Instrogram:

A New Musical Instrument Recognition Technique Without Using Onset Detection Nor F0 Estimation

Abstract

- Task: Instrument recognition in polyphony
- Problem: Need to estimate onsets and F0s
- Solution: New framework based on instrogram
- Calculate instrument existence probabilities for every (time, freq.)
- Visualize them like a spectrogram
- No need to estimate onsets nor F0s

1. Our task

Musical instrument recognition

- To recognize what instruments are played from polyphonic audio signals
- A key technology for various applications:
- Music information retrieval (MIR)

I need "piano sonata."

- Multimedia content annotation (e.g. MPEG-7)
- Automatic music transcription

2. Conventional framework

Notewise sequential framework

- First, estimate the onset time and F0 of every note
- And then, identify the instrument for each note

Two critical problems

- Accurate estimation of the onset time and F0 of every note is required.
\Rightarrow These estimation is not easy in polyphonic music
- Once the preceding estimation fails for some notes, identifying their instruments are impossible.

4. Algorithm for calculating instrogram

The instrument existence probability is calculated as the product of
a nonspecific instrument existence probability and a conditional instrument existence probability
Dominance of each F0 is calculated Nonspecific Instrument Existence Probability $p(\mathrm{X} ; t, f)$

Formulation

- Calculate instrument existence probability $p(\omega ; t, f)$ at every t and f for every $\omega \in \Omega$ t : time, f : frequency, Ω : the set of target instruments ($\Omega=\left\{\omega_{1}, \cdots, \omega_{m}\right\}$)
- Assume that more-than-one instruments are not played at the same time and frequency $\forall \omega_{i}, \omega_{j} \in \Omega: p\left(\omega_{i} \cap \omega_{j} ; t, f\right)=0$ if $i \neq j$
$\Rightarrow p(\omega ; t, f)=p(\mathrm{X} ; t, f) p(\omega \mid \mathrm{X} ; t, f)$
 ($\mathrm{X}:$ Symbol standing for the existence of some instrument, i.e. $\mathrm{X}=\omega_{1} \cup \cdots \cup \omega_{m}$)

Conditional Instrument Existence Probability $p(\omega \mid \mathrm{X} ; t, f)$

Extract 28 features
with sliding the window by Δt

e.g. Spectral centroid, power decay speed

Extract the harmonic structure of each F0

Tetsuro Kitahara*, Masataka Goto**, Kazunori Komatani*, Tetsuya Ogata* and Hiroshi G. Okuno* *Graduate School of Informatics, Kyoto University, Japan
**National Institute of Advanced Industrial Science and Technology, Japan kitahara@kuis.kyoto-u.ac.jp, http://winnie.kuis.kyoto-u.ac.jp/~kitahara/

3. Our solution

InStrOgran spectrogram-like graphical representation of instrument existence probability

5. Experiments

I. Synthesized trio music "Auld Lang Syne"

II. Real performances (taken from RWC Music DB)
(a) RM-C014 (Strings)
(b) RM-C019 (Piano+Strings)
(c) RM-J001 (Piano)

6. Discussions

I. Relation to people's music listening

- Listening to Music \neq Obtaining Score
- They can understand music without mentally representing it as a score
- They can search for piano music even if not recognize every note
\Rightarrow Instrogram enables non-scorebased music understanding
II. Potential Applications
- MPEG-7 Annotation
(e.g. when each instrument starts \& stops playing)

Piano begins playing = Trans. "Silence" to "PF" \Rightarrow Piano stops playing = Trans. "PF" to "Silence"

- Instrumentation-similarity-based MIR

Please see demo on my laptop!

