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Abstract 

 
This paper addresses a motion optimization method 
for RoboCup 3D Soccer Simulation’s robots using  
Particle Swarm Optimization (PSO). A robot’s 
motion is modelled by the motion trajectories of the 
robot using some parameters. The trajectory 
equations’ parameters are adjusted to obtain the best 
motion. We use particle swarm optimization 
algorithms to tune the trajectory parameters .  
 
1 Introduction  
 
Nowadays, one of the major robotic research focuses 
on humanoid robots and their relationships with 
human and/or other robots. In the aim to give a 
common target and problem to all laboratories, the 
RoboCup has been created. This worldwide project 
is divided in lots of categories such as rescue and 
home. Among these categories, the first to have been 
created was the soccer category. The RoboCup 
Soccer’s objective is to create and improve robots 
and their behaviours to be able to play to soccer [1] 
The major research points of this category are the 
improvement of the robot’s motion and their 
communication. The objective is to be able to play 
and win against the world-cup championship team 
by 2050. 

The RoboCup Soccer category is further 
divided into several leagues according to the 
regulation of robots: Humanoid, middle-size, small-
size, standard platform, and simulation. The 
simulation league focuses on the intelligent aspect of 
soccer robots as it employs virtual soccer players of 
computer program that play soccer in a virtual 
soccer field. There are two sub-leagues in the 
simulation league depending on the specification of 

the virtual field: 2D and 3D. While the 2D league 
has no concept of height as every object is 
represented as a two-dimensional vector, the 3D 
league has a more realistic virtual environment: The 
soccer field is placed in a three-dimensional space 
and soccer robots are built in the virtual field by 
joining multiple elemental parts with joints. Thus the 
soccer robots are more realistic and more 
complicated than 2D soccer robots. The 
development of 3D robots faces many problems. 
One of the major problems is the motion 
optimization. We need to improve robot motions 
such as walk, kick, dribble, etc., to obtain stable, 
quick and efficient movements. But the variety of 
robot’s architecture, the number of parameters 
needed to configure a motion and the dependencies 
between the parameters of its motion are the root 
cause of the complexity of the optimization problem. 
To be able to answer to these problems we need to 
create a software able to cope with the different 
robots configuration and research the best values for 
the set of parameters in a huge research space. 

2 Motion Optimization 
 

A widely used way to optimize robot’s motion is to 

use inverse kinematics. We could create a motion by 

setting all the engines of the robot, but there are too 

many parameters. So in order to reduce the number 

of parameters, we choose some points of the robot 

and search to optimize their trajectory. After having 

determined these trajectories by setting a value to 

the equation’s parameters we use mathematics rules 

to deduce the trajectory of each engine used in this 

motion. This method is ever used by some other 
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teams; the innovations are to use the PSO as an 

evolution strategy [2] and to try to create adaptable 

software.  

 

2.1  Target Trajectories 

The first step is to choose the target points on the 

robot. These points will determine the motion that 

we want to obtain. For example, in case of a walk 

motion, the focal points will be the end of the 

robot’s foots and the centre of the hip (see Fig. 1) [3]  

 

 

Fig. 1. Choice of target points and trajectories for a walk 

motion. 

After having chosen the points, the second step 

is to choose their target trajectories. These 

trajectories will create the desired movement. They 

are represented by a movement equation such as 

linear movement or oscillators’ movement and can 

be coupled together. To keep the example of the 

walk motion, here an equation of movement for one 

of the tree target points of this motion: 

 

              

 

      

                            

 

 

       Finally we obtain some equations which are 

dependant of a set of parameters.  And to fully 

determine these equations we need to put value on 

these parameters. 

 

2.2   Parameter Optimization 

The precedent equations depend on parameters 

which can be separate in two kinds. There are the 

parameters whose values are constant, like the size 

of legs, arms or foot of the robot. They are based on 

the robot’s architecture. The second kind is the 

parameters which will be tune by the research 

algorithm. Here an example of set of parameters (for 

walking motion) 

 
Parameter name min max 

           2.0 10.0 

            

      
-1.0 1.0 

          -1.0 1.0 

     0.0               

  0.0      

St 0.0      

h 
0.0      

 
 

H  
     

 
 

      

r 0.0 30.0 

        0.0 10.0 

      0.0 5.0 

      -5.0 5.0 

 

Table. 1. List of parameters for walking motion. 
 

 

Each parameter has a value and a definition 

space. The limits of these definition spaces are given 

by constant values or expressions which depend on 

the value of other parameters. 

In order to give a value to this set of parameters 

the second step uses a research algorithm. This 

algorithm will progress in a research space define by 

crossing all the definition spaces. It will search the 

best combination of value for the set of parameters. 

 The simulator will be use to evaluate each 

solution. We will launch a simulation for each 

solution and get data about robot’s performance and 

environment state. The research algorithm will use 

these data to evaluate the quality of each solution. 

 

2.3   Inverse kinematics 

During the third step we use the inverse kinematics 

in aim to find the movement parameters (angle, 

velocity, centre... etc) of each engines used in the 

motion (knee, hips... etc). 

 We deduce these parameters from the robot 

architecture, the successive positions of the target 

points and by using some mathematical rules like 

Pythagoras, and trigonometry. 
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3  Software Design 
 

An important aspect of this software is that is still in 
development and even after being finished it could 
be subject to improvement (like parallelization, 
complex target motion). That is why we have 
decided to set up the  design in three modules.  

The first module is the PSO module. This one 

will be the subject of  further discussions, so we 

won’t describe it now. 

             The second module has many objectives; 

first it should be able to represent the architecture of 

the robot. The software will be able to use the xml 

file representing the robots for the simulator, but we 

also think to insert a module which allows the user 

to enter manually via a graphical interface the 

configuration of the robot. After the robots defined 

by the system, the user will be able to choose some 

target points on the robot and their target trajectories 

and indicate if they are coupled. The equation of 

these trajectories will be automatically generated as 

well as the corresponding set of parameters. 

Afterward the user will manually choose the 

definition space (max and min) of each parameter. 

The aim of this paper is that these values can be 

constant as well as an equation. This implies the set 

up of an equation parser. This one is for the moment 

in development but will not be the subject of this 

paper. As last but main objectives, the third module 

will have the ability to use the solution returned by 

the PSO module and to use the inverse kinematics to 

define the motion parameters of each engine used in 

the movement and generate a motion configuration 

file. In fact to move, our actual robocup agents use 

motion configuration files. It exist one file for each 

motion that the agent wants to execute and the AI of 

this one will have to choose between all its 

possibilities. These configuration files are xml 

formatted and describe the motion parameters of 

each engine. The engines are defined by the 

representation of the robot’s architecture. But the 

problem is that each robot’s configuration an each 

choice of target point will implies a different 

mathematical problem to solve. In consequence we 

will have to set up an IA able to solve them. 

 The server module is the last one. Its task is 

to help the user to easily use the simulator server. 

This interface should allow the user to launch a 

simulator server, to get the data from the simulation 

by using a log file system and finally to be able to 

kill the server. In the aim to be easily improved to a 

parallel version of the software, the interface has 

been design to allow managing more than one server 

in same time. Another little part of the software has 

been developed in order to easily management he 

log file and extract the data. However this last one 

will not be describe in this paper.  

       Figure 2 shows is the global algorithm that the 

system will follow: 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Global algorithm. 

4  Particle Swarm Optimization Module 
  

4.1 Standard algorithm 

The particle swarm optimization (PSO) is a research 

algorithm whose objective is to find the best 

combination of values for a set of parameters.  

Start 

End 

Problem Creation 

Define robot’s architecture 

Define target points and trajectories 

Define parameters’ definition space 

Optimization 

PSO MODULE 

INVERSE KINEMATICS MODULE 

Generate motion config file 

End of optimization 

Calculate fitness 

Search solutions  

For each solution 

SERVER MODULE 

Launch simulation 

Stop simulation 

Writte simulation data in log file 
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      The particle swarm optimization is based on the 

idea of a flock of fishes which move in a space [4] 

The aim of each fish is to find the place where there 

is the best food (this representing the quality of a 

solution calculated with the fitness function). The 

fishes always remember the last best place that they 

have find and they communicate together to share 

information about the best place find by the whole 

flock. The fish will move to a new position in 

function of these two information. Finally the whole 

flock should finish by find the best place of the 

space.     

    

Algorithm Components.  As said just before the 

PSO is based on a swarm of particles which are 

inserted in a research space. The space is created by 

crossing the definition spaces of the set parameters.  

Each particle knows its position in this space, the 

quality of this position, and remembers about the 

best position that the particle has ever found and the 

best position that the swarm has ever found. In 

addition it knows their both quality. To finish each 

particle have a velocity which is use to move in the 

space. The position and velocity of each particle 

have to be contained in the research space. 

Initialisation.  At the beginning we have to initialise 

each value of the particles. So we generate a random 

position in the space and a random velocity. The 

best position of the particle will take the value of its 

first position. The best position of the swarm will be 

determined by sharing information between all the 

particles’ best position. 

Evolution. 

Number of Iterations.  After the initialisation, we 

launch the research. The research will continue until 

a stop criterion is complete. These criterions can be 

the time, the number of iteration or an optimum 

value has been reach (with a certain error). 

Update Position and Velocity.  At each iteration, we 

calculate the new position of the particles and the 

quality of this position. The quality of the particles is 

measured by a pre-specified objective function. 

Then we check if the best position of the particle 

have been improved and share the information with 

the whole swarm. Finally we update the velocity of 

each particle. 

   The new position of a particle is calculated in 

function of the old position and the velocity (see Fig. 

3). 

 

Fig. 3. Update of the particle position. 

The velocity is itself calculated in function of the 

best Position known by the particle and the best 

position known by the swarm [5]. 

    Each time the value of the position and the 

velocity are updated parameter by parameter.    

 

Fitness Function.  The quality of a position is 

calculated with the fitness function. This function is 

defined by the user depending on the problem. For 

example in the case of a walk motion optimization, 

the quality can be calculated depending on the 

distance travelled in a given time, the error of 

trajectory of the robot and its stability. 

Confinement.  If the new position go out the 

research space the particle become useless because 

its position is not valid. That is why the particle 

swarm optimization algorithm uses a confinement 

procedure which moves the lost particle on the 

closest edge of the research space and put its 

velocity to 0.   

Limitation.  But the standard particle swarm 

optimization algorithm as its own limits. The fact is 

it is only possible to use it to search a solution for a 

set of parameters whose limits of definition space 

are constant.  

4.2 Dynamic search space PSO 

In our case, the parameters of movement equation 

are often linked each other. For example during a 

walk motion the maximum high authorized for the 

foot will depends on the actual value of the hips 

high. It means that each particle will have its own 

search space depending on its position. 
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Fig. 4. Search space representation in a two-parameter 

optimization problem. 

 

Two solutions are possible; the first is to use the 

precedent algorithm with a space equal to the 

maximal space search. We define it by putting the 

maximal value of the parameters in the expressions 

which determine the limits of the definition space. 

But use this method implied to effectuate the 

research in lots of positions which are not valid (they 

correspond to a totally impossible movement). It is a 

loss of time. The second one is to use one search 

space search for each particle. This is the subject of 

this part.  

 

One Search Space by Particle. 

Problem.   As said before a research space if defined 

by crossing the definition spaces of the set of 

parameters. But in this case some definition space’s 

limits are defined by mathematical expression which 

depends on the value of some parameters of the set.  

So the parameters are linked each other. 

 The problem is that when we want confined 

the particles in the search space; we change the 

value of the position parameter by parameter. But 

each time that we change the value of one 

parameter, the position of the particle will change. 

And so on for its search space. If we effectuate the 

change without any regards for the order of the links 

between the parameters there is a possibility that the 

procedure enter in an infinite loop.  

       To avoid this problem, the best way is to 

confine the particle following a precise order which 

correspond to the link order of the parameters.  

 

Tree Representation.  To be able to find the good 

order we can use a tree representation of the links 

between the parameters. Each parameter has two 

limits, which depends of a subset of parameters.  

       In this tree, the nodes will represent the 

parameters. A parameter is father of all the 

parameters it depends of. A parameter which depend 

of nothing is a leaf directly link to the root. The root 

node doesn’t correspond to any parameter. It only 

exists to be able to create a single tree even with 

parameters without dependences. Here an example 

of tree for four parameters A, B, C, D and where to 

calculate B you need to know the value of C and D. 

 

 

Fig. 5. Tree of parameter dependences. 

Modification of the Standard PSO.   Finally in the 

aim to use the PSO algorithm, we need to change the 

confinement procedure. If the particle is not in its 

search space, we need to put the particle on the 

closest edge of the search space. But we have to 

follow the link order. 

 The following figure show in red the good 

path to determine the parameters value after 

confinement. 

 

Fig. 6. Confinement parameters order. 

We start from the “A” node, and each time that we 

move on a new node we determine the new limits of 

the definition space with the parameter value 

calculate before and put the parameter value of the 

actual node to the closest limit. And go to the next 

node until we arrive to the root node. 

 

4.3 Experience 
In order to test this module of and to compare the 

efficiency between the standard and the new 

algorithm, we have set up an experience. For a same 

problem composed of a set of variables, which take 
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their value in a defined interval, and of a fitness 

point, we will launch a set of simulation for both 

algorithms. And we will record the number of 

iterations needed to find the fitness point. 

 

    

The problem.  To For this experience we chose a 

two dimensional problem. It means that the problem 

is composed of two variables x and y. We defined a 

fixed fitness point, the point of coordinate (5.5 ; 

0.01).  In this problem, during the new algorithm 

test, the second variable (y) space search limits will 

depend on the value of the first variable (x). The 

limits of the variables of the standard algorithm test 

will be defined as the bigest space possible (biggest 

value for x enter in the limits equation of  y). In the 

next graph we can  visualize the space limits:  

 

 

Fig. 7. Example of the space limits (case B). 

 

We will effectuate the experiments in three 

situations A, B and C. Each situation corresponds to 

a different variable space search (0<x<1000) , their 

limits value are presented in the following table : 

 

 New Algorithm Standard 
Algorithm 

 Min Max Min Max 

A           
       

          
       

-49.75 49.75 

B           
       

          
       

-240.5 240.5 

C          
      

     
          

-497.5 497.5 

 
Table. 2. List limits of definition for the variable y.  

 

For each experience we will launch a set of 

simulations with 50 particles and 500 iterations 

(which is enough to solve the problem). 

 

 

The results.   For each simulation we have check 

how many iterations the algorithm needed to find the 

fitness point. Here are the results of the experiences: 

 

 A B C 

Standard 

algorithm 

279.4 296.5 298 

New 

algorithm 

282.3 254.5 250.3 

 
Table. 3. Average number of iterations needed to find the 

fitness point. 
 

 

We remark that the standard algorithm become less 

efficient on a big research space (B and C) and so in 

these cases we have a gain of time. The gain is not 

so big but the problem was easy, 2 dimensions and 

only 50% of impossible positions. But our software 

will have to deal with more complicated. In addition 

fitness calculations need a simulation of the robots. 

This simulation can take 10 sec as 1 or 2 minutes in 

function of the need. So each iterations gain is a big 

victory. Finally the improvement of the algorithm 

still allows to parallelise it [6]. 

 

 
5  Conclusion 
 

To conclude this paper, even this software project 

still in development some base the design have been 

choose and some important module have ever been 

implemented. The aim is to allow to easily 

generating optimized motions for the robot of y our 

choice and by the way we can use it to try different 

kind of architecture. 

 PSO is a very easy algorithm which is highly 

parallelizable. The experiences showed the 

efficiency of the new algorithm. The server module 

is very important because it will also help to 

parallelize our software by launching lots of 

simulation in a same time but also by following the 

experience of several agents in a same simulation. 
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