Japanese Society for
Artificial Intelligence

JSAI Technical Report
SIG-Challenge-B101-7 (5/4)

An Efficient Data Sharing Solution of Multi-Functional Robotics
Design: QFlow

Li-Wei Lu , N. Michael Mayer
Department of Electronic Engineering,
National Chung Cheng University, Taiwan R.O.C

Abstract

In modern robotics structure design, robot usu-
ally composed with several functioning units or
mechanical parts. Take service robot as an ex-
ample, a service robot may contain a vision
module, a arm controlling module and recep-
tion module etc.. One could easily deduces in-
formation/data sharing between modules is an
important issue. Hence, we propose a program
called QFlow, QFlow helps the developers fo-
cus on the module design, the information shar-
ing is realized by QFlow with specifying plugs
and modules inside QFlow, and information is
transfer under UDP-protocol which handling
by the server of QFlow.

1 Introduction

In a multi-functional robotics design, robots often capa-
ble with many functionalities, mapping and localization,
vision processing, voice recognition and robot arm con-
trolling etc., which require a better collaboration within
every part of the design. Modulization is becoming a
useful technique which divided a large-scale program into
several functioning modules.

Various methods have been proposed to solve inner-
module communication. [6] implemented a responsive
processor as a platform for parallel/distributed control
and the communication among Responsive Processors is
handled by the Responsive Link communication stan-
dard. [7] proposed and implemented a dual bus archi-
tecture and the dynamic switching of the information
flow structure by the modules themselves. However, we
instead choose the wireless communication as a medium
which give us a great advantage on integrated our robot
system easily.

In our service robot project, we modulize every func-
tionality as a independent module. We now depict a
situation for a better understanding. Imagine a service
robot receiving the "GOTO” voice command from the
user, the audio stream then processed by the voice recog-
nition module which analyze the the location demanded

29

g
m Voice Recognition Location Navigation _——
2 Module information Module
Audio stream :
A

Figure 1: A simple example that voice recognition re-
ceive and analyze a audio stream then pass to another
module, says, navigation module

and pass to the navigation module (Fig. 1). This in-
formation/data sharing behavior could happened mas-
sively. Hence we propose QFlow.

QFlow is a program that helps the developers focus
on the module design, the developers only have to spec-
ified the inputs and outputs of the module. Meanwhile,
QFlow will treat every module as a black box process,
it only concerns the collection of information and deliv-
ering it to the correct modules using the UDP-protocol.

In the next section, we will talk about our motivation.
Then, we will describe our the backbone structure of
QFlow and some basic functioning unit such as Plug
Unit, Behavior Unit and Connector Unit etc..(Section
3). Later, we explain the essential part of QFlow, Action
Server, and the XML synchronization in section 4.

2 Motivation

Currently, we compete at the RoboCup@home [2] com-
petition. During the competition, there will be some
potential chances we need to modify a individual mod-
ule on the fly. In order to achieve better integratabil-
ity, we use wireless communication as medium under
UDP-protocol. Furthermore, QFlow allows every mod-
ule which in a form of dynamic loadable library doesn’t
have to exist on the same computer, in the mean time,
QFlow will handle the communication among modules.
The approach allows that multiple developers easily con-
tribute code on the specific modules and can integrate
the system effortlessly.



3 Backbone structure of QFlow

QFlow is a higher level server that handling the structure
of several robot behaviors. In our robotics design, we try
to built every functionality into a dynamic loadable li-
brary which is able to load by QFlow and encapsulated
to Behavior Unit. Our module loader can load and un-
load dynamic modules, and the loader is implemented
based on the singleton design pattern which ensure our
module loader class has only one instance at all times.

In the following, we will further introduce every func-
tion unit we employed in detailed.

3.1 Functioning Unit
3.1.1 Behavior Unit

This unit is basically the module itself, he behavior
unit can be view as a blackbox process. As a module,
behavior unit also has inward and outward data flow, in
fact, the developers of the modules should assign those
information inside their code block in a certain form (See
Fig. 2 a.). Once the QFlow add a module in, the con-
structor of dynamic module is trigger, each module will
do it’s task independently, however, data sharing is not
functioning at this stage until QFlow trigger the ”start
event”. The "start event” is a signal telling QFlow to
start working on data sharing process, in other words,
which means every module starts to receiving and send-
ing data. (See Fig. 2 b.)

3.1.2 Plug Unit

Plug unit is a visualized representation of inward and
outward data. This information comes from the mod-
ule, the developers of modules should assign the amount
of inwarding and outwarding data flow, and can surely
give a name on it. While QFlow loading in the module,
it analyzes the modules and attaches the Plugs unit to
Behavior units. Note that one is not able to modify any
plugs attached to behavior units, it can only be specified
by the developers of modules. A plug itself doesn’t know
who it’s data is forwarding to nor the data sender.

3.1.3 Connector Unit

Connector unit is a visualized representation of data
flow, there are two plug units on both end (See Fig. 3).
Furthermore, The direction of those two plug must be
reverse, that is, one input and one output plug. This
unit is important for QFlow, it indicates QFlow where
the message is forwarding to, we will go into it in more
detail in next section.

3.1.4 Net Unit

One key feature of our approach is that we let the data
transferring via wireless medium under UDP-protocol.
Hence, specifying network information is necessary, we
employ Net Unit that one can specify both IP address
and port number. The Net Unit is strictly combined
with the Connector Unit since Connector Unit represent
where the data flow comes from and where it goes. (See
Fig. 4)

Load Module

Get Data from Plug
Module Start

Give Data to Plug

g

BB

If (“Start event” triggered )

Yes v

Start Handling Data

(a) (b)

b 4 BasicModule_1in_1out

Figure 2: a) The Behavior Unit. The green triangle
means input direction, and the red one means output
direction. b) The flow chart shows the procedure how
QFlow handling behavior unit. The data sharing is pro-
ceeding only if the ”Start Event” is triggered.

o "Echodu’leJ in_iout

Figure 3: A Connector Unit. The unit is the visualiza-
tion of data flow, a net unit is able to be attached on
it.

127.0.0.0.1:10003

—bbe

[ 127.0.0.0.1
icNodule_tin_{out

10003

¥

Figure 4: A Net Unit is attached on the end of a Connec-
tor Unit. In this example, QFlow sends the appropriate
message to a IP 127.0.0.1 on 10003.



4 Action Server

Before we get further, we would like to reiterate that
our purpose of QFlow is to provide a fairly clear ap-
proach of existing severals module when implementing a
robotic system, in the mean while realize the data shar-
ing ability within modules. Thus, QFlow is a higher level
server that handling the modules of robotic behaviors in
a structured way.

Before the ”Start Event” of data sharing, Action
Server will register all functioning units and creates a
list of it. During the sharing stage, Action Server pro-
vides a routine running all the time, it checks whether
the memory space of each Plug Unit has updated and
determine the location in which the data should be. If
the destination is on the same computer(determine by IP
address), action server simply copy the memory space,
on the contrary, action server will transfer the data un-
der UDP-protocol if the destination is on the the other
terminal.

QFlow handles all the data communication within
modules, one could say that Action Server is the essential
part of it. To sum up, the action server do the following
things:

e Create a list of all registered functioning units.

e In a loop routine, check the memory space(of data)
of all plugs if they update the new data

e and transferring it according to the specified desti-
nation.

4.0.5 XML Synchronization

Easy to integrate is one of our main purposes which
indicates we have quite flexibility dealing with modules.
We allow different modules are able to exist on differ-
ent terminals (e.g. vision module on computerA and
navigation module on computerB). In order to fulfill the
feature, we provide a synchronization method making
the structure of every QFlow the same. The structure
is saved in a XML file(Extensible Markup Language),
every functioning unit’s information will be saved, the
name of a module, the number of plugs and Net Units
IP address and port number etc.. See the example be-
low:

Example of a XML file

<?xml version="1.0" 7>
<QFLOWDATA>
<QFLOWWIDGET IP="127.0.0.1:10001" Path="./">
<List Gr="11" />
<cU Ty="1005" Name="Module_A">
<BU Path="./Module_A.so">
</cU>
<cU Ty="1007" Name="result">
<Conn ENDPOSX="407" ENDPOSY="205" ..
</cU>
<cU Ty="1010" Name="192.168.1.10:10002">
<NU IP="192.168.1.10" PORT="10002">
<Plug Name="calculate_result" ..
</NU>
</cU>
</QFLOWWIDGET>
</QFLOWDATA>

/>

/>

31

COGN|TION

ISION

. ROBOT_ARM

’ VOICE_RECOGNITION

Figure 6: The QFlow structure of our robotic system.

(Label BU: Behavior Unit, Conn: Connector Unit, NU:
Net Unit)

5 Result

We try to use QFlow with our service robot exten-
sively (See Fig. 5). Fig. 6 is the basic structure of
our robotic system. The cognition module is the cen-
ter of autonomous decision, it sends the commands to
other modules and wait for the task finished signal to
arrive. Navigation module controls the movement of
service robot(UBot, manufactured by ITRI[1]), in the
mean while reading laser scanner data at all times for
self-localization. Robot Arm module is controlled by vi-
sion module since the location of an object is determined
by vision module, after robot arm either finished or un-
able to finish the task somehow, arm module will send a
signal back anyhow, and wait for the next command.



6 Future Works
6.1 Reliability

Wireless communication is known to be less reliable and
might cause significant bit-error rate. Hence, utiliza-
tion of a wireless medium is becoming significant due to
the limited bandwidth, especially in RoboCup compe-
tition, wireless communication is fundamental medium
to many leagues[5]. Especially, UDP provides an unre-
liable service and we have not implement any checksum
mechanism yet. We would like to do some reliability ex-
periment on our @QFlow server in the future to ensure
the correctness of data sharing.

7 Conclusion

In this paper, we propose a program called QFlow which
implement the data sharing method among the modules.
QFlow helps the developers focus on their own module
without worrying about data sharing problem. Further-
more, QFlow provides a good flexibility of structure, it
synchronize throughout every terminal and allowing dif-
ferent modules can exist on different terminal, that is,
making the integration of building up a system become
easier.

Acknowledgement

The work has been supported by National Science Coun-
cil grant umber 98-2218-E-194-003-MY2

References

[1] Industrial Technology Research Institute of Taiwan.
"hittp://www.itri.org.tw/”, 2011

[2] Robocup@home,
"hitp: //www. ai.rug.nl/robocupathome/”, 2010.

[3] N. Michael Mayer and Li-Wei Lu and Yu-Min Hung
and Hong Wu and Yu-Cheng Chang, Team Crude-
Scientists, RoboCup Proceedings CD-Rom, 2010.

[4] N. Michael Mayer and Li-Wei Lu and Yu-Min Hung
and Hong Wu and Yu-Cheng Chang, Using U-Bot
for RoboCup@home, Proceedings of SICE Annual
Meeting, Taipei, 2010.

[5] Frederico Santos and Lufs Almeida and Lufs
Seabra Lopes and José Luis Azevedo and M.
Bernardo Cunha, Communicating among Robots in
the RoboCup Middle-Size League, pages 320-331,
RoboCup, 2009,

[6] N.Yamasaki. Design and implementation of respon-
sive processor for parallel/distributed control and
its development environments. volume 13, pages
125-133, 2001.

(7] Yosuke Matsusaka, Kentaro Oku, and Tetsunori
Kobayashi. Design and implementation of data
sharing architecture for multifunctional robot devel-
opment. volume 35, pages 54-65. Wiley Subscription
Services, Inc., A Wiley Company, 2004.

32





