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Auditory Illusions Related to Temporal Continuity and Discontinuity
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* Yoshitaka NAKAJIMA (Kyushu Univ.)
nakajima@design.kyushu-u.ac.jp

Abstract— This presentation is a theoretical attempt to
understand three auditory illusions related to the temporal
continuity and discontinuity of sounds. In 1) the audi-
tory continuity illusion, a long tone of 1-2 s interrupted by
a short noise of 0.1-0.3 s, for example, is ofien perceived
as continuous. In 2) the gap transfer illusion, typically a
glide of 1.5 s or above with a temporal gap of about
0.1-0.3 s in the middle and a shorter continuous glide of
about 0.4-0.6 s cross each other at their central positions;
the gap in the longer glide is perceived as if it were in the
shorter glide. In 3) the illusory gap unification (the il-
lusory auditory completion), typically a glide of 1.5 s or
above and a shorter glide of about 0.4-0.6 s cross each
other, sharing a gap of 0.05 s or below; this gap is per-
ceived more clearly, or only, in the shorter glide. New
versions of these illusions in which harmonic glide tones
have been employed are demonstrated. They are more
persuasive than our previous demonstrations, in which
single-component tones were employed mainly. A
model seems to explain the illusions, and it is based on
the assumption that the auditory system detects and com-
bines onsets and offsets (terminations) of sounds as inde-
pendent components.
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HERTAAL NTIOTEEBEORBET, HEHRE
B—RARFITAS RIESRIBITHE N , FEkO
ROEBELD X OREHEEZRER LEZTE, BiE
ITREFORFTHY, BEWAALBTELBNET
FaTHEERPEAVTIZLHTHETHS,

2. ErfEREsRiEICRET S8R

HEHESER The auditory continuity illusion
ZOHZBRIL, BELIKLELI{MLNIEETSH
VD, IFXEREEASNEZ—VDHERINLTNS
(Miller & Licklider, 1950; Ciocca, 1987; Bregman, 1990;
Warren, 2008; Riecke, van Opstal, & Formisano, 2008) .
BRI A —D2 T B2 5L, 1000Hz, 1~3s OfliF
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Figure 1. A stimulus pattern that is likely to cause the au-
ditory continuity illusion. A temporal gap of 0.15 s in
the pure tone is replaced with an intense noise. The tone
is perceived as continuous if the noise is infense enough.
(Most of the illustrated stimulus patterns in this paper are
available as wave files on the author’s website.)
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Figure 2. A stimulus pattern with a glide tone which is
subject to the auditory continuity illusion.
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ZoRESTESEE The gap transfer illusion
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NTW 555 (Figure 4) &, SERICE - TGREAT
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THEE b LSRR,
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Figure 3. A stimulus pattern that is likely to cause the gap
transfer illusion. The gap in the longer tone is perceived
as if it were in the shorter tone,
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Figure 4. A stimulus pattem to be compared with the sti-
mulus pattern in Figure 3. These two patterns give al-
most identical percepts.
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22RO B —IRBIL The illusory gap unification
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Figure 5. A stimulus pattern that can cause the illusory
gap unification. The gap is perceived clearly only in the
shorter tone. The continuity of the longer tone will be
clearer if the gap is shortened, but sometimes at the cost
of the perceptual clarity of the gap in the short tone.
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BENDZLEFRTHATEETHDS (Nakajima et al,
2000),
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2TOEOPROEE FR L, 2o+ 3I VRE
B (GERRERE 0.02s £T5) DI EWERE
BATBHZ LB TES (Figure6), ZDERIT=2D
EZOLTHLETILOTHS, ZOB, 4425
BT B LIt oT, EVINEORBLEREES I,
EVWENEHETHIL O RAREAETHLENTED
(Nakajima, 2007) , ZhFE T, & LTHEH—ROSOE
A EEZRAWTERERY Tk, EEMNLToEL%E
BFTHEYAVWTCIOEREARE T2 LIiT#L o
2OT, ZOFTEVA M —Ta b, i
EERERIEAELNRTELD,
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Figure 6. The spectrogram of a stimulus pattern consist-
ing of three synthesized recorder tones. The total dura-
tion of the pattern is 2 5.  The gap of 0.02 s in the middle
is shared by all the components. The percept of the 2-s
long tone is clearly continuous.
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Figure 7. The event construction model. An onset (<)
and an offset (>) as indicated in the stimulus pattern in the
left panel are connected to each other perceptually if they
are close to each other, and if they are presented in this
order (<>). Then, a percept as in the right panel appears,
which is the gap transfer illusion.
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BEZ b, ROVAREELEFBAShEZRD
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Figure 8. A stimulus pattern that is likely to cause the il-
lusory split-off, Typically, the listener perceives a short
tone, probably corresponding to the overlap, in the middle
of the pattern. The rest of the percept is often a long
glide corresponding to the whole duration of the stimulus
pattern.
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Abstract

This paper shows a continuous vocal imitation
system using a computational model that ex-
plains the process of phoneme acquisition by
infants. Human infants perceive speech sounds
as continuous acoustic signals and segments
them into phonemes with articulatory move-
ment. To repulicate the development process,
we apply the segmenting method to our system
by Recurrent Neural Network with Paramet-
ric Bias (RNNPB). This method determines
the multiple segmentation boundaries in a se-
quence using the prediction error of RNNPB,
and the PB values of RNNPB can be encoded
as kind of phonemes. The method is imple-
mented into a physical vocal tract model, called
Maeda model. Experimental results demon-
strated that our system can imitate vocal sound
involving arbitrary numbers of vowels using the
vowel structure in the RNNPB.

1 Introduction

Qur goal is to clarify how to acquire the ability to distin-
guish phonemes in early human infants. Human infants
can acquire spoken language through vocal imitation of
their parents. Despite their immature bodies, they can
imitate their parents’ speech sounds by generating those
sounds repeatedly. This ability is closely related to the
cognitive development of language.

Many researchers have designed vocal imitation sys-
tems that duplicate the developmental process of infants’
vowel acquisition [1] [2] [3]. These studies were based on
the idea that articulatory mechanisms such as the vocal
tract enable us to acquire phonemes. This idea has been
advocated as the motor theory of speech perception [4],
and recent neuroscience studies seem to show the idea
to be an active process involving motor cognition [5] [6].

Segmenting acoustic signals with articulatory move-
ments is essential for vocal imitation and phoneme ac-
quisition; the reason is that human infants do not know
the given phonetic distinction inherently. The human

development studies described above assume that acous-
tic signals consist of discrete phoneme sequences in ad-
vance, and they search for vocal tract shapes correspond-
ing to phonemes. However, articulatory movements for
the same phoneme dynamically change according to the
context of continuous speech (e.g. coarticulation). This
effect derives from a physical constraint that articula-
tory movements should be continuous in sound genera-
tion. We assume that human infants regard phoneme
sequences as continuous acoustic signals. As they grow,
infants will acquire the ability to discover phoneme units
in a continuous speech sound by prosody, rhythm, stress
and whether they can imitate the sound or not.

We use Recurrent Neural Network with Parametric
Bias (RNNPB) [7] to segment and imitate a continu-
ous temporal sequence consisting of acoustic signal with
articulatory movement. From the view point of con-
sidering sounds as temporal sequences, we have already
developed a vocal imitation system (8], which used the
RNNPB model and a physical vocal tract model, called
Maeda model, to simulate the physical constraints. We,
furthermore, apply to our system the segmenting method
by RNNPB [9]. This method can segnient several kinds
of sequences into primitive sections using the prediction
error of the RNNPB model and encode the segmented
sections as a set of parameters, called PB values. It is
assumed that the method enables our system to encode
the position of phoneme transition as the segmented sec-
tions, and that imitating heard sounds, our imitation
system can manipulate the encoded phonemes.

2 Vocal Imitation Process and Model
2.1 Overview of Our Imitation Process

As illustrated in Fig. 1, our imitation process consists of
three phases: learning, recogmition, and generation.

1. Learning 2. Recog 3. Generation

tion

Figure 1: Imitation process.



1. Learning (Babbling)
Our system uses articulatory movements to pro-
duce sounds, and it makes a connection between
the movement and the produced sound. This phase
corresponds to babbling in infants.

2. Recognition (Hearing parents’ speech sounds)
We put speech sounds into the systeni. The system
recognizes the sounds with articulatory movements
producing the same dynamics as the input sound.

3. Generation {Vocally imitating heard sounds)
Finally, the system uses the articulatory movement
to imitate a speech sound.

The learning phase uses the RNNPB method of seg-
menting temporal sequences. CQur imitation model can
gelf-organize so as to connect an articulatory movement
with the corresponding sound dynamics. Additionally,
in the recognition and generation phases, the conmection
is available for our model to imitate speech sounds.

2.2 Physical Vocal Tract Model

‘A synthesizer simulating human vocal tract incorporates
the physical constraints of the articulatory mechanism.
The vocal tract parameters with physical constraints are
better for continuous speech synthesis than acoustic pa-
rameters such as the sound spectrum. This is because
the temporal change of the vocal tract parameters is con-
tinuous and smooth, while that of the acoustic parame-
ters is complex, and it is difficult to interpolate the latter
parameters between phonemes.

We used the vocal tract model proposed by Maeda
[10]. This model has seven vocal tract parameters: 1.
Jaw position (JP), 2. Tongue dorsal position (TDP),
3. Tongue dorsal shape (TDS), 4. Tongue tip position
(TTP), 5. Lip opening (1.O), 6. Lip protrusion {LPR), 7.
Larynx position (LP). The parameters were derived by
principal components analysis of cineradiographic and
labiofilm data from French speakers. Although there are
other vocoders, such as PARCOR [11] and STRAIGHT

[12], we think that Maeda model, with its physical con- -

straints based on anatomical findings, is the most appro-
priate, because of our aim to simulate the development
process of infant’s speech. This miodel for generating
acoustic signals is a very simplified articulatory model,
and the sound units corresponding to phonemes are ex-
pressed in these articulatory terms.

Table 1 shows the first and second formant (F1, F2) of
vowels produced by Maeda model. Each Maeda param-
eter takes on a real value between -3 and 3 and may be
regarded as a coefficient weighting an eigenvector. The
‘sum of these weighted eigenvectors is a vector of points in
the midsagittal plane that defines the outline of the vo-
cal tract shape. The resulting vocal tract shape is trans-
formed into an area function, which is then processed to
obtain the acoustic output and spectral properties of the
vocal tract during speech.

Table 1: The F1 and F2 averages of Maeda model .

fof | i/ T Jul T Je] T Jo]
FI [ 667 | 234 | 269 | 401 | 500
F2 | 1214 | 2161 | 924 | 1894 | 902

2.3 Learning Algorithm

This subsection describes the method to learn and seg-
ment temporal sequence dynamics. We apply the RN-
NPB niodel, which was first proposed by Tani [7] as the
forwarding forward model. It generates complex move-
ment sequences, which are encoded as the limit-cycling
dynamics and/or the fixed-point dynamics of the RNN.

2.3.1 RNNPB model
The RNNPB model has the same architecture as the
‘conventional Jordan-type RNN model [13], except for
the PB nodes in the input layer. Unlike the other input
.nodes, these PB nodes take a constant value through-
out each temporal sequence and are used to implement
a mapping between fixed-length values and temporal se-
quences. Figure 2 shows the network configuration of
the RNNPB model.

output S(t+1) X(+1)

Parametric

Input S(t) Bias Context loop X(t)

Figure 2: RNNPB model.

Unlike the Jordan-type RNN model, the RNNPB self-
organizes the values in the PB nodes that encode the se-
quence during the learning process. The common struc-
tural properties of the training data sequences are ac-
quired as connection weights by using the back prop-
agation through time (BPTT) algorithm [14], as in a
conventional RNN. Meanwhile, the specific properties
of each individual temporal sequence are simultaneously
encoded as PB values. As a result, the RNNPE model
self-organi¥es a mapping-between the PB values and the
temporal sequences.

2.3.2 Segmenting Temporal Sequence Data
Our segmenting method determines the segmentation
boundaries using the prediction error of the RNNPB
model. Systems using this approach usually consist of
dynamic recognizers that predict the target sequences.
The dynamic sequence is articulated based on the pre-
dictability of the recognizer. The method we used to seg-
ment acoustic signals with articulatory movements uses
the prediction error of RNNPB model and the number
of segmentations. Its description is as follows: Consider
the problem of segmenting a dynamic sequence, D(f),
whose length is T into IV sections, which are represented
as S; (=0, .-+, N —1). The boundary step between
S;—1 and S; is represented by £ = s;, that is, 5; is de-
fined as [s;,s;+1]. The segmenting process consists of
five steps.
Step 1: Initialization *

The given sequence is divided into N sections. Each

section has the same length. The boundary step

8; (=0, ---, N) is set as follows.

si —1-T/N (1)



Move the
boundary to
the area with

larger error
d AVAY

»time >
Erer: Small PB time

i~

*

boundary time ibounda.ry time
Figure 3: Segmenting multiple dynamics.

Step 2: RNNPB training
The connection weights and PB values of the RN-
NPB model are updated with the given sequence,
while the PB values are kept constant in each sec-
tion, S;.

Step 3: Calculate prediction errors
In each S;, the prediction sequences of the RNNPB
model, P(t), are calculated, and the average predic-
tion errors, F;, is obtained as follows.

Ee— — S De)-Pe)l @

Si+1 — 54 tes,

Step 4: Update the length of each section

The boundary step s; (i =1, ---, N—1)is updated
by using the following rules:
. si—ds if By > E;
8§; — { 8; + ds 'bf E'—-l SE‘L') (3)

where ds is a parameter used to update the section
length.

Step 5: Repeat Steps 2 to 4 until the whole error is less
than the threshold.

If a sequence is generated by using simple dynamics, the
prediction error of the RNNPB will be small, even when
the PB values are fixed. However, if a sequence is gener-
ated by using multiple dynamics, the prediction error at
the boundary between dynamics will increase as shown
in Fig. 3. The algorithm can decrease the error by mod-
ifying the position of each boundary.

2.3.3 Learning of PB Vectors

The learning algorithm for the PB vectors is a variant
of the BPTT algorithm. The step length of ith sec-
tion S; in a sequence is denoted by s;41 — 5;. For each
of the articulatory and sound parameters outputs, the
back-propagated errors with respect to the PB nodes

are accumulated and used to update the PB values. The

update equations for the kth unit of the parametric bias

at the section §; in the sequence are as follows:
Sit1

é‘p,;,k = &- Z ‘Sé,k(t), (4)
t=6¢
pix = sigmoid{p;r + Spik), (5)

where ¢ is a coefficient. In Eq. 4, the & force for updat-
ing the internal values of the PB p;; is obtained from
the sum of the delta errors d; . The delta error ;x is
backpropagated from the output nodes to the PB nodes:

1. Learning |
4 RNNPB R
weight update

s
Maeda model

SP: Sound parameter
,—/ VTP: Vocal tract parameter

‘J L 3. Generation

2. Association Va

ANNPE )
WMM PB calculation wﬂ k,,_,-—.,\
Sound == SP Sound
el | e
{Maeda modeli: VTP Maeda mode!

Figure 4: Diagram of the experimental system.

it is integrated over the period from s; to s;4+1 steps.
Then, the current PB values p; x are obtained from the
sigmoidal outputs of the updated internal values.

2.4 Calculation in Recognition and Generation
Phases

After the RNNPB model is organized in the learning
phase, it is used in the recognition and generation phases.

The recognition phase corresponds to how infants rec-
ognize sounds presented by parents, i.e. to how the
PB values are obtained. The PB values of each sec-
tion are calculated from Eq. 4 and 5 by using the orga-
nized RNNPB without updating the connection weights.
The boundary steps of each sequence are determined by
the prediction errors of the organized RNNPB. However,
there is no vocal articulatory data because the system is
only hearing sounds without articulating them, unlike
in the learning phase. The initial vocal tract values are
input to vocal tract units of the mmput layer in step 0,
and the outputs are calculated forward in the closed-
loop mode from step 1. More generally, the outputs in
the articulatory output layer in step ¢ — 1 are the in-
put data in the articulatory input layer in step . This
calculation is called closed loop calculation.

The generation phase corresponds to what articula-
tion values are calculated. The articulatory output of
the RNNPB model is obtamed in a closed loop calcula-
tion. The PB values obtained in the recognition phase
are input to the RNNPB in each step.

3 Vocal Imitation System
3.1 Experimental System

Our experimental system is illustrated Fig. 4. This sys-
tem was used to verify the relation between vocal imita-
tion and the phoneme acquisition process. To simplify
the system, we purposely used a simple vocal tract model
and target vowel sound segmentation.

In the learning phase, we first use a cubic interpolation
method to produce sequences of Maeda parameters as
articulatory movements. Second, the sequences are put
into Maeda model to produce the corresponding sounds,
which are then transformed into temporal sound param-
eters. Finally, the RNNPB learns each the sound and
the Maeda parameters, which are normalized and syn-
chronized. In this phase, the parameter ds was set at 0.1.

_9_



Table 2: Input sound data in the recognition phase.

two-vowel three-vowel four-vowel
fae/ fiof|/aeo/ [eai] [iae/ [oae/ [uail| [aiue/
faif [iu]||/aew/ [eia) [iai/ [oaif [uao/| [eoaif
/ao/ foaf| [aia/ [eiu] [fieof [oao/ [ueafl| [iueo/
fauf foefll faie/ [eoa/ fioaf foav/ [ueil| [oaiu/
[eaf [oif{ [aio] [eoe/ [ive/ [oeif [ueof|| [ueoa/

feif Jouf||/aiu/ [eoif [iua/ [oeo] juew/
feof [uaf|/aca/ [eou/ [iue/ [oiv/ [uio/
fev/ [ue/|/aou/ [eva/ [ivi/ [oue/ [uwiuf
[ia/ [uif|/ave/ [eue/ [fivo/ foui/ juoa/
[ie/ fuo/

The size of the RNNPB model and the time interval of
the sequence data differed according to the experiment.

In the recogunition phase, sound data is put into the
system. The corresponding PB values are calculated for
the given sequence by the organized RNNPB to associate
the articulatory movement with the sound data.

In the generation phase, the system generates imita-
tion sounds by inputting the PB values obtained in the
recognition phase into the organized RNNPEB.

3.2 Sound Parameter

We use a kind of Mel-Frequency Cepstrum Coefficients
(MFCCs) as sound parameter, which are obtained from
power spectrum of sound waveform. The power spec-
trum is calculated by STRAIGHT analysis instead of
short term Fourier transform of the segment. The power
spectrum has no interference cansed by fundamental fre-
quency of vocal source. In this paper, MFCC stands for
this kind of MECC. The MFCCs are calculated by tak-
ing the Discrete Cosine Transform of mel-scaled log fil-
terbank energies. STRAIGHT analysis is a kind of pitch
analysis in which the window length in the analysis is set
depending on the fundamental frequency of the sound.

In our experiment, the speech signals were single chan-
nel with a sampling frequency 10 kHz. The number of
mel filterbank was set to 12. We formed 5-dimensional
vectors from low-third to low-seventh dimension out of
12-dimensional MFCC vectors. The vectors produced
from speech sounds remain vowel features, and they are
almost independent of speakers.

3.3 Vocal Tract Parameter

We applied Maeda model with the first six parameters
described in 2.2 section. The reason for choosing only
these six parameters is that when Maeda model produces
vowel sounds, the seventh parameter LP has a steady
value. In the generation phase, it is possible for the
Maeda parameters produced by the RNNPB to tempo-
rally fluctuate without human physical constraints. This
occurs if the system does not easily associate the articu-
latory movements of an unexperienced sound. Therefore,
to help prevent extraordinary articulation, we tempo-
rally smoothed the Maeda parameters produced by the
RNNPB. Concretely, the Maeda parameters in each step
were calculated by averaging those of the adjacent. steps.

1
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Figure 5: Learning data: /aiu/.
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Figure 6: The PB values of /aiu/ in the learning phase,

4 Imitation Experiment

We carried out an experiment of vocal imitation us-
ing our system. The organization of RNNPB is as fol-
lows: 11 input/output nodes, 40 hidden nodes, 5 con-
text nodes, and 2 PB nodes. In this experiment, we set
ds = 0.1 and N = 8. In the learmng phase, RNNPB
learned 10 patterns of three-vowel data consisting of the
5-dimensional MFCC vector and the 6-dimensional vo-
cal tract parameters: /aiu/, fave/, [ive/, [iao/, [ueo/,
fuiaf, feoaf, [euif, foaif, and foeu/ (1350-ms and 30-
ms/step), produced by Maeda model.

In the recognition: phase, we input the MFCC parame-
ters of the two-vowel, three-vowel and four-vowel sounds,
which are produced by 4 people (3 males and 1 female),
into the organized RNNPB, and recorded the PB values
and the boundary steps for each sound. Table 2 lists in-
put sound data in the recognition phase. The two-vowel
data were 900-ms, the three-vowel data were 1350-ms,
and the four-vowel data were 2000-mms. We set N = 4
in recognizing two-vowel data, and N = § in recogniz-
ing three-vowel and four-vowel data. In the generation
phase, we used the PB values and the boundary steps to
reproduce the recorded sounds.

Figure 5 shows 4 sequences (JP and TDP of Maeda
model, and the third and fourth MFCC) of the learning
data /aiu/. Figure 6 shows the PB values for the learn-
ing data /afu/ obtained by the organized RNNPB. The
vertical dotted line represents the boundary step s; seg-
mented by RNNPB in the learning phase. The boundary
steps, dividing the input sequence /ueo/ into flat and
transition segments, in Fig. 6 were 57 = 3, 52 = 14,
83 =17, 84 = 20, 55 = 30, s = 32 and sy = 37. We
confirmed that as the size of N increases, the boundary

- steps become more stable in the learning phase. Similar

results were also acquired for the other input data.
Figure 7 shows the PB space of the organized RNNPB.

In Fig. 7, the PB values represent the phonemes of a set
of three-vowel data aligned according to the length of the
three longest sections of a learning sequence. The PB
values for the same vowel, including the learning data,
were mapped with sufficient dispersion.

" Figure 8 shows the analysis of PB space. This analysis
was conducted as follows:
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Figure 7: The PB space in the learning phase.
1. The PB space was divided into 10 x 10 lattices.

2. For each lattices, each sequence of Maeda parame-
ters was obtained through closed loop calculation.

3. Using Maeda parameter sequences, 300-ms speech
sounds were produced (N = 1).

4. The F1 and F2 averages of second half of each pro-
duced sound were calculated.

5. The square error of F1 and F2 averages from those
of Table 1 were calculated for each vowel.

6. The vowel corresponding to the minimum square
error was set at each lattice point.

In Fig. 8, each color expresses the vowel: blue is /a/, red
is fi/, yellow is fu/, green is /e/, and purple is fo/. In
the space, bright color represents small error, and dark
color represents big error. The PB values corresponding
to constant vowels in Fig. 7 are plotted on the bright
place in Fig. 8. Each vowel has nonlinear distribution
due to F1 and F2 formants. Especially, the vowel /a/ is
widely distributed in the PB space.

Figure 9 shows the transition of the PB values for the
input data /aeo/ and /eoa/ of one male in the recogni-
tion phase. In Fig. 9, the PB values of section Sy for
/aeo/ separated from those of the sections Sg 7 for /eca/.
We confirmed that the category of the phoneme /a/ in
Fig. 8 corresponded to the transitions of the PB values
in Fig. 9.

In the generation phase, most of imitation sounds were
similar to the original. It is confirmed that the PB values
of each vowel obtained in the recognition phase corre-
spond with those in the learning phase. Figure 10 shows
the F1-F2 map for each vowel of one male’s two-vowel
imitated sounds. In Fig. 10, the formants of imitated
sounds except for /o/ correspond with those of human
speech sound (the map of “vowel triangle” shown in [15]).

It is confirmed that our model can imitate vocal sound
involving arbitrary numbers of vowels using the vowel
space in the RNNPB. The space is acquired by “bab-
bling” of the vocal tract model with only a few sets of
vowel sounds.

00 ~ 10°PBI
|b1ue: fal, red: fi/, vellow: A/, green: Je/, purple: lol|
Figure 8: Analysis of PB space.
5 Discussion

5.1 Vowel acquisition

Our system could encode the same vowels in acoustic
signals as the near PB values in the PB space. In this
sense, each vowel category is defined independently from
the other vowels. However, in Fig. 8, it is confirmed that
each vowel category is widely distributed. In Fig. 9, the
PB sequences pass through different points in the same
vowel categories. This means that the PB values rep-
resenting the same vowel are changed by the adjacent
vowels in a given vowel sequences. It is assumed that
this represents coarticulation designed in general speech
recognition systems. In this sense, each vowel is deter-
mined context dependently on the other vowels.

Tani et al. showed that the internal symbolic process
was embedded in the dynamical attractor in a mobile
robot system [16]. In his experiment, the robot acquired
attractors representing the observed objects as activities
in RNN nodes. These attractors were also represented by
complex clusters, and the positions of active points were
fluctuated by the context, i.e. trajectory of mobile robot.
This bilateral characteristic, that is context dependency
or independency, is one of the interesting and essential
properties in dynamical systems representation.

5.2 Vowel imitation

Our system could accurately reproduce, to an extent,
most of the heard sounds that. were experienced or unex-
perienced. In the experiment, information of the funda-~
mental frequency (F0O} was eliminated from input sound
parameters. Due to this elimination, our system could
imitate many vowel patterns of heard sounds that were
experienced or unexperienced. In Fig. 9, our system
could manipulate the PB values as vowels, and robustly
recognize the context of sound.

6 Conclusions and Future Works

We developed a vocal imitation system applying the seg-
menting method based on predictability by RNNPB.
Through the experiment, the segmenting method en-
ables our system to self-organize vowel space as the PB
space without information of the number and kinds of
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Figure 9: PB sequences for input data /aeo/ and /eoa/
in the PB space.

vowels for input acoustic signals. Furthermore, imitat-
ing heard sounds, our system can manipulate the PB
values as vowels in the organized PB space. For exam-
ple, learning only 10 pattern of three-vowel data enables
our systewn to imitate two-vowel and four-vowel sounds
in spite of unexperienced vowel sequences. In the analy-
sis of the organized PB space, it is confirmed that each
vowel has widely distribution in the PB space and that
the distribution expresses the context of speech sounds.
Our future work includes to imitate speech sounds
through simulating mother and child interaction. The
babbling should be introduced into our model as the
exploring and learning phase of corresponding between
generated acoustic signal and articulatory movements.
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Abstract

Musical beat tracking is one of the effective tech-
nologies for human-robot interaction such as mu-
sical sessions. This paper addresses a musical beat
tracking robot which can step, scat and sing accord-
ing to musical beats by using its own microphone.
To realize such a robot, we propose a beat tracking
method by introducing four key techniques, that is,
spectro-temporal paltern matching, noise suppres-
sion using voice cancellation, beat prediction and
music recognition. We implemented the proposed
beat tracking method for Honda ASIMO. Experi-
mental results showed 10-20 times faster adaptation
to tempo changes and high robustness in beat track-
ing for stepping, scatting and singing noises. We
also show some movies of our robot singer based
on the beat-tracking.

1 RUsK

V4R, ba—=/A4 FPs—bufy b AEFALY—Ty
NAVESTrvavEiTHuRy FOFRBEAILTDR
Twa, EEiZ, oy PPHERETY—Y YA ¥
Z7vavikiTHIRDICE, BOOETHEYHE, Fhuc
BUTITETE2AMBETH S, FFIialr—
aviENRW S ETHARVLE, FRIIBVLTYH, ALHE
ELRTFREHEOT, FOFRIEL Ko DFio7 b
TAEEER, AtoAvIs sy aviihARTED
KTabicERTHS, RFTE, SELSE— 2
HU, chEzHIZALDA vy ¥S5 7 aviiTitih%
HI3uRy bEE—FFovXrraly FERERESD
ET3, V- rovxvofy PRI, IhETE
WY 7 by 27 2 hic T b T & R B REERAER
CHF BN SR I P PRI A

F7 - ARBHRTAFF TR, ¥—FrrovFvin
By Moo TERMERMBE ORTF 4 7 AREELH
TR RS OREPEETE LS.

11 E—hkhr3vEr IOy FOBREERR

YT A b ERETHEFTIE—P v X m
Xy +OBEFICIE, DTOFERBTONS,

(1) FE e ETHOFBN

(2) HEoSR ME

(3) Y7 A% 4 L

@ TYREMRNBTERE -y XV
(5) BEXFE

A BEY L VFS 72 VvDRAF4TELT, B
~OBLEREC, BRCADETRPE Y & ¥ OXH
LR TEZT Ry FEEEHRESH T3, MIDIESK
EbeTY A %175 WABIAN | , HEfkCcREIL T,
TELZ EHBTED SonyQRIO 2, ALERF VA%
B % MSDanceR [Kosuge 03, Takeda 05, Takeda 06], £—
Yav¥y 7Fy Iy RHALT BYoEETI o
Ay + HRP-2 [Nakazawa 02] 23Zlf o s, thoson
By FERPREO 2T 2 EMTEZHOD, Bl 7
FSHENED OEfEREToTWS, ZDRH, ALD
AvFGIT4 Ty raryEiT) X hRRCTEE
THD, EBEIE, 5 LERPEDE, ER»oU 7L
A4 LTHBLAE - MERICEDE, BREFHOT
vk, BIXUBSZEOY-RALEHOF A 27 OW
HHFAT 2 L9 Rz T S BEXDH B, Tk, Bffhe
PRITL TS, EBEOUHEE TIIBBESEL 349,
ZOWEIEE PRI i, EROBEESTILENS S,
FrRBELLEBEDY AT LAREDO VAR YRR, T
R B ETOEE L ERRICERDICRMINDET

L hitp:/fwww,takanishi mech.waseda.ac.jp/research/

2 hetp://www.sony.net/SonyInfo/QRIO/



DEIER b IDEIEE kB0, Ty bOHHICE
WT T REEADEVGBEREERIIRD S B,

HE, vRy FoeA 2o L FRERE T

TH5uRy bk LT, Kotosaka &Schaal WFFE L7 A&
FiaxNLlTeyar2iTduRy b [Kotosaka 00],
Michalowski & 2BFRE L ZBERHE—-Moabe T, B
RHEERE(EZS L0EiERTIAIE Xy + Keepon
[Michalowski 07] 3 F o s, LdL, ZhsouRy

FRADOFEFEERCHETESE TR, bL
Cid, HEPEECEZIRECANTIREI L2
RELTWS, —BWLERETIE, $#F0ORBARITSZ
ETELVLARD, AHOREHEEIHREVGAP, v
Ry VEMEE L PAELHOEETPEL 2HEAR SR
IERELZEENRETHS. AORETOREL LT —
FRFEFEMOAE—APETEETRI Db Ry FE#E~
A 2GR NEICH 57, A ESEo A7 —
KEL->TLED. Ff, BRZALETHEHECHEAE
1954, BCRESAGBRBEZET 54D, oy
FTE—FFS v RSB ETIBEEECHE
ABZONHZTI HERD B,

BAREIC Y 73 4 ABERE->TWBE—LF v
FPREHELLTHEHELOPLF IV P R—RADY T
NFAALE—+ b T vF S [Goto95] HEETSN B, T
DFER, —ECOLHENEZELZHOD, VFALIA A
TeNAMCE—~ 2T EIENTES, L2, —
EOMBENDEL 728, WHL U — MR, BH
HICBREDRADE —F Lo TLE), TDkd, En
Xy McEAL, E— MoALEEREEETI T,
HREDE— AR FHT 2EBPLETHS. i, &
VREOBVWTFHIEZ{TI Loicid, AEELEEHIA
BRENRSHB, ¥5iZ, aRy TR, HAAERSHCE
F, ARN—ADRENHBICOEE LAY 7AF A L0EH
BT EMNEE L,

ADHEBOT Y REHEIL—E TR ow Ik, hoddt
FYRHBEDLDIBZI E,S, oy FERNRELEE—
PRIy R, FYROEEA~DEVEEERITR
Hons, —HT, MIDIEFEMWEHEAPE— 2l
EN—EThHrHBaR, KELTE-rHiiTcEsZ L
HEE L, BEWICE— 2T 37010, ©—F
MHOBREEZRES T3 I v, 7Y REL~DRA
FEREREELTL ), —BicT v REE~DERE LR
FEHERFL—FA7EfRICH D, TOMMLIEKELEET
b5, R, FUYREMEEEL TORVE-FFS Yy
v IFNTY X AHEH o T [Goto 95, Scheirer 98] 25,
Dannenberg & id, Decay /87 A —#ZH\nT, D FL—
FA 7 2<% 2 FHEE#EE L T % [Dannenberg 87].
T, VTR, S=F 4 27 4 LY RERNF LY
ALT, 7 ROBNPEMADEERBRICANHE

ME 5N 5 [Hainsworth 04, Klapuri 06, Cemgil 03]. 73—
T4 INT 4N, S—TF 4 2 A AUTRES L REEEDS
FL—FA7BRICH D, HEEE T, HETCHEEDA
REHBETILERD L LV REND B,
EEINAFTRICIOUEHEERT B-0I101F, *
DEFOMET, FE, TIBDDYA S v T voliF
FTBBETHB, ZODIE, E—-Fr b3 B0
TR, FEOFRE L, ZHmLATRICHT 2058
DERFHENBETDH 5, THEOTRBIL T, ISMIR
{International Conference on Music Information Retreival) {Z
iR N3 L9 Iz, BEERRETRO DT CHAITD
hTEh, ThoDMRAENMT 2 Z LHTAHTHA T,

12 FREEROFIO—F

e, LEROBEICNL, TEO 4 2OFEGEA
2EHG,

o THELIEHOTVREE— FMEADTRERNMET
57 4—Foy ZHIBIOBEA GHE () ~ORIE) .

o HORET2HHT 240, I 754 FRIUK
5 (2 2 79 A ~ F ICA)[Takeda 07] DA (B
& () ~ D) .

o FEAEPIERTAY — v v F 2T LI
X b, —BMLACHEBEEEE e HE XD bEWY
BET, BNAMCE—F2HHET3 LN TELE
WhE—F F 7w ¥ v FHTHS STPM (Spectro-
Temporal Pattern Maching) E— F F 7 v % ¥ DR
£ (FEQG),@) ~oHw) .

o FREXERLEhEARBEEBEOEA GBE 65) N0
RFIE) '

X 512, Honda ASIMO IR LT, REFH:Z ERICHE
AL, vy rARRKIZ A 2EMaTHHL %
E—FicAheT, BARETL, AROTIALD,
FEEHEALEYTEBRE—F Sy v iuly FEH
£73,

2 STPMAR—RADE—-RhZvE2 Y

LROFHETBERTEE— S v F 7 70TY
ALOBEY Fig. 1 KT, ZOE— Iy FvI7 0
FY AL T AT TR TE - AT
Ay DIDDEL 2= 5o TED, ADBEIIXL
TE—- MR ETF VR E2HAT 5,

21 RIRBEER

44 1kHz TR L TH > 7Y » 7 L # 2ch D AFES T
L CREERET 2T, 1 Frriridofy MZHER
hieeA 2 2FALET L ASTETERETHE,. 20
e, SEFTEETOMERE, A APAQRET LY
DHEEPRAL TS, I 1F 2 3O7FIHP



Musical Audio Signals  Singing Voice Signals

Frequency Analysis l’ "'
Short Time Fourier Transform

Self-Voice Cancel

}

Mel-scale Filter Bank

\

Onset Component Extraction
| - R
= TirTe Vet ———
Beat Interval Prediction e TImEVectoy
STPM

Intewal@eliabiiiw

Beat Interval Estimation

Int‘e'r\'ral"

Cross-Correlation Analysis

¥

Beat Time

Beat Time Prediction

Beat Interval

Figure : SPTM E—F F 7 v 3 7700V X LABE

HErrounRy FOARKEFOESTHE. AT
LPERTAEEREEANL TR, HEMEA
LTwily, ZoOEFRERT 2HEIMHE cHY 5,

Rk 2 20ESFFRFICH L TERR 7 —
Y LZHR(STFD) 2175, = 2T, REHICIIER 4096 R
A OV TERRY, Y7 FEESRZEAAVERE
L7,

KICOT EAPEHAE R EFRIIGC TITbiL s R
DHLECREZOF v e 2T, E—FFIvxy
FREZEORPEEAVWTE - 2RET 20, FH
DEENKRE N, TORdD, AOHATFEMRHTLII LI
koTE—LF oo v roBER L ECES, B
H R HEF BRI i3 £ 7% 4 > F ICA[Takeda 07] (o>
(RAAF 2 Ve VERFEAT S, ZOFRE—RER
BET7 ANFR—ZADFEL W EEIEVL I LRES
NTEY?ALFFr FAANCOLHRIIEETE AL
WHIREEHA T3, A TIRAGRD 2¢h ASMEFIC
WML, ZOFEREHLKE, XK, A7 MLICHLES
AR DEHEHABTHGENE AN T L AT TEH
T 2,049 KIGD AR F L% 64 RKITICIEHE L 7=,

ANARF—NDRARZ ba ¥ 5 LT AT —BARC
FRLTwIRIAEA Y2y FTH A THEENE W EE
A5, ¥FTEEHER?RETERYD, NV—ARI tus
FARHLTY —_NT7 4 AT —2FHEL Ty PDK
AETH. pralt,f) 2t ZBHOKE 7L —LD fEBD
ANFREBEEC VDAY P NVAY—{HETEE, 740

Pattern Matching Width (Pwidih)

Figure 2: A —M HAy—vevFr 7,

Beat Time T{n}
T(n+1)
[
It L1 It) t
I(t)3

Beat.Time Refiability.

Figure 3: ¥ — + ReZIHEE

Y —BOMIE d(r, f) EERT T LHLKED,

dit,f) = —Pma(t—1,f+1)+pma(t+1,f+1)

_Pmel(t - 1:f_ 1) +Pmef(f + I:f— 1)
_zpmel(t_laf)+2pmel(t+1:f) D

ZoEE, Avey MEHEE dp(t,f) ZMTO LI ICE
®T5.

d(e, f) if d(t,f) >0,
0 otherwise

dr'm:(t:f) = { (2)
ZITf=1,2,..,2TH5B, I-oTENREFNORE7 L —
ATERILDA ey FRRENRT bR oNn D,

22 E—hHMREEE

Bb&I“-oor—roEE: "v— MEE L EHL,

hEHETS. 9, Avey FRARZ PAEHWT

BE-RESER TNy — v v F U TRITH, NY—v

v FEEE LTHUTCER I NS IER{GEEAER

B (NCC) 2A1v 3, ¥— MHRBEFEE R, %

. A(t!i)

R(t,i) = W(fﬂ) (3}
62 Pryign—1

Z d,',w(l‘—k,j)d,‘,,c(t—i—k,j)
j=1 k=0

62 Pygrn—1

Y Y dinlt—k )

j=1 k=0
62 Pwid:k_l
Y, diclt—i=kj)?

j=1 k=0
LEETSE, IT Byiamn Ry —reyFrSORET
W7y R A5 ThS, (Fig 2).

BRETZ7LTY) ALERKE-RERA Y-y F
FEHAVGTV S ZDERK & FAEROERERRICFIAL

Ay =

Bty =

C(¢,1)

Il



Robat State

Sxp

[

Singlng

Predicted Brals T [n}

1

Figure4: E— bt F 7w ¥ v 7 afy - OEE

Tw3, ZOHERNIBDRELEVESTHUNR
FMERROAEETFVRELICHE L THERBOBEERT)
ZEBHEDL, Zhiz, HxE BESoPALITY XL
[Goto 95] T, HOMHEMEOEBRIN6~108THB
EhobEVwEVEI LS,

RWIZR(,) P oa—ANE—2 2HEHMT,

RWdOJ%={ R(,{) ﬁR@J—1)<Rﬁ%)<RuJ+1L
0 otherwise
4
Kt COE— FABOBREE LT, Rpealt,i) BBK
k32t ZHHEKEL TS i%%h?ﬂf](l‘),]z(t) &
BL Z02200E—- 7 OBEENRARETHELE, —
FiBor-rHBZHREL Twa LELLNS, BO
Y—FEBORHERT A0, FTE—FEEE 0
Ry P OBEEEETH 3 61MM. 25 120MM.3 IHB T
3, BRhroBEc25350oY— FEHRSEEN &
LTREINPT VI EE2ER LT, AFXOE— FHRE
EUTOE It a—YRF4 2 RE2RWTERTS.

_ 2ih —h| ([le—h|<dor|lp—Tf < 8)
fhew = &)
3[11 —Izl (lInS _Ill <8or |In3 —12[ < 6)
Iy = 2/h—D]
Is = 3|L—h)

ZITHREFERETH S,

Iiew DEEET 2L E, ©— MER I(?) 1 Lew v b
Fh, EELETNEL L L OBEEOBRWADIE) &
5,

23 E—MBAFHR
E—rﬁﬂ%ﬁﬁuﬁ&E-b%ﬁE&ﬁﬁE—b%ﬁ
BEo_fEErcBHIhs,

231 AEE— NEEE
EEY—-FEEHER, 384 L FoY—- FEERO
FAIRE b — MRATH 2 EHEESRT. Al ok
AR — i DY — METEEE S (1,0) 1T, BRRl—i &

3 Milzel's Metronome: —r$H 7= h OUGHFEFOE, L iFF v
60MM. ThHiif, MHFFOEZXIT 1,000 (ms] TH 3,

Last beat time Predicted beat time
Tiem) T

t Towmem
s Ny | WU . |
turuntprotl‘.!nlngtime l

Wit) Ly =it

]
current tlme

Figure 5: K4 ¥ — + Bl B E
ZOY— MEREORA  —i—I(t) DA 2y FRARY

FAERBGTIRUTOL) IIRES,

Se(t,1) (6)

E(t—i) +E(—i-1() (<I@)
0 . (i>1I(t)

62
K@) = EdEHC(t,f)
=1
232 EEU-—HEEE

ERE— MEEELEC - FEBETY— FANERL T
FELTWREHRETHS, HEY - FMEFELRWT
BTFokiicERL -

Ny,
S,-(f,i) = ESC(TP(r,m)ai) N
T - r—1I(t) (m=0)
’ Ty(t,m—1) = I(Ty(t,m)) (m>1)

TS, i) BEA BB — i KFEFETBE—
Mg 2R Y — METE R ERT 5, T,(,m) (3R
t REMEL LT m{AWOE— FEAT, N i2ESEE— b
EHEELXMTBOY— M ETH B, ZDEEEIRE
BOC—-FIBE o gRIc, —BRWE— M%E
RDBBEIZAVS,

233 E—EHE
VY — FMEEE LB — FMEEEX AW TE— ¢
EHEYUTO LI IZERT S,

ﬂg=2p4p4@&@—ga (®)

234 E—MRRIRE

2V, n HEHOE—FRAE Th) €T3, T(h) >t~
() OB, KR [T (n)+41(0),T(n) + 31(n)] AT EAL3 2
DE—7 2T 3, KICFig. 3IRENB L HE, T(n)+
() —BEWE =2 2RO — MR T(n+1) £ 5,
Y — 2 B [T(n)+ 31(6), T(n) + (O] CHFE L 2 wif
B, T()+I() Z T(n+1) £ 55,

235 EROE—MRBATFR

Fig. 5 @ & 5 IKHETOmFRA r IIETERRSTEE
B 7 DBRIERER foprreme WL TENSEET S, Eo
THRFO Y — R T (m) EFER toypren £ D WO
DE—t, 2FD toypen > T(m) TH B, O I HADKEE



BR2ERTAILOIZBEREOY — R T 2 TR 5.5
ENH 5. SHEEMC U ToMMERAGE LT, k3K
DY — FRFAEFRIT S,

¢ ) Temp if Tymp = 3T (t) +t
B Tinp+Im(t) otherwise.
Timp = T () + bn(£) + (¢ — T (m)) — {(t— T(m)) mod I,(1)}
T I(t) 1 I(t) O RET, Tim) IIRLLAE—
MEZIDHT—FH L WIRHTH 5,
3 E=bbFTvFrIOmRy hOEKK

Fig. 6 WA DE—F FI v X 7ufy bO7—FF
FrERT. TOVAFARZIIRRY FEED0Y T
VAFLUTPAIAL L= I v h—, TEEH, ©
Fy bEIE) KD TFBZ EMTES,

€)]

31 ARy k

gEtlcef 2u7x> (14) 288 L 55 ASIMO
ZHWE, REAREEI 1,000 225 2,000 [ms] OFF &
BoTwd, ThiREROTyRICHBRET S E 61~ 120
MM. TH 3, BMEHCREFERICAE——FHNBILT
W3,

32 YZPWNFALE—MRTYH—

VFAFALE~F v h—-ldnRy Dol 2074
Yirb AN EETEEEAVTEY—MEREE—
FEZEHELENTS, CoEEOTEAPREL V-
HEAERERBHCANT S L CHEFEERIEA
LAEHCRESEEF vt 3, Sl 7AIY AL
R2EeERENw,

Real-time

BeatTracker. Robot_
Nolse supprassion +FT] ¢ AN
[setr Voice Cancelation], —=
*|sTFT
Sobel Filtering
-
Tempo estimation Robot
Csew ] =
- Singing Syntheskz
Beat Prediction Wocalold 21 | :
Beat Time Estimation LR
o Step Contraller o— Legs
Timep | [Yoshil 07] | G— o
[Einpotation | i N
P on Planner ”'Ttmi”i'iﬁ'_-,'," R
Cend o N
Music
Retognizer . =
Musk Actlvity | | Music
Detection Identificatien \MustclD- Song
x 3 il | Information
Song BB

Figure 6: ¥ —F F 7 v 70y b OHRE

3.3 ERFEM Music Recognizer)

FHRMIL TR E thaE, 25, FEEM
BT, FRRLELEZY—- FEEE > T3 L{RE
T35, VU —FEEEE LCURE I PR 3HECE

- EFE LAV E— FEEE R ORROHERAW 3,
Y— MEROZEWSSms LT tHhIBEWET S, ZOF
EEN 0L LORFEHEPTEET S LR2T, o3k
ERfIc R 7z,
MABRRTCRTFHLAEZY - LR E - 2 oh%
HF—F_R—ADoBRL, HIDZET, SEL—+D
MEOEEIC Ry » I AR — Ty RoERo A2
Ve, BEERINCTFRIL 725 v R o F Y ROZED 11ms
VRCh-o7Bs, BUthZERA L Z2ollD2H
WTHEHR T — ¥ X— A SRR L EEEHRE 2 5.
H L, HPELEL 7T Tunknowny ®HEIID & L TR
T, ZOBREE TFA T, Ew)FEEHeTOTS
BETI. ThoDFHizo Ry rElHA~AEZESN S,

3.4 HRw M Robot Controller)
Ry FHEIZY TAS A LE—F Ty - Ko TR
Hehzv—trRALE— R, FEZRMCE->THE
FxhifFRchHET, APLCREALLD, OF
SATEDHEERS LSICT S, Fig.4lE—trr 5y v
ZaXy FoOBEOfEERL TS,

341 R

SROa Ry FIFECHES 2 L BBESZ DR EBARE
REELIEZMEOBLE DT, ThEMVTRRY
F R AT L RRERE L2 Y- PR LRI S
by, B 7 44— Py ZHEERcCEEAIH
ERHoTHLHBEINSD, HEHEOREIIERBINT
WhLEDTFRREPETHEELSATVIEAR L,
— R IERE Y BEMEORE NSRS, 74— Fv D
FEIEEL v, 2 2C, TROFETREALE— O
fa & 2l 3= % ER R L 72 [Yoshii 07].

= Lu(n)+ B (I(n} = Low (n)))
+Br (T(n) — Tou(n))) (10}

LI TChy(n) X nBHOURY D REHHEES, I(n)
MU AT LAOHEEL 12 E— MR, Ly (n) BEFEOT Ry
F DREARE, T(n) 22T LOHEEL 28— F R,
Tour(n) DIEBEOR R F DREAIR, §; & frid, BE
HHEEERADEL S #EEL TRAMT 22T 2
BATHD, “O0BEAFTOERETHS f & fr OfE
ZLUTORMETELLSE 5,

I,-,,(n+ 1)

|I{n) — Iy (n)| < €l(n), (11)

ZIT, e FEESIET, T2 TIR/DMILME0.02 T 5,
ABAEROMERREVEE, 2 bR 11 23k
WEE, B & BridBERANC 030 L 0.00ICkY FENB.
SEDHBORENKFVE FRABORERRSTZ
EERERTE, DL, R BEEEN:S, B ik
010 £ 0.02icky F &N 3,

_17_



342 OF2a

O3 &R, E—MEAIcEbET ™A T, &
OFELiEch s, ©— FEAIcEbETHRICEC 2
5EIO0TELLDIIE ™FA, B Tbe) OFZLY—
NEZIDEBO Y A 2 S BEECH D, 22T A,
B2, HoHLAEF Y2y MRS FADEEDHS
FHEDE—2% FA, The) OE— AL T2, &

DEETOE— ML, HEOE— MAEADET

HET 5.

343 WIg

WSR2, B iioEE L ¥ — AL Ok Tk
IEVIBETH L. SEIIE— M L A ORE
W7l & FE R (duration), FHFHREE2HELLOAALE
wak (HF) tHFE»SHEL, MIDIESREHATS, &
D MIDI{E5 % VOCALOID 2icEH$2 2 itk o Tk
IEH%AE 2 EET 5. VOCALOID 2 MIDI 2V THR
BRFEEERTE 5HAY 7 FtH 5. VOCALOD 2 i
MIDI 7 —% 2R IJH > Th S REF T 2 % TIT 200[msec]
DENDDH B, TNEERL, FERHD 200[msec] Ric
MIDI F— 7 Z2EET 5 L HHER T o7,

4 RE
E—hrbooxvZofy FELUTO3 ATHML 7.
RE 1 7 RAEA~DBEHE

K2 E—FFRIO . 4 X5 MR

RE3 /AT COZRTEMR

IO 2R T 240U TO 3 BEOTEEEL2AL
TEBRPTo .

T1 7R LEEOEREERES
RWC HHE 7 — ¥ < — X [RWCMDB-P-
2001)[Goto 02} #*& 3 B (No. 11, No. 18, No. 62) %
BAE, TNoTHIROCDO L S icki4 2558
EREZEATED, FrR@EFNLFR, 112, 81
MM T#$H3., Z#16% No.18-No.11 - No.18 - No.62
DI 0BT 2EEN Y Tollif3 2 L T4 0T
B2l L 1.

T2 TV ROEEEN-SESEEE
No. 62 @ MIDI ¥ — % 2l TR L =5 v B—E
DOHEEV3, KL, MIDI DF—# {1 v — A
DHEED AR B,

T3 /4 AT TOEHSEEE
RWC FE 7 — % _—XH» 5 5 (No. 4, No. 11,
No. 17, No. 18, No. 29) & 10 0D F— ¥ 2 AEL
7o, 20808 ) A X DX L hic 2 4 XHE
UoEBATED 2. /1 XiZid IDEIDA-NOISE
F—F =20 BR&EBTHO7—AADE) 2H
V272, SNR i F5#4dB TH 3,

Speaker(Mono)

Figure 7: SEEATRIT

SR T RCEERN 028 (RTy), 4mx7m DB
v, FREAFHEICIZA E—h — (GENELEC 1029A) % Jfivs
. BRy FERE—AOEMII 15mTH2 (Fig. 7).

ETTIZAVCSEHORBTY - Sy Fr o
ENEBFHILE, E—F Py FrroBRIEHE T
ROELL TS AT ASTF Vv EE{LICBET 2 T
DOEHETS, BHLFROZEL T2, SEEOIS 2
I ASTMO DEIEZ off 12 LCOTF X L% fToES
LfTbabokEE, o 3 EEIZ ASIMO OERE % on
RLUTREAZ LA O0TIART- B8, Tbh
oG s, Wol-BAETHS.

EER2 TR T2 2 AV T 5 BEORETY — FMEEDRK
WRZEHIL 7, E— MEEORIE - BU T LI IcE
®#TD,

= Nouceess x 100. (12)
Ntotal

C T Nauccess BHEEII Uz € — FEUT, N EIEAE
E— e Ths, HEShAEC - A FfY— b
R DE DS £0.351(r) AT E > T 2B I HER 23R
MLI=bo kL, 5EED S5 3 IR ASIMO DB
2 RET, 1BEROTIAELTCE/ R Fvre
Wb Y, o2 BRI OTI A5 D #h, B4R F
V&W®ﬁ%KEMﬁ$5.ﬁ@2ﬁﬁﬁAﬂMO@%ﬁ
EANRESZ LB OFELE2ToCw 2 RETH
AAFY Ve N BfT-TBE L Tbb o BETH S,
B3 TR TIZAWT S iz P o ZRmE 2 flEL
e, BARERELTGHASRP), BRER), FE® %

PUTokIicgEL 1,
C c

2-P-R
P=_ = — = —
N’ R A’ F P+R

CITCREREDD 2 XHAPIEL  FRRHR- % %
L, NIERPHRXETH 2 EFHL BHEZRL, A
RFOFROKMER T, EEBROMWH L LT, TR
Tl (M) 2T O L HICEE L7,

c

CITCOHEENELCERRIN RN ZRT

(13)



-
[+:]
=3

B | A I P P EP P ~— estimated tempd(the propesed method) - - - -
B A S - estimated tempo{previously reported methad} _|
B U S — actual tempolground teuth}y
E F il TN ST YO 'y n\. pian furt : A N.'\[‘ '
= 110 - ] st - AT L2 1 R A T NEPE Y] p—c) e S B
g , ~ T
E 1 e | IR § PP | ; ......................... i ............
b LT } | ]
GO - § - - - e e e e e e =Py — r -............-....--..................?
e l

3 8
!
g
()
-

3
L

120 180 240

Timefs]

Figure 8: 7 v REMNDH 2 EFEEH - HHE

Table 1: F » AZ{GITH T 2 BB

ASIMO power off ASIMO power on{with step)
wio w/ wio w/ wi
- scatting | scatting | scatling | scatting | singing
reported 11.24 29.91 14.66 2043 N/A
proposed 1.31 1.31 1.29 1.29 1.29
41 &R

Fig. 8 HER 1 0BERE2EL Tw3, BRFEIMEEFE
WHART v READBIGHH G EAthh 5, 100 BT
{TCE—F Fo v X v /PN THREDIER TL Y — MR
Ay P BROEIB—FHNEEL TV SRS
THE, COLOBRFETERHRNK, EEFETIZ
BEHICEN S, EhoISEE Table 1 [T, Hs DI
BLEEESEETRI DOTIZOLVLEST 10 512
[, »2B4T0EEEAEVNRETHE I E2tbh s,
Table 2 I3EER 2 DFEREHK L Twa, “EdE—+
by Y ATFANELWBE—FR2FHLAEER
L, “Eadh B2 FRHLAER2RT. ChiEEC
HEEVRFORBEEOEDICE—F I v ¥ v FicHE
BEITWEIE, BIUFA AFyrehfEde l
3 L) 4 ZIHENIC@ 2 ERRLTVS,
FREBIOTIAPTVENSFTEOE - ZED
¥Tufry P BERAHES I L bEMD S
Table 4.1 (3584 3 DR LR T, BEEOEHIIHER
ROFH LY 1084 ¥ FRERY, JIUdFEEREBD
K3AMEOEZAVTLSZDHDHD 2.4 B (3 x 0.8)
PHEHATRETH 205 TH S, /4 XH390~97 bpm
EORAEEEATW AR, Hi#l] & #1713/ 4 X0E
ER R THBRBENELE TS, MIZZ2)V—vF—FT
05.8%, /A4 RARGAETF—FTII885% Kol Zh
5h BT BRI T v RERL hfE- TR b bbb
53, PhwHEOHICEAL TRIWEEEZL->TWRES
A5, BREFHBORAT—SEVF AR T 5024,
7o & 2130 X L5 [Kirovski 02] @ X H &b - L RER
ERE S BENH B,

Table 2: ¥ — b FHIEESR

ASIMO power off ASIMO power on
(with step)
w/o w/ scatting wi scatting
scatting | w/echo | w/oecho | w/echo | wfoecho
cancel cancel cancel cancel
Correct 95% 97% 68% 95% 64%
Half shifted 5% 1% 40% 4% 40%
Table 3: #5838
with noise clean
D bpm || P(%) | R(%) F P(%) | R(%) F
#4 86 94.7 849 | 090 { 94.8 81.2 | 0.87
#11 90 743 67.3 071 | 96.1 72.1 0.82
#17 97 88.0 83.1 0.85 | 953 8l.6 | 0.88
#29 | 103 93.4 815 | 0.87 | 95.9 822 | 0.88
#18 | 112 89.6 828 | 086 | 959 832 | 0.89
5 Bbbic

V=Lt roodvr/ofy VR2ERTLEDIC, UPLY
4 LA« FEME - 7 AL~ DBRENE B A F R A R
By —v2yvFrFR-20E— 7y X v 7FHE
FPRELAL I O7TFI&APERLFORERM#E-
HOHEZSOMELRHE T 272D s 754 Y FICA
KEXARL AF 2 e iiTol, SHICRBLATFES
Honda ASIMO IZE£: L, Xy MEE~A 7 E2HVT
BLEESHSYTAIA LATE—r2iHL, 20E—
MERICE-TE, BEL, OTIA, TEETIE—L
FoyxvruRy PEBELE OB 74— Fy
ZHAFEEZBALEREEH o T ERMEET S 2.
BELEVATLAZAVWTREFREFEL, /4 X
NZMEETFRE I SRR ERE L. &
Ky b OEFOEEN, vy AOMEFROMG], Eif
REMOES) T4 2AVEAR MEo@R EHSEO
HETH 2.



2E 3

[Cemgil 03] Cemgil, A. and Kappen, B.: Monte Carlo Meth-
ods for Tempo Tracking and Rhythm Quantization., Jour-
nal of Artificial Intelligence Research, Vol. 18, pp. 45-81
{2003)

[Dannenberg 87] Dannenberg, R. and Mont-Reynaud, B.:
Following an Improvisation in Real Time., in Proceedings
of the International Computer Music Conference, pp. 241—
258, International Computer Music Association (1987)

[Goto 95] Goto, M., and Muraoka, Y.: A Real-Time Beat
Tracking System for Audio Signals., in Proceedings of the
International Computer Music Conference, pp. 171-174,
San Francisco CA (1995), International Computer Music
Association '

[Goto 02] Goto, M., Hashiguchi, H., Nishimura, T, and
Oka, R.: RWC Music Database: Popular, Classical, and
Jazz Music Databases, in Int. Conf. Music Information Re-
trieval, pp. 287-288 (2002)

[Hainsworth 04] Hainsworth, S. W. and Macleod, M. D.:
Particle Filtering Applied to Musical Tempo Tracking,
EURASIP Journal on Applied Signal Processing, Vol. 15,
PP 2385-2395 (2004)

[Kirovski 02] Kirovski, D. and Attias, H.: Beat-ID: Identify-
ing Music via Beat Analysis, in IEEE Workshop on Multi-
media Signal Processing, pp. 190-193 (2002)

[Klapuri 06] Klapuri, A. P, Eronen, A. J., and Astola, J. T.:
Analysis of the Meter of Acoustic Musical Signals, IEEE
Trans. Audio, Speech, and Language Processing, Vol.
14(1), (2006)

. [Kosuge 03] Kosuge, K., Hayashi, T., Hirata, Y., and To-
biyama, R.: Dance Partner Robot -MS DanceR-, in Proc.
of IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems
(IROS-2003), pp. 1743-1750 (2003)

[Kotosaka 00] Kotosaka, S. and Schaal, S.: Synchronized
Robot Drumming by Neural Oscillators, in Proc, of Int’l
Sympo. Adaptive Motion of Animals and Machines (2000)

[Michalowski 07] Michalowski, M., Sabanovic, S., and Koz-
ima, H.: A dancing robot for rthythmic social interaction,
in Proc. of ACM/IEEE Inr’l Conf. on Human-Robot Inter-
action (HRI 2007), pp. 89-96, IEEE (2007)

[Nakazawa 02] Nakazawa, A., Nakaoka, S., Ikeuchi, K., and
Yokoi, K.: Imitating Human Dance Motions through Mo-
tion Structure Analysis, in Proc. of IEEE/RSJ Int’l Conf.

on Intelligent Robot s and Systems (IROS-2002), pp. 2539—
2544 (2002)

[Scheirer 98] Scheirer, E.: Tempo and Beat Analysis of
Acoustic Musical Signals., Journal of the Acoustical So-
ciety of America, Vol. 103(1}, pp. 588—601 (1998)

[Takeda 05] Takeda, T., Hirata, Y., and Kosuge, K.: HMM-
Based Dance Step Estimation for Dance Partner Robot -
MS DanceR-, in Proc. of IEEE/RST Int'l Conf. on Intel-
ligent Robots and Systems (IROS-2005), pp. 1602—-1607
(2005)

[Takeda 06] Takeda, T., Hirata, Y., Wang, Z., and Ko-
suge, K.: HMM-based Error Detection of Dance Step Se-
lection for Dance Partner Robot -MS DanceR~—, in Proc.
of IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems
(IROS-2006), pp. 5631-5636 (2006)

[Takeda 07] Takeda, R., Nakadai, K., Komatani, K.,
Ogata, T., and Okuno, H. G.: Exploiting Known Sound
Sources to Improve ICA-based Robot Audition in Speech
Separation and Recognition, in Proc. of IEEE/RSJ Int’'l
Conf. on Intelligent Robots and Systems (IROS-2007), pp.
1757-1762 (2007)

[Yoshii 07] Yoshii, K., Nakadai, K., Torii, T., Hasegawa, Y.,
Tsujino, H., Komatani, K., Ogata, T., and Okuno, H, G.; A
Biped Robot that Keeps Steps in Time with Musical Beats
while Listening to Music with Its Own Ears, in Proc. of
IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems
(IRQS-2007), pp. 1743-1750 (2007)



#HEZEA ALHEES
Japanese Society for
Artificial Intelligence

ALHEEFEEMREEN
JSAT Technical Report
SIG-Challenge-A802-4 (11/18)

Robust Speech Recognition in Reverberant Environment by
Optimizing Multi-band Spectral Subtraction

Randy Gomez and Tatsuya Kawahara
Kyoto University, Academic Center for Computing and Media Srudies (ACCMS),
Sakyo-ku, Kyoto 606-8501, JAPAN

Abstract

Reverberant environment poses a problem in
speech recognition application where perfor-
mance degrades drastically depending on the
extent of reverberation. Thus, it is impor-
tant to employ front-end speech processing,
such as dereverberation to minimize its ef-
fect. Most dereverberation techniques used
to address this problem enhance the reverber-
ant waveform prior to speech recognition. Al-
though the speech quality is improved, this
approach treats the front-end speech enhance-
ment and the recognizer independently. In this
paper, we present an approach that treats both
dereverberation and speech recognition inter-
dependently. In our proposed approach, the
dereverberation parameters are optimized to
improve the likelihood of the acoustic mmodel.
The system is capable of adaptively fine-tuning
these parameters jointly with acoustic model
training. Additional optimization is also im-
plemented during decoding of the test utter-
ances. Experimental results show that the pro-
posed method signiflcantly improves the recog-
nition performance over the conventional ap-
proach with a relative improvement of 5%.

1 Introduction

In hands-free speech recognition applications, the ob-
served speech signal at the microphone is smeared by
a phenomenon known as reverberation. This is due to
the reflection of the speech signal inside a closed space
{(i.e. room). The smearing varies significantly with the
property and dimension of the room. The recognition
performance of a reverberant test utterance using a re-
verberant model is significantly degraded compared to
the performance of non-reverberant test utterance with a
non-reverberant model. Thus, it is imperative to counter
the negative effect of reverberation both the test data
and the acoustic model.

Energy (dB)

30

2571 ' Early part i

20 | ; b
T Late part

* | | / |
i

10 [ i N
i
i

5 N . . . . . . .

0 50 1400 150 200 250 300 350 400 450 500

Time milliseconds

Figure 1: Measured impulse response energy.

‘We have proposed a single channel framework derever-
beration technique based on multi-band Spectral Sub-
traction (S8) [1][2). Similar approach based on single-
band SS has been proposed in the work of [3]. In
the multi-band SS dereverberation technique, the late
reflection of the observed reverberant signal is sup-
pressed through multi-band SS, whereas the early rever-
berant part (early reflection), more likely to vary with
microphone-speaker distance, is handled through Cep-
strum Mean Normalization (CMNY) [4] [5]. The extent of
suppressing the effects of the late reverberant signal is
a function of the multi-band coefficients which are opti-
mized using Minimum Mean Square Error (MMSE) cri-
terion. Although this scheme works well, this criterion is
inclined in optimizing the effect of dereverberation in the
waveform level. Typically, this is a speech enhancement
approach which improves the quality of the signal prior
to acoustic modeling and recognition. This set-up treats
the speech enhancement and recognition independently.

In this paper, we propose to treat these two inter-
dependently by optimizing the dereverberation param-
eters based on the speech recognizer. Instead of just
using the MMSE, we modified the criterion to directly.
optimize the likelihood of the recognizer. In this paper,
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Figure 2: Late reflection boundary identification using
recognition experiments and the measured room impulse
response.

the optimization process of the dereverberation param-
eters is embedded in the acoustic model training. As a
result, the dereverberation parameters are updated to-
gether with the acoustic model. This kind of approach,
where front-end speech processing is optimized for recog-
nition is shown to be effective with promising results in
microphone array applications [6][7} and in Vocal Tract
Length Normalization (VTLN) [8][9][10].

The organization of the paper is as follows; in section
2, we discuss the background of reverberation including
its mathematical model as a function of early and late
reflection. We also discuss the concept of multi-band
SS based on the MMSE criterion as a dereverberation
scheme. In section 3, we present the optimization in the
acoustic model training phase. This involves optimiza-
tion of the multi-band SS parameters based on the like-
lihood. In section 4, the optimization during decoding is
presented. Experimental results are given in section 5,
and we will conclude this paper in section 6.

2 Dereverberation Scheme

In this section, we discuss the significance of the room
impulse response and ifts effect in the context of early
and late reflection. In addition, we explain its charac-
teristics relative to the Hidden Markov Model (HMM)
structure. Consequently, we present the mathematical
concept of multi-band Spectral Subtraction as a derver-
beration technique used in suppressing the effects of the
late reflection.

* 2.1 Reverberation and Impulse Response

A reverberant speech signal contains the effects due to
the early and late reflection. Room impulse response
gives a good insight of reverberation and is often used to
experimentally create a reverberant speech. When re-
ferring to the early reflection, we include by definition
the direct speech signal and the overlapping of speech at
earlier time. The late reflection however, is the collec-
tive overlapping of reflected speech at much later time.
The following are the characteristics of the early and

late reflection based on the energy plot of the measured
impulse response h{n)shown in Figure 1:

(1) Early reflection has higher energy compared to the
late reflection. Thus the speech signal in this region
is dominant.

(2) Early reflection has a more dynamic value as com-
pared to the late reflection which tend to be static
over time. This characteristic implies that the effect
of the late reflection can be approximately treated
as constant. Since late reflection is a result of the
overlapping of the speech signal in a much later
time, a static energy means that as the distance
between the speaker and the microphone increases,
the characteristic of the late reflection remains rel-
atively the same. Hence, a single impulse response
measurement is enough to represent the different
microphone-speaker locations. This treatment can-
not be appled to the early reflection as its dynamic
nature suggests that is sensitive to microphone-to-
speaker locations.

(3) When considering a 3-state HMM architecture
which has a 25 msec window and 10 msec window
period, the early reflection occurs within the HMM
architecture is designed to handle. Whereas, late
reflection falls outside of the analysis framework.

Based on the arguments above, it is reasonable to ar-
gue that it would be beneficial to remove only the effect
of late reflection through signal processing (i.e. using
Spectral Subtraction) and retain the effect of the early
reflection. The latter is more dependent with speaker-
microphone distance, thus removing it together with the
late reflection would require different impulse response
measurement depending on the different microphone-
speaker locations. In addition, the early reflection can
be handled by the model-based system (HMM) through
Cepstral Mean Normalization (4] [5)].

2.2 Spectral Subtraction-based
Dereverberation

In this section we outline the conventional dereverbera-
tion technique based on multi-band S8 [1](2]. The speech
signal has a strong correlation within each local time
frame due to articulatory constraints. However, this cor-
relation is lost according to articulatory movements [3].
As aresult, it is established that early and late reflection
are uncorrelated. Thus the reverberant speech signal
z{n) can be modeled as

z{n) = zg(n) + zr(n), (1)

where £g(n), zp(n) are the uncorrelated early and late
reflection components of the reverberant signal z(n). If
we denote s(n) as clean speech, and the measured room
impulse as h(n) = [hg(n), hr(n)] where early compo-
nents hg{n) and late components hz(n) of the whole
sample h(n} are identified in advance, Eq (1) can be
written as,
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Figure 3: Block diagram of the proposed optimization technique in the acoustic training phase.

z(n) = hg % s(n) + hr * s(n). (2)

The boundary of the early and late reflection is very
important in our model. Figure 2 is used in identifying
the said boundary, where the horizontal axis represents
the length of the impulse response and the vertical axis
shows the recognition performance. It is obvious in this
figure that the steep decrease in the performance starts
at 70 ms which suggests the beginning of the effect of
the late reflection. The steep decrease is attributed to
the fact that the recognizer cannot deal with reverbera-
tion that fall outside of the 3-state HMM structure (i.e.
caused by zr(n)). Moreover, the insignificant decrease
in the recognition performance within 70msec suggest
that the recognizer can handle the effect due to zg(n).

In the SS-based dereverberation, we are only inter-
ested in recovering zg(n) from z(n). Thus, we use spec-
tral subtraction to remove the effect of zr(n). Theo-
retically, it is possible to remove entirely the effect of
the whole impulse response h(n), but robustness to the
microphone-speaker location cannot be achieved since
the early components hg(n} have high energy and is de-
pendent on the distance between the microphone and
speaker as explained in [1] {2]. In the multi-band SS ap-
proach, the effect of zx(n) is addressed through Cepstral
Mean Normalization (CMN), which can be handled by
the recognizer as it falls within the frame. Thus, only
z1(n) is removed through the multi-band SS as its effect
falls outside the frame in which the recognizer operates.
The power spectra of zg(n) can be obtained through the

multi-band SS,

1X(f,m)? - 6k2|XL(f, )2 2
i X (f ) = 6l X (f, )] > 0
(X(f,m)] = X (DI = 8l XL (f )]
BIXL(f. 7> otherwise
(3)
for f € By where By is the corresponding band, with
3 the flooring coefficient. | X (f, ,,.)lz and |Xz(f, "")|2 are

. the power spectra of the teverberant signal and its late

reflection, respectively. The values of § coeflicients are
derived through an offline training which minimizes the
error of the estimate |XL(f,7)| under the MMSE crite-
rion. Details in the choice of the number of bands, the
values of 4 coefficients (through offline training), and the
effective identification of the late components of the im-
pulse response A (n} are discussed in [1] [2].

3 Optimization of Dereverberation
Parameters for Acoustic Modeling

The conventional approach adopts MMSE in deriving
the coefficients used in dereverberation. The derived co-
efficients are used to process the reverberant signal, and
then the acoustic model is trained using the enhanced
data. We present two methods that optimize the dere-
verberation parameters jointly with acoustic modeling.
This principle is also applied during actual recognition
which will be discussed in Section 4. The two methods
are explained as follows:

3.1 Batch Optimization Method

The proposed optimization of the multi-band SS is
shown in Fig. 3. We opt to optimize each band sequen-
tially starting from the first band m = 1 to m = M. The
band coefficient to be optimized is allowed to change



Table 1: System specifications

Sampling frequency 16 kHz
Window Frame length 25 ms
Window Frame period 10 ms

Pre-emphasis 1—-0.97z"1

Feature vectors

12-order MFCCs,
12-order A MFCCs
l-order A E

HMM 8000 Gaussian pdfs
Training database Male and Female Adult by JNAS
Test data Male and Female Adult by JNAS

Table 2: Basic Recognition Results

Methods 200 msec | 600 msec
(A) No processing 68.6 % 44.0%
(B) Conventicnal: MMSE 80.1 % 62.3%
(C) Batch (training only) 81.3 % 64.3%
(D) Incremental (training only) 824 % 65.4%
(E) Batch (training/decoding) 831 % 66.1%
(F) Incremental (training/decoding) | 84.5 % 67.5%

within a close neighborhood n/A where n = 1...N and
A = (.02, The reverberant observation data z is dere-
verberated using the multi-band SS. The rest of the
bands are fixed to the MMSE-~based estimates except
for the band to be optimized. Thus, if the band to be
optimized is band m = 1, we generate a set of coefficients
8(1,n) = [§(Vmmse + n A, 82 mumse, S(m)umse
sy 0(M)psarsg], and execute SS using the generated
coefficients. The resulting data £z (6{1,n)) are evaluated
using the HMM-based acoustic model which is trained
with data processed with MMSE-based 5SS parameters,
denoted as A = Ayamsp.- A Likelihood score is com-
puted for each of the data processed with different S5
conditions. Based on this result, §{m).p: that has the
corresponding highest likelihood score is selected. The
whole process from SS to likelihood evaluation is ap-
plied to all M bands independently. After all of the
bands are optimized, the set of optimal SS coefficients
[6(1)opts --s (M )gpt] is used to process the reverberant
data and proceed to acoustic model training. The result-
ing acoustic model will be used in the actual recognition.

3.2 Incremental Optimization Method

We extend the above batch optimization method. The
additional process introduced is shown in dashed lines
in Fig 3. Right after the optimal coefficient of band 1 is
found, the acoustic model is re-estimated using the up-
dated SS parameters. The newly re-estimated model A;
is then used in the likelihood evaluation block for band
2, and this process is iterated until §(M),p: is found for
the Mth band. This approach, referred to as incremenial
optimization method, has the same principle with the
batch method, except for the incremental updates of the
HMM parameter X in every band. In the batch method,
we fixed A = Ayrmse all throughout the bands. The in-

cremental re-estimation allows us to treat each band in-
terdependently in a sequential manner as opposed to the
batch optimization method where each band is treated
independently.

4 Optimal Parameter Selection During
Decoding

Further optimization is implemented during actual
recognition. Using the acoustic model processed with
the optimal multi-band SS parameters in section 3, we
evaluate a likelithood given a dereverberated test utter-
ance. The reverberant test data are processed in the
same manner as the optimization of the bands in the
acoustic training phase, producing a set of processed ut-
terances. These utterances are then evaluated with the
acoustic model. The ‘corresponding multi-band coeffi-
cient that gives the highest likelihood is selected for each
band which is similar to that shown in Fig 3, and used
for the final recognition. Since the dereverberation based
on the multi-band SS depends on the room impulse re-
sponse measurement, it is possible that the initial con-
dition of the room impulse response used in training the
model is not maintained in the actual recognition. Thus,
the additional optimization during decoding is beneficial
to the system in minimizing the mismatch between the
actual test data and the acoustic model.

5 Experimental Evaluation

For evaluation of the proposed method, we used the
training database from Japanese Newspaper Article Sen-
tence (JNAS) corpus. The test set is composed of 200 ut-
terances taken outside of the training database. Recog-
nition experiments are carried out on the Japanese dic-
tation task with 20K-word vocabulary. System specifi-
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cation is summarized in Table 1. The language model is
a standard word trigram model. We experimented us-
ing two reverberant conditions: 200 msec and 600 msec.
Reverberant data were made by convolving the clean
database with the measured room impuise response [11].
The measured room impulse response contained futter
echo which is inherent of the actual room acoustics. In
this experiment we use total number of bands M = 5§
which is consistent to that of the former work [1][2].

5.1 Recognition Performance

Table 2 shows the basic recognition performance (word
accuracy) of the proposed method in 200 msec and 600
msec reverberant conditions. (A) is the performance for
reverberant test data (without dereverberation) using a
clean acoustic model. (B) is for the conventional MMSE-
based approach when both the test and training data are
dereverberated with the conventional MMSE-based SS.
(C) and (D) are the results of the proposed optimization
for the batch and incremental methods, respectively. It
is confirmed that the proposed front-end dereverbera-
tion optimization considering acoustic likelihood is more
effective than the conventional MMSE-based method.
And the incremental model update performs better than
the batch training. In (E) and (F), we show that the
performance of the system is further improved when op-
timization is also applied in the decoding process. Thus,
optimizing dereverberation in both the acoustic model-

ing phase and decoding phase result in a synergetic effect
in improving recognition accuracy. As a whole, we have
achieved a relative 5% improvement over the baseline
MMSE-based method.

5.2 Robustness of the Proposed Method

We also performed experiments regarding the robust-
ness of the proposed approach. In real environment con-
dition, it is possible that room impulse response may
have considerably changed due to the additional pres-
ence/absence of physical fixtures inside the room which
were absent during the measurement causing a mismatch
between the acoustic model and the test data. By using
different impulse responses in creating the reverberant
test data and the training data, we simulate a mismatch
of the reverberant condition and investigate the robust-
ness of the proposed method as shown in Fig. 4. It is
apparent that the change in the recognition performance
from (matched) to (mismatched) is much smaller under
the proposed method than in the conventional approach
using MMSE criterion. We note that unlike the conven-
tional method, the proposed approach is capable of opti-
mizing the dereverberation parameters during the actual
recognition which can further minimize mismatch.

5.3 Evaluation with MAP and MLLR.

Then, we extend the proposed optimization technique
to the adaptation scheme like MAP and MLLR. In this



case, we execute an iterative MAP and MLLR, and in
each iteration we optimize the dereverberation parame-
ters together with the 50 adaptation utterances. Recog-
nition results shown in Figure 5 demonstrates that the
proposed approach is effective in conjunction with adap-
tation, especially with MLLR, and the advantage over
the conventional method is maintained after the adap-
tation.

5.4 Faster Implementation of the Proposed
Optimization Technique

The proposed optimization process outlined in Fig 3 that
uses HMM in evaluating the likelihood is confirmed to
be effective in optimizing the dereverberation parame-
ters. However, this process takes a lot of time and it is
desirable to replicate the same performance in a shorter
period of time. We try to use Gaussian Mixture Model
(GMM) with 64 mixture components instead of HMM
in finding the optimal parameters. A separate IIMM is
trained/updated only after the optimal parameters are
found through GMM. This means that GMM is used for
the optimization process and HMM is used for the actual
speech recognition. This approach has been shown to be
effective in VTLN [10].

In Fig. 6, we show the result for using both GMM and
HMM in finding the optimal multi-band SS parameters.
‘We can observe a negligible difference in word accuracy
between GMM and HMM. With the GMM implemen-
tation, we reduced optimization time up to 10%. This
implementation makes decoding in section 4 practical.

6 Conclusion

‘We have presented the front-end dereverberation tech-
nique which is optimized based on the likelihood of
the speech recognizer. The proposed is applied to the
acoustic model training phase and the actual decoding
phase. Both effects are confirmed, realizing significantly
better performance than the conventional MMSE-based
method which optimizes the parameters independent of
speech recognition. We have also presented a method
of speeding up the optimization process through the use
of GMM which renders the decoding to be fast. In our
future works, we will expand the current approach to
an unknown room impulse response, where we can re-
place the room acoustics dependency with recognizer-
based optimization in enhancimg the reverberant speech
signal for robust speech recognition.
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Abstract - With the goal of improving human-robot
speech communication, a 3D sound source localization
based on the MUSIC algorithin was implemented and
evaluated in our humanoid robot embedded in real noisy
environments. The effects of the determination of the
correct number of sources in the MUSIC algorithm are
evaluated, and the eigenvalue profiles for each number
of sources are analyzed for recordings in different
environments. Based on the analysis results, a classifier
was proposed for automatic determination of the number
of sources using eigenvalues obtained from different
frequency ranges. Evaluation results showed that a
combination of two sets of eigenvalues calculated by
averaging the eigenvalues of the frequency bins in two
separate ranges resulted in the best performances.
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Fig. 1. (2) The geometry of the 14-element microphone array. (b)
Robovie wearing the microphone array.
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APPROXIMATE POSITIONS OF THE SOURCES FOR EACH RECORDING.
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ucws3 Source 1: moves from 50 to -90, and back.

Source 2: moves from -20 to 0 after 60 time blocks
{when source 1 crosses it),

Music: at ahout -45 degrees, with the wvolume
(casually) decreased in the second half of the
recording.
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Fig. 2. Filtering and tracking results for two subjects (-20°~0°, and
50°~-80°~50°} and background music (at -45°, in the first half). Full
lines are the detected groupings and ellipses show the correct source
positions.
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Fig.3. Detected DOA over time for the trial in the office environment
{OFC, 4 subjects between -60° and 50° azimuth),

TABLEII

EFFECTS OF NOS IN DOA ESTIMATION, FOR OFC RECORDING.

NOS . DOA DOA ANFP
filtering/tracking  accuracy (%)}

Fixed NOS =5 hefore 85.0 4.60

after 80.6 3.15

PNOS before 80.6 0.32

after 73.9 0.12
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Abstract

In this paper, we propose a new architecture
for enhancing the speech in a hands-free hu-
man/machine communication scenario. First
we apply frequency domain blind signal extrac-
tion {FD-BSE} to estimate the contributions
of the noise and of the speech at the micro-
phone array. Then time frequency continuous
masks are computed from the FD-BSE out-
puts for each of the channels. These continu-
ous magks are used to modify the spectral sub-
traction post-filter. Finally this modified post-
filter is applied channel wise to suppress the
residual diffuse noise and the speech estimate
is obtained by applying a beamformer to these
cleaned channels. Simulation results show that
the proposed architecture can achieve a compa-
rable SNR as conventional spectral subtraction
with less distortion of the speech.

1 Introduction

In order to improve the human/machine interface, imple-
menting hands-free speech recognition is the most natu-
ral choice. But picking the user’s voice at distance is not
an easy task because of noise and reverberation. Micro-
phone array techniques were used to improve the cap-
tured speech by reducing the effect of noise and rever-
beration ([1, 2]). In recent years, frequency domain blind
signal separation (FD-BSS) has been used with success
for recovering the speech by separating the observed sig-
nals in their different components (see review paper [3]).
FD-BSS is in particular efficient for speech/speech sep-
aration [4]. But in the human/machine communication
where the user’s voice has to be extracted from a diffuse
background noise, FD-BSS gives a better estimate of the
diffuse background noise than of the target speech. Con-
sequently FI-BSS has to be combined with some post-
filtering techniques in order to improve the quality of the
captured speech [5, 6].

In this paper, we propose a new architecture that com-
bines a frequency domain blind signal extraction (FD-

BSE) with a modified multichannel spectral subtraction
in order to suppress the diffuse background noise present
in the human/machine communication scenario. First
FD-BSE extracts the speech and gives an estimate of
the diffuse background noise at each of the microphone.
These noise estimates are used to compute time fre-
quency continuous masks {these are different from binary
masks used in [7, 8, 4]). Then a modified spectral sub-
traction, where the noise estimates and the subtraction
parameters are modulated using the computed masks
information, is applied channel wise. Finally beamform-
ing, using the FD-BSE speech estimate, is applied to the
speech components.

The proposed method is compared to FD-BSE alone
and FD-BSE combined with conventional spectral sub-
traction in order to show that it achieves a good noise
reduction in term of SNR without introducing as much
distortion as the conventicnal spectral subtraction.

2 Estimation of sﬁeech and background
noise at microphone

In the hands-free interface for human/machine commu-
nication, the user is close to the machine whereas the
other signals create a diffuse background noise. The
propagation of sounds from their locations of emission
to the microphone array is modeled by a convolutive
mixture. After applying a F points short time Fourier
transform (STFT) to the observed signals, the convolu-
tive mixture is equivalent to F' instantaneous mixtures
in the frequency domain. At the fth frequency bin, the
observed signals are

X(f,t) = A(£)S(f,1)

where the n x n complex valued matrix A(f) represents
the instantaneous mixture received by the n microphone
array and S(f,t) = [s1(f,%),...,s(f, £)]T are the emit-
ted signal components at the fth frequency bin. £ de-
notes the frame index. Let us consider that si(f,%) is
the target speech signal and all the other components
are the background noise. Then we can decompose the
observed signals in target speech at microphone array
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Figure 1: Blind signal extraction at frequency bin f.

and background noise at microphone array

{l

AV (£,8) + > AD(Hsa(f,8)

=2
= Xs(f.t)+ Xn(f,1)

where A®)(f) denotes the 5th column of A(f).

The blind estimation of the speech and noise parts
is possible using FD-BSS [9, 6]. Here we use the FD-
BSE method proposed in [10]. Contrary to BSS, BSE
estimates only one of the components of S{f,t) in each
frequency bin by taking

'y(.fa t) = w(.f)X(.f:t)

where w(f) is a 1 x n complex valued vector (see Fig.1).
We call ‘residuals’ the contributions of all the signals
other than y(f,?) to the observations. The residuals are
obtained by subtracting the orthogonal projection of the
extracted signal from the observed signals

R(f,t) = Wr(f)X(f,1),
where Wg(f) =1 —Tx(flw(f)?w(f)
with Tx(f) = £{X(f,) X7 (f,1)}.

The FD-BSE method can be seen as an adaptive beam-
former and a blocking matrix as shown in Fig. 1.

In each frequency bin, the vector w(f) extracting the
speech component is iteratively determined using the up-
date rule (dropping frame and frequency indexes)

wip1 = wy — peE{Hy)RY} W (1)

where k is the iteration index, py > 0 is the adaptation
step and ¢('} is the score function associated with the
extracted component. In the frequency domain, we can
assume that all the components are circular (i.e. the
joint density of their modulus and phase is separable)
and use the approximation ¢(y) = tanh |y|)—7"— that is

X(f,t)

appropriate for speech extraction [11]. This update rule
results in an extracted signal statistically independent of
the residuals.

In the human/machine scenario, the speech extraction
also uses the fact that the speech distribution is spikier
than that of the diffuse background noise {To measure
the spikiness of the distribution, we determine the pa-
rameter of the exponential distribution fitting the nor-
malized modulus of y(f,£) and r;(£,t) [10]). When w(f)
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Figure 2: Proposed architecture.

is such that the speech component is extracted, the resid-
uals are estimates of the diffuse background noise at the
microphone {equivalent to the projection back of FD-
BSS). The extracted speech is also projected back to the
microphone array. Namely we have

Xs(£,8) = Tx(HuwlHHw(f)X(f,0)
Xn(f,t) = (I-Tx(Hw(f)Hw(f)) X(£1).

3 PROPOSED ARCHITECTURE

3.1 Overview

In the proposed architecture, all the processing is per-
formed in the frequency domain by applying a short time
Fourier transform to the observed signal received by the
microphone array before processing and using overlap-
add method to get the time domain signal after process-
ing.

The block diagram in Fig 2 shows the processing in the
frequency domain. First FD-BSE is used to obtain the
estimate of Xg(f,t) and Xn(f,t) denoted by Xs(_f, t)
and X N( f,t). The noise estimate and the observation
are used to determine two type of masks: Soft masks
{dotted line) and binary mask (dashed line). The spec-
trum of the noise estimate is modified using the binary
mask (the - ‘observation is also used but the arrows to the
power shaping block were omitted). Then the modified
spectral subtraction is performed channel wise using the
shaped noise spectrum. and the soft masks.

Fmally, after channel wise spectral subtraction, the
channels are beamformed using the vector w(f) deter-
mined by the FD-BSE part.

3.2 Soft masks creation

In the human/machine communication scenario, FD-
BSS or FD-BSE give a good estimate ﬁ(f,t) as it
is possible to cancel the speech with a spatial null [12,

6]. Then considering a frame t; where the speech is not
active X (f,%:;) = Xn{(f,t:) and X{f,#;) ~ XN(f,t,)

On the contrary the more the s speech is active in a given
frame, the more X (f,¢;) and Xn(f,¢;) differ.

__Thus we propose to use the ratio of the power of
Xn(f,t) and X(f,1) for a given frame as our belief in
the fact that the frame is composed of noise only. Thus
we define the frame soft mask as

S XN ()2
S XA

Pye) =
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Figure 3: Observed spectrum and corresponding frame
and bin soft masks.

Pe(t;) measures our belief that during the frame t; the
speech is inactive. The frame soft mask can also be seen
as a measure of the frame SNR as

Pi(t) = (1 + SNR(#)) !

where SNR(%) is ratio of speech and noise power in the
frame.

In the remainder, we also define the % frame binary
mask obtained by selecting the 4% most probable noise
frames (binary mask set to one).

Similarly, by considering the frequency bins, we can
define a bin soft mask

_ S Xn (£ D)
i X ()12

that measures our belief that the speech is inactive in a
given frequency bin.

The frame and bin soft masks are shown along with
the observed signal in Fig. 3. The circle markers on the
frame soft mask indicate frames selected for the 10%
frame binary mask.

B(f)

3.3 Power shaping

The role of the power shaping block is to match the es-
timated noise and the observed signal statistics for the
frames we consider as noise only. This is done by set-
ting the mean and variance of the spectrum of Xn(f, t),
computed for the frames selected by the v% [rame bi-
nary mask, to the same values as the mean and variance
of the spectrum of X (f,t) for these frames.

3.4 Modified spectral subtraction

In each channel, the spectrum of the component of the
power shaped noise estimate Xn(f,1) is subtracted from
the spectrum of the component of the estimated speech
Xs (f 1 t)

if | Xs(f, 012 — H(f, )| Xn(f, )17 > 0

1 Xs(f, 0] — H(f, )| Xn(f, )2
else

BIXL(f, b

(Xs(f, 1) =

with 8 the flooring coefficient. Note in particular that
the subtraction parameter (referred to as o in Sect.4)
of conventional spectral subtraction [13] is replaced by a
mask of the noise spectrum defined by

H(f,t) =&l +5mP(f) Fr (),

where &y is the minimal subtraction and &,, the addi-
tional subtraction modulated by the soft masks. Since
P,(f)Py(t) measures our belief in the absence of speech
for a given time frequency value, the modified spectral
subtraction only applies strong over subtraction where
we believe there is no speech.

4 EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed ap-
proach we compared it to FD-BSE alone and FD-BSS
with channel wise conventional spectral subtraction. A
four microphone array (inter mic. spacing of 2.15¢cm) was
used to record a diffuse noise (a vacuum cleaner at two
meters from the array and —40®) and several impulse
responses (at one meter from the array with angles in
[—80°, 80°], see Fig. 4). The room reverberation time is
T60 = 200ms.

The recorded noise was mixed at different SNR with
the convolution of the impulse responses and clean
speech (20 signals from a database of Japanese utter-
ances at 16kHz).

For the proposed method, three different v% frame bi-
nary masks are considered 70%, 40% and 20% (respec-
tively prop 1, 2 and 3 in Fig. 5). The modified subtrac-
tion parameters are 8 = 0.003, ¢ = 1 and 4,, = 5. The
short time Fourier transform uses a 512 point hamming
window with 50% overlap and pre-emphasis (a first or-
der high pass filter z, = 0.97). Speech extraction is per-
formed by 600 iterations of the FD-BSE method with
adaptation step of 0.3 divided by two every 200 itera-
tions.

For the conventional spectral subtraction the flooring
is 0.003 and the subtraction parameter is ¢ = 2 (mild
over-subtraction) or @ = 5 (strong over-subtraction).

The proposed method being highly non linear, the
SNR estimation after processing is obtained by taking

<yﬂ';s>)2<.’L‘N$N>

SNR = ( 3
< Yry > < IgTg >

where y is the output of the method and z; and z»
are the true speech and noise at the microphone (< - >
denotes time average).

Figure 5 shows the SNR and cepstral distortion for
the speech estimate obtained with the different methods
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Figure 4: Room setting.

:' 215cm



Output SNR [dB]

18

tnput SNR [dB] Input SNR [dB]

Figure 5: Averaged performance at different input SNR.

Figure 6: Spectrograms of {from top to bottom) the ob-
servation (mic. 1, 15 dB), beamformer, SS with o = 2,
SS with ¢ = 5 and proposed with v = 40%.

(‘obs’ refers to the observation with pre-emphasis, ‘BSE’
to FD-BSE, ‘SS 2’ to conventional spectral subtraction
with o = 2, ‘S8 5’ to conventional spectral subtraction
with o = 5, ‘prop 1’ to the proposed method with v =
70%, ‘prop 2’ to the proposed method with v = 40%
and ‘prop 3’ to the proposed method with v = 20%).
The results are averaged on all speech signals and for
all the positions of the speaker. The best compromise
between high SNR and low distortion is the proposed
method with v = 40% as FD-BSE alone introduce few
distortion but does not improve significantly the SNR
and conventional spectral subtraction results in higher
distortion for comparable SNR {note that all signals are
pre-emphasized thus input SNR and ‘obs’ SNR differ}.

Figure 6 shows the spectrograms of the different
speech estimate for an input SNR of 15 dB. We can see
that the best noise reduction is obtained for ‘SS 5’ and
the proposed method but ‘SS 5’ distorts the speech more
than the proposed method.

5 conclusion

In this paper, considering the suppression of the diffuse
background noise in the human/machine communication
scenario, we proposed an architecture that achieves high
SNR but introduces few distortion to the speech esti-
mate,
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Absiract

This paper addresses sound source orientation es-
timation using a 96ch microphone array, We pro-
posed a beamforming method with estimation of
sound source directivity, and reported orientation
estimation of a speech source such as a loudspeaker
or an actual human. However, this method, trans-
fer-function to design a beamformer required the
same as that of the target sound source. Other-
wise, the performance deteriorated due to a mis-
match between these two transfer functions which
was mainly caused by phase errors and outliers. In
addition, voice activity detection (VAD) was man-
ually performed. To solve the former, we pro-
pose amplitude-based orientation estimation using
a histogram. For the latter, we propose two tech-
niques, that is, speech frequency component detec-
tion based on inner product, and automatic VAD
based on auto-correlation. We constructed a real-
time sound source orientation estimation system
by introducing our proposed methods. Prelimi-
nary experiments showed that sound source orien-
tation estimation with automatic VAD for actual
human voices drastically improved even when us-
ing a loudspeaker-based transfer function.
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Figure 1: An example of importance of sound source orienta-
tion estimation
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Figure 2: Sound source orientation estimation model
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Figure 5: Real-time location and orientation estimation sys-

tem
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1 Introduction

A sound source mapping function is vital for a robot that
operates in a human environment. Bearing only Simul-
taneous Localization and Mapping (SLAM) technique is
actively investigated in last several years, basically by
using optical cameras (ex. [1]). However sound signal
has significant difference in two points, directional local-
ization and characteristics of the source. Difficulty for
directional localization is coming from acoustic reverber-
ation, diffraction, resonance, interference, and so on. On
the other hand, difficulty for the characteristics is that
sound generated by source is usually unknown and al-
ways changing in time or even sometimes missing.
Particle filters are widely used in perception area in
robotics to handle noisy input to estimate surrounding
map and/or robot location. Several methods have been
proposed by using particle filtering to achieve directional
localization and in tracking in microphone centric coor-
dinates(ex. [2, 3]). As for a mapping function, Nakadai
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Figure 1: Flow chart of estimator management for 2D
sound source mapping with mulitple sound sources.

et al.[4] presents a method to map sound source location
using a particle filter from a microphone array attached
both in a room and on a robot. In this paper, we propose
a method to achieve 2D mapping by using only onbody
microphone array.

2 2D Sound Source Mapping

Two dimensional sound source position estimation is
achieved by applying a bearing only state estimation
technique. Individual particle filters are used to main-
tain position estimates of a particle sound source, with
the set of particles representing a distribution over the
x,y coordinate frame. An unknown number of sound
sources can be present in a given environmnet, so the
number of estimators must be managed, with sound
source estimators being created and deleted as required.
Figure 1 shows the flow chart of estimator management.



In addition to this, sound sources also emit signals in-
termittently, so the activity of sound sources over time
needs to be monitored. The estimator monitors activity
of a particular sound source by use of a decay mech-
anism. Signal detection causes ‘growth’ of the decay
value, while an absence of signal causes decay. Once a
sound source decays to a given value, the estimator is
deleted.

Upon observation of new sound source Obs at time k
in a particular direction 8, a new particle filter estima-
tor Fyy is created and initialised from the current robot
location with its particles spread over a 2D Gaussian
distribution over the direction estimate 8, at a default
distance rp. That variance associated with the distribu-
tions and are determined by the error in the directional
sound source estimate oy, and a default large variance
in distance o,., reflecting the absence of distance infor-
mation in the bearing only observation.

Initiatization, then occurs as follows
1. Sound source Obs(k) = 8

2. From robot pose (z,y, #)r initialize particles

S = {30)“':3Np—1}
For all 5; in S do

o 7 =rp+Go.), a=th + G{os),
where G(c) is a function returning a Gaussian

distributed random value with variance o2

* g; = ((.A'TJR + T',',) COS(a + 93),
(yr + 1) cos(a + 6r))

The filter then propagates particles representing the
probability density function of the sound source location
as follows:

1. Observe sound source Obs{k) = 8y, from (z,v,r

2. Disperse S, si(k) = si(k — 1) + w, where w is a
random motion

3. Measure S, such that
p(si(k)) = SM(s:(k), bk (z,y,8)r)

4. Resample S with replacement, based on p(s;(k))

where SM(s;(k), 0% (z,y,8)r) is a sensor model re-
turning the probability of making observing a sound
source at position s;{(k) at angle 6 from the current
robot position.
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Figure 2: 32ch microphone arrangement (left) and photo
(right)

3 Directional Localization

Proposing sound source mapping method can handle
noise of directional localization. However, noise should
be stochastically small. Therefore, directional localiza-
tion system needs to be robust from false positive detec-
tion. For this purpose, we have been designing and devel-
oping low side-lobe microphone arrays that is optimized
for Delay and Sum Beam Forming (DSBF) method.

3.1 32ch Low Side-lobe Microphone Array

In order to detect sound source direction for audio input
with an unknown frequency, we developed a microphone
array and firewire interface board.

The diameter of the microphone array is limited to
33cm due to our mobile robot size. Through simula-
tion of sound pressure distribution, we empirically de-
cided the microphone arrangement to minimize side-
lobes. Fig.2(left) shows the resulting microphone ar-
rangement which consists of the octagonal arrangement
of eight 4ch microphone boards that have an isosceles
trapezoid shape. Fig.2(right) shows the picture of it.
The system has 16bits in simultaneous 16khz sampling
rate.

Fig.3 shows the beam forming simulation results at
1000, 1400, 2000 [hz]. At each frequency, the focus di-
rection gain compared to side-lobe is 12[dB] at minimum
and 16[dB] in average (from 700-2500[hz]).

Fig.4 shows simulated and measured directivity pat-
tern of this microphone array. Horizontal axis is direc-
tion, and array is focusing on O[deg] direction. Vertical

axis is signal gain in [dB] compared to focused direction.

3.2 PFrequency Band Selection Method

DSBF method has limited performance, especially the
method does not remove other signals perfectly {just re-
duces). Thus, we apply the FBS method[5] after DSBF
for the detection of multiple sound sources. FBS is a kind
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of binary mask and segregates objective sound sources
from mixed sound by selecting the frequency components
judged to be from a common objective sound source.

The process is as follows. Let X,(w;} and Xp{w;)
be the frequency components of DSBF-enhanced sig-
nals for objective and noise sources, respectively. The
selected frequency component X,.(w;) is expressed as
Equation(1):

Xofwy) i Xa(wy) > Xp(ws)
0 else

Xas (wj) = { (1)
This process rejects the attennated noise signal from

the DSBF-enhanced signal. The segregated waveform is

obtained by the inverse Fourier transform of X, ({w).

When the frequency components of each signal are
independent, FBS can separate the desired sound source.
This assumption is usually effective for human’s voice or
every day sound within a short time period.

Fig.5 shows a procedure. The first step filters out the
average signal of each microphone (no delayed signal)
input by FBS and finds the loudest sound from the spa-
tial spectrum. When the frequency component of the
average signal is higher than any DSBF-enhanced signal
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Figure 5: FBS sound localization process

from each direction, the system filters out the spectrum
of that frequency. This process rejects omni-directional
noise sounds.

The second step filters out the 1st sound signal by
FBS, and finds the second strongest sound from the spec-
trum. When the frequency component of the DSBF-
enhanced signal of the ist sound’s direction is higher
than that of any other direction, the system filters out
the spectrum at each frequency.

If there are more than two sounds, the system finds
the third strongest sound, and so on, after filtering out
the second strongest sound signal. The method localizes
multiple sounds from the highest power intensity to the
lowest, at each time step. Then the system can continu-
ously localize multiple sound sources and separate each

sound source during movement.

4 Experiments

We conducted two experiments using our mobile robot
“Pen2” (Fig.6). In experiment 1, four speakers at the
robot microphone level setting are used. In experiment
2, five speakers in different height, setting are used. Ar-
rangement in experiment 2 is shown in Table 1 and Fig.7.

A commercial motion capture system {Motion Anal-
ysis Eagle) with 12 cameras measures robot position in
240[hz] as a ground truth. Standard deviation of robot
position measured by this MOCAP system is 0.042[mm]



Table 1: Speaker arrangenet in experiment 2

x[mm] | ymm] | z[mm]
3,000 500 570
-1,000 | -3,000 850
-3,000 | -1,500 § 1,200
670 | -1450 | 2,040
240 1070 | 1,640

in translation and 1.09e-5[deg] in rotation.

The microphone array locates sound directions at
around 12[hz]. Reverberation time Ty was 500[msec],
and back ground noise level was 50[dBA] (mainly fan
noise). Signal noise ratio was 20[dBA] for experiment
1, and 15[dBA] for experiment 2. Sound sources were
mﬁsic, male and female voices.

Figure 6: Mobile Robot “Penguin2”

Fig.8 shows the results of localising four sound sources.
In this experiment, all the loud speakers are placed on
microphone array level. Fig.8(b) shows the convergence
of the localisation process and the remaining error. After
100 samples {about 8[s]), the system achieves 2D map-
ping with around 50[cm] remaining error.

Fig.9 shows an experiment with five sound sources. In
this case, sources are placed in different height {(from 57
to 204[cm]). One source at (67, -145, 204)[cm] is not
found at all. It may be placed too high up and bacause
system only conducted directional localization around.
The remaining four sources are found. Fig.9(b) shows
basically the same kind of convergence performance as
the previous experiment. Interestingly, some sources are
lost and refound as the robot moves throughout the en-
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Figure 7: Speaker setting and pictures for experiment 2

viornment. At each time a sound source is found, con-
vergence occurs as like before.

5 Conclusion

This paper proposed a 2D sound source mapping method
while robot is in motion, by applying particle filter tech-
nique. The method is general for any directional local-
ization. Combined with our 32ch low side-lobe micro-
phone array and with‘Delay and Sum Beam Forming
(DSBF) + Frequency Band Selection (FBS) methods,
the system can map 2D arrangement of sound sources.
Experimental results show after 100 sampling, detected
sound source locations converge in less than 50[cm].

Since one sound source that is located high above the
array height is not mapped well in experiment 2, in the
future, we would like to 1) extend our mapping function
into 3D, 2) optimize microphone array design for two di-
rectional localization, 3) more robust and two directional
sound source detection method.
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