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Abstract
This paper describes a method of constructing a musical
instrument hierarchy reflecting the similarity of acousti-
cal features. Although this acoustical hierarchy is use-
ful for various purposes as well as investigating the tim-
bres of musical instruments, it has not been reported in
the literature. The main issues in constructing such a hi-
erarchy are what feature space is used and how to ob-
tain the representative position of each instrument in the
feature space. To solve the first issue, we use a feature
space that facilitates identification of 6247 solo tones of
19 instruments with an accuracy of 80%. To solve the
second issue, we approximate the distribution of each in-
strument using a large number of sounds. Experimen-
tal results using 6247 solo tones of 19 instruments show
that the hierarchy obtained by our method is partially dif-
ferent from a conventional one. In addition, this paper
reports category-level identification of non-registered in-
struments using our hierarchy.

1. Introduction

Timbre, which is also called tone color or tone quality,
is one of the four basic psychoacoustical parameters of
sounds: pitch, duration, intensity, and timbre. The timbre
has been considered more complex than the other param-
eters and has never been fully definded. This is because
it is difficult to put it on a physical scale, whereas the
other parameters can easily be corresponded to physical
values; the pitch, for example, can be corresponded to the
fundamental frequency in usual.

One of the most useful approaches for understand-
ing timbres of musical instruments is to construct a hier-
archy (taxonomy) of musical instruments based on tim-
bres. However, most of the existing hierarchies are not
designed based on timbres. The hierarchy shown in Ta-
ble 1 is the most commonly used one, but the criterion
for classifying musical instruments is not consistent. In
fact, string, wind, and percussion are the material of in-
struments, the source that makes sounds, and the method

This research was partially supported by MEXT, Grant-in-Aid for
Scientific Research (A), No.15200015, the Sound Technology Promo-
tion Foundation, and COE program of MEXT, Japan.

Table 1: A conventional hierarchy of musical instruments.
Higher Middle Lower Musical
level level level instruments*

Struck strings PF
Strings —– Plucked strings CG, UK, AG

Bowed strings VN, VL, VC
Air reeds PC, FL, RC

Wood Single reeds SS, AS, TS, BS
Winds winds CL

Double reeds OB, FG
Brasses (Rip reeds) TR, TB

Percuss. (omitted) (omitted) (omitted)
*Notation of musical instruments is defined in Table 3.

of playing instruments, respectively. To solve this prob-
lem, Sachs [1] has proposed a new hierarchy based on the
sounding mechanisms of musical instruments. However,
since sounding mechanisms and timbres do not necessar-
ily correspond, this hierarchy does not reflect the similar-
ity of timbres.

There are two different strategies of constructing a
timbre-based hierarchy. The first strategy is perceptual
classification that constructs a hierarchy according to
human-rated timbre similarity. In this case, the timbre
means what humans feel about sounds. Although it was
studied in the field of psychological acoustics [2]–[5],
there were few reports of large-scale experiments because
of the burden on human subjects. The second strategy is
acoustical classification that automatically constructs a
hierarchy on the basis of the similarity of acoustical fea-
tures. In this case, the timbre means acoustical features
of musical instruments. Although this strategy facilitates
a large-scale hierarchy, it has not been reported because
of the lack of large-scale musical sound databases.

In this paper, we adopt the second strategy and pro-
pose a method of constructing an acoustical hierarchy us-
ing a large-scale database, the RWC Music Database [6].
Our method uses a feature space where 6247 solo tones
of 19 instruments can be identified with accuracy of
80% [7]; the method also approximates the distribution
of each instrument using a large number of sounds. This
feature space and approximatation make it possible to ob-
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tain an appropriate hierarchy that reflects the acoustical
similarity of the timbre of musical instruments.

This paper also describes category-level identification
of non-registered musical instruments (i.e., instruments
that are not included in the training data) as an appli-
cation of our hierarchy. Although it is essential to deal
with non-registered instruments in identifying musical in-
strument sounds, this has not been dealt with in previous
studies [8]–[11]. Our method can identify the category
name such as strings of a given sound even if it is not reg-
istered, as well as identifying the instrument name such
as violin if it is registered.

2. Musical instrument hierarchy based on
acoustical similarity

One of the most commonly used methods of constructing
a hierarchy from feature vectors is hierarchical clus-
tering. This first calculates distances between feature
vectors in a feature space and then merges the closest
pair of feature vectors (or clusters) into a single cluster
recursively until all the feature vectors have been merged
into a single cluster. This method is applicable for our
purpose, but the following two problems make it difficult
to obtain reasonable results:

Problem 1 Clustering results depend on a feature space.

Problem 2 If one sound is used as a representative of
each musical instrument, the clustering results also
depend on this sound. This is because features of
musical instrument sounds depend on various fac-
tors including pitch and differences of individuals.

In this paper, to solve Problem 1, we use the feature
space that we previously proposed [7], where 6247 solo
tones of 19 instruments can be identified with accuracy
of 80% [7]. To solve Problem 2, we perform hierar-
chical clustering on a multivariate normal distribution of
each instrument, which is obtained from a large number
of sounds. By using a multivariate normal distribution,
instead of a single sound, for each instrument, we can
obtain the appropriate representative position of the in-
strument in the feature space.

2.1. Details of the method

The hierarchy is constructed by the following three steps:

1. Feature extraction
The features proposed in our previous paper [7] are

extracted. Specifically, the 129 features listed in Table 2
are first extracted, and then the dimensionality of the 129-
dimensional feature space is reduced by two successive
processing steps: it is reduced to 79 dimensions by princi-
pal component analysis (PCA) with the proportion value
of 99%, and then further reduced by linear discriminant
analysis (LDA). The feature space is finally reduced to an
18-dimensional one because we deal with 19 instruments.

Table 2: Overview of the 129 features used in [7].

(1) Spectral features (40 features)
e.g., spectral centroid, relative power of the fundamental
component, relative power in odd and even components

(2) Temporal features (35 features)
e.g., gradient of a straight line approximating power enve-
lope, average differential of power envelope during onset

(3) Modulation features (32 features)
e.g., amplitude and frequency of modulation of power, fre-
quency, spectral centroid and MFCC

(4) Non-harmonic component features (22 features)
e.g., temporal mean of kurtosis of spectral peaks of each
harmonic component (their values decrease as sounds con-
tain more non-harmonic components.)

2. Calculation of the Mahalanobis distances
Once the distribution of each instrument ωi in the fea-

ture space has been approximated by a multivariate nor-
mal distribution, the mean vector µi and the covariance
matrix Σi of this distribution are calculated. The Ma-
halanobis distance DM(ωi, ωj) of each instrument pair
(ωi, ωj) (ωi �=ωj) is calculated by the following equation:

DM(ωi, ωj) = (µi − µj)′Σ
−1
i,j (µi − µj),

where, Σi,j = (Σi + Σj)/2, and ′ represents the transpo-
sition operator.

3. Hierarchical clustering
Hierarchical clustering is performed using the above

Mahalanobis distances. We use the average-link cluster-
ing, which considers the distance between two clusters to
be equal to the average distance from any member of one
cluster to any member of the other.

2.2. Actual construction

We conducted experiments in constructing a hierarchy
using a subset of a large-scale musical instrument sound
database RWC-MDB-I-2001 [6]. This subset summarized
in Table 3 was selected by the quality of recorded sounds.
It consists of 6247 solo tones of 19 orchestral instru-
ments. All data were sampled at 44.1 kHz with 16 bits.

Figure 1 shows the dendrogram obtained by our clus-
tring method. We can obtain a hierarchy by merging in-
struments of which distances in Figure 1 are less than
a threshold into a single cluster. Higher, middle, lower
level categories were obtained when the threshold was
30, 20, and 10, respectively.

The results are summarized below:

Division into decayed and sustained instruments
Our hierarchy divided all instruments into two cate-

gories: decayed and sustained instruments. This division
matches reports on psychological acoustics [5] and man-
ually constructed timbre-based hierarchies [8, 9]. This
shows that our hierarchy approximately reflects the tim-
bre similarity. This is one of the major differences be-
tween our hierarchy and a conventional one (Table 1).
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Table 3: Contents of the database used in this paper.
Instrument Piano (PF), Classical Guitar (CG),
names Ukulele (UK), Acoustic Guitar (AG),

Violin (VN), Viola (VL), Cello (VC),
Trumpet (TR), Trombone (TB),
Soprano Sax (SS), Alto Sax (AS),
Tenor Sax (TS), Baritone Sax (BS),
Oboe (OB), Fagotto (FG), Clarinet (CL),
Piccolo (PC), Flute (FL), Recorder (RC)

Individuals 3 individuals for each instrument except for
TR, OB, FL.
TR, OB, FL: 2 individuals.

Intensity Forte, normal, piano.
Articulation Normal articulation style only.
Number of PF: 508, CG: 696, UK: 295, AG: 666,
tones VN: 528, VC: 558, TR: 151, TB: 262,

SS: 169, AS: 282, TS: 153, BS: 215,
OB: 151, FG: 312, CL: 263, PC: 245,
FL: 134, RC: 160.
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Figure 1: The dendrogram obtained by hierarchical clustering.

Categories that consist of only one instrument
Three instruments, the ukulele, the clarinet and the

recorder, each formed a category singly at the lower level.
The reason why the ukulele and the clarinet did so is that
the Mahalanobis distances between them and others are
large due to their peculiar characteristics. Ukuleles de-
cay the fastest of the four decayed instruments. Clar-
inets have small powers of even-ordered harmonic com-
ponents, especially 2nd one. On the other hand, the rea-
son why the recorder did so is that the variance of the
recorder’s distribution is small. In recorders, the flow
is fixed by the form of the narrow windway, while in
flutes it is fixed by the form of the player’s lips. There-
fore, sounds of recorders do not vary much from player
to player. This is why the variance of the recorder’s dis-
tribution was small.

Influence of pitch range
In classifying wind instruments, instruments that have

a similar pitch range tended to be placed into the same
category. This result means that the features of musi-

Table 4: Our musical instrument hierarchy based on the acous-
tical similarity.

Higher Middle Lower Musical
level level level Instruments

Decayed —– Ukulele UK
Others PF, CG, AG

Strings —– VN, VL, VC
Saxophones SS, AS, TS

Sustained Clarinet CL
Winds Recorder RC

Brasses, etc. TR, TB, BS, FG
Others OB, PC, FL

cal instrument sounds depend on not only the sounding
mechanisms but also the pitch. This matches the litera-
ture on psychological acoustics [5].

Saxophones and Clarinets
Although saxophones and clarinets have single reeds,

our results show that their sounds are not similar. This
is because clarinets are cylindrical while saxophones are
conical. This shape difference causes spectral differ-
ences, especially powers of even-ordered harmonic com-
ponents. While conventional hierarchies such as Table 1
do not take these timbre differences into consideration,
our hierarchy does.

3. Application to identification of
non-registered instruments

In this section, as an application of our musical instru-
ment hierarchy, we perform identification of instruments
that are not included in the training data (called non-
registered instruments).

Most studies on musical instrument identifica-
tion [8]–[11] have used training data including a lim-
ited number of musical instruments and have assumed
that all the instruments used in an input were included
in the training data. Because there are numerous kinds
of musical instruments in the world, it is impossible to
prepare training data that covers all of them. Moreover,
the recent development of digital audio technology has
made it possible to create infinite kinds of original musi-
cal sounds (ranging from sounds similar to natural instru-
ments to sounds of instruments that do not exist actually).
It is therefore essential to deal with non-registered instru-
ments when identifying musical instrument sounds.

To solve this problem, we propose category-level
identification of non-registered instruments. For exam-
ple, a sound that is similar to a violin and a viola but not
the same (for example, a sound made from the two in-
struments using a synthesizer) is identified as “strings.”
When humans listen to this sound for the first time, they
will think “I do not know this instrument, but it must
be one of the strings.” This study aims to achieve such
human-like recognition on a computer.
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Table 5: Musical instrument sounds used for identifying non-
registered musical instruments.

Sound names Electric Piano (ElecPf),
Synth Strings (SynStr),
Synth Brass (SynBrs)

Variations 2 variations for each sound name
Velocity 100
Pitch range C3–C5 (A4=440Hz)

In this experiment, electric sounds played by a MIDI
tone generator (MU2000, Yamaha), listed in Table 5,
were used as non-registered instruments, and sounds of
natural instruments listed in Table 3 were used as training
data and test data of registered instruments. We divided
all the data of Table 3 into two groups at random and as-
signed one to training data and the other to test data of
registered instruments.

Identification was performed in the following steps:

1. Identify a musical instrument sound at the
instrument-name level;

2. Calculate the Mahalanobis distance from the
sound to the distribution of the above result;

3. Judge it to be registered if the distance is less than
a threshold or non-registered if the distance is not;

4. Output the instrument name as a result if the sound
is judged to be registered, or the category name af-
ter re-identifying at the category level if the sound
is judged to be non-registered.

Details of the identification method in step 1 are given
in [7]. To calculate the Mahalanobis distances, we used a
23-dimensional feature space obtained by PCA. In step 4,
the lower-level categories were used.

The experimental results listed in Table 6 show that
77% of non-registered instrument sounds were correctly
identified at the category level while distinguishing them
from registered sounds. The recognition rate for ElecPf
A was poor, because it was not recognized as a non-
registered instrument but as a registered one. Actually,
it sounds like a real piano to human listeners.

4. Conclusion

We constructed a musial instrument hierarchy according
to the acoustical similarity and observed differences be-
tween it and the conventional hierarchy. Comparing these
hierarchies with the literature on psychological acoustics
showed that our hierarchy reflects the timbre similarity
better than the conventional one. Because the literature
we used was based on smaller databases than ours, how-
ever, there is still room for improvement in the way of this
comparison. Future work will therefore include a psy-
choacoustical experiment using our large database and
the comparison between its results and our hierarchy in
more detail.

Table 6: Experimental results on flexible musical instrument
identification.

Registered PF CG UK AG VN VL VC
Correct I 69% 83% 97% 68% 62% 69% 70%
Correct II 17% 12% 0% 14% 14% 11% 10%
Incorrect 14% 5% 3% 17% 24% 20% 20%

TR TB SS AS TS BS OB
Correct I 64% 63% 47% 40% 30% 49% 48%
Correct II 15% 17% 11% 17% 26% 20% 19%
Incorrect 22% 20% 42% 43% 44% 31% 33%

FG CL PC FC RC Av.
Correct I 56% 91% 66% 45% 89% 67%
Correct II 16% 0% 17% 20% 0% 13%
Incorrect 27% 9% 17% 35% 11% 20%

Non ElecPf SynStr SynBrs Av.
registered A B A B A B
Correct II 44% 76% 88% 100% 60% 96% 77%
Incorrect 56% 24% 12% 0% 40% 4% 33%

Correct I: Correct at instrument name level.
Correct II: Correct at category level while rejecting instrument-
name-level results.
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