
Motion Optimization
for the RoboCup 3D Soccer Simulation

1
Vallade Benoît,

1
Takeshi Sumitani,

1
Tomoharu Nakashima

1

2
Takeshi Uchitane and

2
Toshiharu Hatanaka

Department of Computer Science and Intelligent Systems, Osaka Prefecture University
{valladeben@cs, takeshi.sumitani@ci.cs, tomoharu.nakashima@kis }.osakafu-u.ac.jp

2
Department of Computer Information and Physical Sciences, Osaka University

{hatanaka, t-uchitane }@ist.osaka-u.ac.jp

Abstract

This paper addresses a motion optimization method
for RoboCup 3D Soccer Simulation’s robots using
Particle Swarm Optimization (PSO). A robot’s
motion is modelled by the motion trajectories of the
robot using some parameters. The trajectory
equations’ parameters are adjusted to obtain the best
motion. We use particle swarm optimization
algorithms to tune the trajectory parameters .

1 Introduction

Nowadays, one of the major robotic research focuses
on humanoid robots and their relationships with
human and/or other robots. In the aim to give a
common target and problem to all laboratories, the
RoboCup has been created. This worldwide project
is divided in lots of categories such as rescue and
home. Among these categories, the first to have been
created was the soccer category. The RoboCup
Soccer’s objective is to create and improve robots
and their behaviours to be able to play to soccer [1]
The major research points of this category are the
improvement of the robot’s motion and their
communication. The objective is to be able to play
and win against the world-cup championship team
by 2050.

The RoboCup Soccer category is further
divided into several leagues according to the
regulation of robots: Humanoid, middle-size, small-
size, standard platform, and simulation. The
simulation league focuses on the intelligent aspect of
soccer robots as it employs virtual soccer players of
computer program that play soccer in a virtual
soccer field. There are two sub-leagues in the
simulation league depending on the specification of

the virtual field: 2D and 3D. While the 2D league
has no concept of height as every object is
represented as a two-dimensional vector, the 3D
league has a more realistic virtual environment: The
soccer field is placed in a three-dimensional space
and soccer robots are built in the virtual field by
joining multiple elemental parts with joints. Thus the
soccer robots are more realistic and more
complicated than 2D soccer robots. The
development of 3D robots faces many problems.
One of the major problems is the motion
optimization. We need to improve robot motions
such as walk, kick, dribble, etc., to obtain stable,
quick and efficient movements. But the variety of
robot’s architecture, the number of parameters
needed to configure a motion and the dependencies
between the parameters of its motion are the root
cause of the complexity of the optimization problem.
To be able to answer to these problems we need to
create a software able to cope with the different
robots configuration and research the best values for
the set of parameters in a huge research space.

2 Motion Optimization

A widely used way to optimize robot’s motion is to

use inverse kinematics. We could create a motion by

setting all the engines of the robot, but there are too

many parameters. So in order to reduce the number

of parameters, we choose some points of the robot

and search to optimize their trajectory. After having

determined these trajectories by setting a value to

the equation’s parameters we use mathematics rules

to deduce the trajectory of each engine used in this

motion. This method is ever used by some other

社団法人 人工知能学会
Japanese Society for
Artificial Intelligence

人工知能学会研究会資料
JSAI Technical Report
SIG-Challenge-B301-5 (5/5)

26

teams; the innovations are to use the PSO as an

evolution strategy [2] and to try to create adaptable

software.

2.1 Target Trajectories

The first step is to choose the target points on the

robot. These points will determine the motion that

we want to obtain. For example, in case of a walk

motion, the focal points will be the end of the

robot’s foots and the centre of the hip (see Fig. 1) [3]

Fig. 1. Choice of target points and trajectories for a walk

motion.

After having chosen the points, the second step

is to choose their target trajectories. These

trajectories will create the desired movement. They

are represented by a movement equation such as

linear movement or oscillators’ movement and can

be coupled together. To keep the example of the

walk motion, here an equation of movement for one

of the tree target points of this motion:

 Finally we obtain some equations which are

dependant of a set of parameters. And to fully

determine these equations we need to put value on

these parameters.

2.2 Parameter Optimization

The precedent equations depend on parameters

which can be separate in two kinds. There are the

parameters whose values are constant, like the size

of legs, arms or foot of the robot. They are based on

the robot’s architecture. The second kind is the

parameters which will be tune by the research

algorithm. Here an example of set of parameters (for

walking motion)

Parameter name min max

 2.0 10.0

-1.0 1.0

 -1.0 1.0

 0.0

 0.0

St 0.0

h
0.0

H

r 0.0 30.0

 0.0 10.0

 0.0 5.0

 -5.0 5.0

Table. 1. List of parameters for walking motion.

Each parameter has a value and a definition

space. The limits of these definition spaces are given

by constant values or expressions which depend on

the value of other parameters.

In order to give a value to this set of parameters

the second step uses a research algorithm. This

algorithm will progress in a research space define by

crossing all the definition spaces. It will search the

best combination of value for the set of parameters.

 The simulator will be use to evaluate each

solution. We will launch a simulation for each

solution and get data about robot’s performance and

environment state. The research algorithm will use

these data to evaluate the quality of each solution.

2.3 Inverse kinematics

During the third step we use the inverse kinematics

in aim to find the movement parameters (angle,

velocity, centre... etc) of each engines used in the

motion (knee, hips... etc).

 We deduce these parameters from the robot

architecture, the successive positions of the target

points and by using some mathematical rules like

Pythagoras, and trigonometry.

27

27

3 Software Design

An important aspect of this software is that is still in
development and even after being finished it could
be subject to improvement (like parallelization,
complex target motion). That is why we have
decided to set up the design in three modules.

The first module is the PSO module. This one

will be the subject of further discussions, so we

won’t describe it now.

 The second module has many objectives;

first it should be able to represent the architecture of

the robot. The software will be able to use the xml

file representing the robots for the simulator, but we

also think to insert a module which allows the user

to enter manually via a graphical interface the

configuration of the robot. After the robots defined

by the system, the user will be able to choose some

target points on the robot and their target trajectories

and indicate if they are coupled. The equation of

these trajectories will be automatically generated as

well as the corresponding set of parameters.

Afterward the user will manually choose the

definition space (max and min) of each parameter.

The aim of this paper is that these values can be

constant as well as an equation. This implies the set

up of an equation parser. This one is for the moment

in development but will not be the subject of this

paper. As last but main objectives, the third module

will have the ability to use the solution returned by

the PSO module and to use the inverse kinematics to

define the motion parameters of each engine used in

the movement and generate a motion configuration

file. In fact to move, our actual robocup agents use

motion configuration files. It exist one file for each

motion that the agent wants to execute and the AI of

this one will have to choose between all its

possibilities. These configuration files are xml

formatted and describe the motion parameters of

each engine. The engines are defined by the

representation of the robot’s architecture. But the

problem is that each robot’s configuration an each

choice of target point will implies a different

mathematical problem to solve. In consequence we

will have to set up an IA able to solve them.

 The server module is the last one. Its task is

to help the user to easily use the simulator server.

This interface should allow the user to launch a

simulator server, to get the data from the simulation

by using a log file system and finally to be able to

kill the server. In the aim to be easily improved to a

parallel version of the software, the interface has

been design to allow managing more than one server

in same time. Another little part of the software has

been developed in order to easily management he

log file and extract the data. However this last one

will not be describe in this paper.

 Figure 2 shows is the global algorithm that the

system will follow:

Fig. 2. Global algorithm.

4 Particle Swarm Optimization Module

4.1 Standard algorithm

The particle swarm optimization (PSO) is a research

algorithm whose objective is to find the best

combination of values for a set of parameters.

Start

End

Problem Creation

Define robot’s architecture

Define target points and trajectories

Define parameters’ definition space

Optimization

PSO MODULE

INVERSE KINEMATICS MODULE

Generate motion config file

End of optimization

Calculate fitness

Search solutions

For each solution

SERVER MODULE

Launch simulation

Stop simulation

Writte simulation data in log file

28

28

 The particle swarm optimization is based on the

idea of a flock of fishes which move in a space [4]

The aim of each fish is to find the place where there

is the best food (this representing the quality of a

solution calculated with the fitness function). The

fishes always remember the last best place that they

have find and they communicate together to share

information about the best place find by the whole

flock. The fish will move to a new position in

function of these two information. Finally the whole

flock should finish by find the best place of the

space.

Algorithm Components. As said just before the

PSO is based on a swarm of particles which are

inserted in a research space. The space is created by

crossing the definition spaces of the set parameters.

Each particle knows its position in this space, the

quality of this position, and remembers about the

best position that the particle has ever found and the

best position that the swarm has ever found. In

addition it knows their both quality. To finish each

particle have a velocity which is use to move in the

space. The position and velocity of each particle

have to be contained in the research space.

Initialisation. At the beginning we have to initialise

each value of the particles. So we generate a random

position in the space and a random velocity. The

best position of the particle will take the value of its

first position. The best position of the swarm will be

determined by sharing information between all the

particles’ best position.

Evolution.

Number of Iterations. After the initialisation, we

launch the research. The research will continue until

a stop criterion is complete. These criterions can be

the time, the number of iteration or an optimum

value has been reach (with a certain error).

Update Position and Velocity. At each iteration, we

calculate the new position of the particles and the

quality of this position. The quality of the particles is

measured by a pre-specified objective function.

Then we check if the best position of the particle

have been improved and share the information with

the whole swarm. Finally we update the velocity of

each particle.

 The new position of a particle is calculated in

function of the old position and the velocity (see Fig.

3).

Fig. 3. Update of the particle position.

The velocity is itself calculated in function of the

best Position known by the particle and the best

position known by the swarm [5].

 Each time the value of the position and the

velocity are updated parameter by parameter.

Fitness Function. The quality of a position is

calculated with the fitness function. This function is

defined by the user depending on the problem. For

example in the case of a walk motion optimization,

the quality can be calculated depending on the

distance travelled in a given time, the error of

trajectory of the robot and its stability.

Confinement. If the new position go out the

research space the particle become useless because

its position is not valid. That is why the particle

swarm optimization algorithm uses a confinement

procedure which moves the lost particle on the

closest edge of the research space and put its

velocity to 0.

Limitation. But the standard particle swarm

optimization algorithm as its own limits. The fact is

it is only possible to use it to search a solution for a

set of parameters whose limits of definition space

are constant.

4.2 Dynamic search space PSO

In our case, the parameters of movement equation

are often linked each other. For example during a

walk motion the maximum high authorized for the

foot will depends on the actual value of the hips

high. It means that each particle will have its own

search space depending on its position.

29

29

Fig. 4. Search space representation in a two-parameter

optimization problem.

Two solutions are possible; the first is to use the

precedent algorithm with a space equal to the

maximal space search. We define it by putting the

maximal value of the parameters in the expressions

which determine the limits of the definition space.

But use this method implied to effectuate the

research in lots of positions which are not valid (they

correspond to a totally impossible movement). It is a

loss of time. The second one is to use one search

space search for each particle. This is the subject of

this part.

One Search Space by Particle.

Problem. As said before a research space if defined

by crossing the definition spaces of the set of

parameters. But in this case some definition space’s

limits are defined by mathematical expression which

depends on the value of some parameters of the set.

So the parameters are linked each other.

 The problem is that when we want confined

the particles in the search space; we change the

value of the position parameter by parameter. But

each time that we change the value of one

parameter, the position of the particle will change.

And so on for its search space. If we effectuate the

change without any regards for the order of the links

between the parameters there is a possibility that the

procedure enter in an infinite loop.

 To avoid this problem, the best way is to

confine the particle following a precise order which

correspond to the link order of the parameters.

Tree Representation. To be able to find the good

order we can use a tree representation of the links

between the parameters. Each parameter has two

limits, which depends of a subset of parameters.

 In this tree, the nodes will represent the

parameters. A parameter is father of all the

parameters it depends of. A parameter which depend

of nothing is a leaf directly link to the root. The root

node doesn’t correspond to any parameter. It only

exists to be able to create a single tree even with

parameters without dependences. Here an example

of tree for four parameters A, B, C, D and where to

calculate B you need to know the value of C and D.

Fig. 5. Tree of parameter dependences.

Modification of the Standard PSO. Finally in the

aim to use the PSO algorithm, we need to change the

confinement procedure. If the particle is not in its

search space, we need to put the particle on the

closest edge of the search space. But we have to

follow the link order.

 The following figure show in red the good

path to determine the parameters value after

confinement.

Fig. 6. Confinement parameters order.

We start from the “A” node, and each time that we

move on a new node we determine the new limits of

the definition space with the parameter value

calculate before and put the parameter value of the

actual node to the closest limit. And go to the next

node until we arrive to the root node.

4.3 Experience
In order to test this module of and to compare the

efficiency between the standard and the new

algorithm, we have set up an experience. For a same

problem composed of a set of variables, which take

30

30

their value in a defined interval, and of a fitness

point, we will launch a set of simulation for both

algorithms. And we will record the number of

iterations needed to find the fitness point.

The problem. To For this experience we chose a

two dimensional problem. It means that the problem

is composed of two variables x and y. We defined a

fixed fitness point, the point of coordinate (5.5 ;

0.01). In this problem, during the new algorithm

test, the second variable (y) space search limits will

depend on the value of the first variable (x). The

limits of the variables of the standard algorithm test

will be defined as the bigest space possible (biggest

value for x enter in the limits equation of y). In the

next graph we can visualize the space limits:

Fig. 7. Example of the space limits (case B).

We will effectuate the experiments in three

situations A, B and C. Each situation corresponds to

a different variable space search (0<x<1000) , their

limits value are presented in the following table :

 New Algorithm Standard
Algorithm

 Min Max Min Max

A

-49.75 49.75

B

-240.5 240.5

C

-497.5 497.5

Table. 2. List limits of definition for the variable y.

For each experience we will launch a set of

simulations with 50 particles and 500 iterations

(which is enough to solve the problem).

The results. For each simulation we have check

how many iterations the algorithm needed to find the

fitness point. Here are the results of the experiences:

 A B C

Standard

algorithm

279.4 296.5 298

New

algorithm

282.3 254.5 250.3

Table. 3. Average number of iterations needed to find the

fitness point.

We remark that the standard algorithm become less

efficient on a big research space (B and C) and so in

these cases we have a gain of time. The gain is not

so big but the problem was easy, 2 dimensions and

only 50% of impossible positions. But our software

will have to deal with more complicated. In addition

fitness calculations need a simulation of the robots.

This simulation can take 10 sec as 1 or 2 minutes in

function of the need. So each iterations gain is a big

victory. Finally the improvement of the algorithm

still allows to parallelise it [6].

5 Conclusion

To conclude this paper, even this software project

still in development some base the design have been

choose and some important module have ever been

implemented. The aim is to allow to easily

generating optimized motions for the robot of y our

choice and by the way we can use it to try different

kind of architecture.

 PSO is a very easy algorithm which is highly

parallelizable. The experiences showed the

efficiency of the new algorithm. The server module

is very important because it will also help to

parallelize our software by launching lots of

simulation in a same time but also by following the

experience of several agents in a same simulation.

References

1. Stone, P.: Layered Learning in Multiagent Systems: A
Winning Approach to Robotic Soccer, MIT Press (2000.)

2. Cord Niehaus, Thomas Röfer, Tim Laue: Gait Optimization on

a Humanoid Robot using Particle Swarm Optimization
3. Uchitane, T., Hatanaka, T.: Applying Evolution Strategies for

Biped Locomotion Learning in RoboCup 3D Soccer

Simulation, Proc. of 2011 IEEE Congress on Evolutionary
Computation, pp. 179-185. (2011)

4. Kennedy, J., Eberhart, R..: Particle Swarm Optimization, Proc.

of IEEE International Conference on Neural Networks,
pp.1942-1948. (1995)

5. Clerc, M.: Particle Swarm Optimisation, John Wiley & Sons

(2010)
6. J.F.Schutte, J.A.Reinbolt, R.T.Haftka, A.D.George: Parallel

global optimization with the particle swarm algorithm, (2004)

-200

-100

0

100

200

0 50 150 250 350 450

Min

Max

31

31

	B301-01 RoboCup 小型ロボットリーグにおける相手戦略の分析と学習

	B301-02 RoboCup SSL Humanoid のためのカラーボクセルサーバの提案と応用
	B301-03 RoboCup サッカーにおける敵位置の予測モデル構築
	B301-04 ロボカップ小型リーグにおける戦略改善のための画像処理によるボールの回転状態の推定
	B301-05 Motion optimization for the RoboCup 3D soccer simulation
	B301-06 自律移動ロボットによる人避け動作のための環境地図構築
	B301-07 LLSFにおけるロボットの初期方向同定に関する一考察

