data from the RoboCup 2D Soccer Simulation League to
assess our prediction method. The rest of the paper is or-
ganized as follows: In section 2, we explain our proposed
method. The experimental settings for the RoboCup 2D
Soccer simulator are explained in section 3. Section 4
presents the results of our experiments. In section 5, our
conclusions are given and future research possibilities are
discussed.

2 Dynamical estimation of players’
actions

In soccer competitions, not only are teams without
strategies weak opponents to play against, but also
teams using strategies based on repetitive actions are
predictable and thus possible to defeat. During soccer
matches players perform actions such as running in cer-
tain trajectories, passing the ball, keeping the ball as far
away as possible from the opponents, and kicking the
ball to the opposing goal. Additionally, if the opposing
team is in possession of the ball, players are expected to
attempt to regain control of the match. Therefore, the
ability to estimate the trajectory of other players and the
ball is critical for soccer players. In this investigation,
we considered two basic actions of soccer players —mov-
ing in the field and kicking the ball —and proposed a
method to estimate the trajectory of players during ball
motion and the direction of the ball after being kicked.To
do this, we used the following two assumptions:

e The trajectory of players can be anticipated by
learning to estimate future states based on the past
states

e The trajectory of a kicked ball can be predicted by
learning to estimate future states from the current
state

Figure 1 shows a schematic diagram of the method that
we proposed. We used a deep autoencoder as a temporal
sequence predictor to account for the first assumption,
and a feed-forward neural network for the second one.
Players are not initially assigned any particular role or
strategy; instead their action patterns are learned from
raw data consisting of players’ positions and ball posi-
tion. In our implementation, the direction of players’
motions and ball’s motions are calculated from the es-
timated positions. We used motion direction but not
position because the neural networks were expected to
learn to generalize motion patterns but not to calculate
exact positions.

2.1 Estimation of actions under dynamic
conditions based on deep neural networks

In order to account for the dynamic action of players
moving in the field, we proposed using deep neural net-
works (DNNs) which have the ability to represent com-

Players and ball‘s positions

s(t)=[p(t), b(t)]

Static
Estimation
Module

Dynamic

Prediction
[s(t—1), Module
s(t—T)]

—

v
Predicted players’
motion trajectory

B +n),..pt+ 1]

v
Predicted ball
motion trajectory

[b(t +n),..,b(t + 1)]

Figure 1: Estimation of static and dynamical actions:
the last T steps for training a deep neural network, and
the last step for training a feed-forward neural network.

plex functions. DNNs have been shown to outperform
state-of-the-art machine learning algorithms in many ap-
plications [5], [6]. In particular, we referred to a previ-
ous work by Noda et al. [7], who reported the advantage
of employing autoencoders based on deep neural net-
works for predicting temporal data sequences. In this
approach, two deep neural networks are stacked in a
mirrored structure, and the output layer of the neural
network is connected in a closed-loop manner to the in-
put layer to generate the prediction of future steps, as
shown in Figure 2. The input-output mappings of the
network are defined as follows:

'at = f(rt)7 (1)
o= 7 u), (2)

where r(t), u(t), and #(¢) are the vectors representing
the input data, the corresponding vector feature, and
the reconstructed data, respectively. f(.) represents the
transformation mapping from the input layer to the cen-
tral hidden layer of the network and £~!(.) represents the
transformation mapping from the central hidden layer to
the output layer.

When employing deep autoencoders to make predic-
tions, the input data is fed into the neural network as a
contiguous segment of 7" steps. The inputs correspond-
ing to Tin steps (Tin <T') are filled with previous input
data, and the rest of the inputs corresponding to T'—T'in
steps are filled with the outputs from the closed-loop
data, as shown in Figure 3. In this study, the input data
segment contains the positions of the players and the ball
for T steps in Cartesian coordinates. Hence, for an input
size of T" where Tj;,, corresponds to the size of previous
input data, the input to the network at time ¢ is defined
as follows:
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Figure 2: Deep autoencoder for temporal sequence pre-
diction.
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Figure 3: Scheme for recursive input-output loop.
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where b(t) and p(t) are the vectors representing the
ball’s position and the players’ positions, respectively.

2.2 Estimation of actions under static
conditions based on a one-hidden-layer
neural network

In this module the current state corresponds to the posi-
tions of the players when a player kicks the ball, and the
future state is the position of the ball when it stops. We
employ a one-hidden-layer neural network that is trained
to estimate the direction of the ball, as shown in Figure
4. The inputs of the network are the position of the ball
and the players in Cartesian coordinates at time ¢, and
the output is the estimated position of the ball w steps
ahead:

ir = f(pe, br), (6)

I;t+1 = f(it)7 (7)
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Figure 4: One-hidden-layer neural network for ball di-
rection prediction.

where b(t), p(t), and i(t) are the vectors representing
the ball’s position, the players’ positions, and the input
data, respectively.

3 Experimental settings

For the static condition, we employed a one-hidden-layer
neural network using as input data the position of the
ball and the players at a frame before the player kicked
the ball, and as output data the position of the ball once
it stopped. The size of the input layer was 46 neurons,
the hidden layer was 46 neurons, and the output layer
was 2 neurons. For the dynamical condition, we em-
ployed a deep neural network with 8 hidden layers, com-
posed of an encoder and a decoder whose structures are
mirror images of each other. The input and output lay-
ers each contain 230 neurons. The number of neurons in
the hidden encoder layers is 250, 150, 80, and 30. The
decoder layers contain 30, 80, 150, and 250 neurons. The
activation functions are linear functions for the hidden
layers and logistic functions for the output layer. For
this experiment, we implemented the proposed modules
in the Python library, Theano, based on available imple-
mentations for DNNs [8].

The data we collected from the simulator of the
RoboCup 2D Soccer Simulation League included the
field position of 22 players (11 players for each team)
and the position of the ball. We ran the software using
the HELIObase and WEBase teams. The log data of the
matches was recorded and processed to obtain the posi-
tions of the ball and the players in Cartesian coordinates
(x, y) at each frame of the match. The length of each
match was about 3000 frames. The position data (x, y)
was normalized between 0 and 1 considering the original
size of the field, which was 40 x 105 pixels. We recorded
the log data of ten matches to be used as training data,
and of one match for test data.

To train the deep neural network we used the entire
raw data set, and for the one-hidden-layer neural net-
work, we extracted the sets of frames of when players
kicked the ball and of when the ball stopped moving.
For testing, we extracted from the raw data those seg-
ments of the match in which the ball was detected as
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Figure 5: RoboCup 2D Soccer Simulation League.

Figure 6: Example of ball motion that meets the require-
ments of a dynamic condition.

moving. An example of this is shown in Figure 6, where
the motion of the ball is represented by arrows. That is,
we focused our analysis on dynamical conditions, assum-
ing that the motion of the ball caused players to move
to other positions. For our purposes, the ball must have
moved at an average speed of greater than 4 pixels per
frame (field size is 40 x 105 pixels) to be considered in
motion. To calculate the average speed and other results
during training and testing, we used a time window of 5
frames, with the target frame included. The deep neural
network was trained employing the stochastic gradient
descent method, and the one-hidden-layer network was
trained using the back-propagation method.

4 Results

4.1 Evaluations of estimation of ball direction

We conducted the first experiment to estimate ball di-
rection using the extracted data corresponding to the
positions of the ball and the players when a player was
close to kicking the ball. The results of the experiment
are shown in Figure 7 and Figure 8. Figure 7 shows ex-
amples of estimation of ball motion direction for several
kicking players in different positions in the field. The
read and blue arrows indicate the actual and the esti-
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Figure 7: Examples of ball direction estimations for sev-
eral players in different positions in the field. Red and
blue arrows indicate the actual and the estimated direc-
tions of the ball, respectively.

mated directions of the ball, respectively. For analysis
purposes, we decided that a estimation would be consid-
ered successful if the maximum difference between the
estimated direction and the actual one was 15 degrees.
Figure 8 shows the number of successful and failed esti-
mations of ball direction for each player. For this exper-
iment, the average successful estimation rate was 84.1%.
The results demonstrate that our model was effective at
estimating the future ball direction under several condi-
tions. These results suggest that the kicking actions of
players of both teams of the RoboCup 2D Soccer Simu-
lation League are highly predictable and could be used
by both teams to improve their ability to anticipate their
opponents’ shots.

4.2 Evaluation of estimation of direction of
players’ movements

We conducted the second experiment using the positions
of the ball and the players. We considered two cases
when analyzing the estimation results: moving players
and stationary players. Players were only considered to
have moved if the distance between the median of the
past positions and the median of the estimated positions
was greater than the motion threshold, which was arbi-
trarily set to 3.7 pixels. We defined eight possible direc-
tions that a player could move toward. We set 45 degrees
as the maximum allowable difference between the esti-
mated direction and the actual direction to consider a
estimation as successful. Otherwise, the estimation was
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Figure 8: Success rates of ball direction estimation for
players kicking the ball.

Figure 9: Examples of correct estimations by several
players in different positions in the field. The yellow
and pink points represent the players’ positions for each
team, and the black point represents the ball. The cyan
arrow pointing to the ball indicates the previous direc-
tion of the ball and the cyan arrow pointing to a player
indicates the previous direction of that player. The blue
arrows originating at the ball and the players indicate
the actual future direction of the ball and of the players.
The red arrow indicates the estimated direction of the
player.

considered a failure.

Figure 9 and Figure 10 show examples of correct es-
timations and failed estimations of the direction of the
motion of several players for the same frame.

In Figure 9 we observe examples of estimation results
for six different players using our system, including cases
in which the direction before and after the estimation did
not change significantly, as well as cases in which play-
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Figure 10: Examples of incorrect estimations by several
players in different positions in the field. The interpre-
tation of this figure is identical to that of Figure 9
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Figure 11: Results of motion direction estimation for
each player.

ers were previously stationary and then started to move
(image 4), or were moving in one direction and then
changed direction (image 2). Figure 10 shows examples
of failed estimations. These included cases where the ac-
tual motion of the player was not significant enough to
be considered moving, although the estimated direction
was correct (image 7), where the players stayed practi-
cally stationary, so the estimations were considered fail-
ures, but the magnitude of the estimation was small (im-
age 9 and 10), or where the estimated direction of the
player differed from the actual, but the estimated direc-
tion followed the same direction as the ball (image 8).
Figure 11 shows that, in general our system was able to
effectively infer an average of 50.6% and 69.9% of the
future directions of players of team A and B, respec-
tively. This means that our approach was able to learn
and generalize motion patterns from the raw data and
then apply that knowledge to new scenarios. Addition-



ally, we see the correspondence between the fact that
team B (HELIOBase, with 8 goals) had better perfor-
mance than team A (WEBase, with 0 goals) during the
matches, and the fact that the estimation by the play-
ers on team B was significantly higher than the number
of correct estimations by the players of team A. It may
suggest that the actions of the players on team B in-
clude strategic patterns and thus are more predictable.
To summarize, these results indicate that our model was
able under several conditions to learn motion patterns
of the players and then apply that knowledge to infer
future states.

5 Conclusions

In this study we proposed a method to estimate the ac-
tion of soccer players and conducted experiments to mea-
sure this predictability using data from the RoboCup
2D Soccer Simulation League. The experimental results
demonstrate that the future movement directions of the
players and of the ball can be estimated successfully to
a great extent; consequently, our method was proven
to be able to estimate low-level predicted actions that
could be adopted to represent teams’ strategies. We
are considering that task (i.e., adopting low-level actions
for strategies’ representation) as a future work for this
study. Further work is required to classify the roles of
the players by exploiting the capability of DNNs to learn
high-level representations from raw features, to assess
the ability to estimate players’ trajectories for different
sizes of the time window, and to validate our approach
using data from the RoboCup Standard Platform and
Middle Size leagues. Finally, we expect that introduc-
ing approaches based on DNNs like ours that estimate
actions in a bottom-up manner opens the door to devel-
oping new skills for robots in RoboCup competitions.
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