
～For Flexible Identification～
Problem and Solution: 

Humans recognize musical instrument sounds hierarchically.
―They can identify at higher level (e.g. strings) even if they 
cannot identify at lower level (e.g. violin, viola)―
⇒ Hierarchical identification with a confidence measure 

Examples:
(a) A classical guitar’s sound was identified correctly. 

The identification result was accept. (Threshold=0.90)

(b) An alto sax’s sound was identified as “tenor sax” incorrectly.
Only the individual-level result was reject. (Threshold=0.90)
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The aim of computational music scene analysis is 
to obtain a symbolic representation of musical
acoustic signals.

l Computational music scene analysis should support various types of musical sources.
l Computational music scene analysis should be useful for various applications.
⇒ Ontology-based Information Integration

Ontology-based Information Integration can take into consideration interdependency of processing modules.
l If visual information of musical sources is available, it may be used to disambiguate auditory information.
l If directional information of musical sources is available (musical sources is stereo), 

it may reduce ambiguities in frequency component grouping. ⇒ See Section 2
l Since timbres of musical instruments depend on the pitch, 

their identification should take into consideration the pitch dependency. ⇒ See Section 3
l A melody model defined by musical interval transitions is an important knowledge for frequency component 

grouping, which has a role of a language model in automatic speech recognition. ⇒ See Section 4

～Sequential Grouping～

Problem and Solution:
・Human listeners use directional prox-

imity to separate multiple sounds.
・Timbre similarity have been used in
previous study.

⇒Integrate directional proximity and
timbre similarity by Dempster
Shafer theory.

Experimental Results:

3. Musical Instrument Identification
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1. What is Computational Music Scene Analysis?

2. Frequency Component Grouping using Direction

～Simultaneous Grouping～
Problem:

Harmonic structure is the main 
clue for simultaneous grouping
in previous studies.

⇒ Ambiguity remains in forming 
notes of octave relation.

Solution:
Interaural phase difference (IPD) of overlapped
frequency components has large variance.

⇒ Introduce the overlap determination of frequency 
components based on the variance of IPD.

Experimental Results:

C4 (262Hz) only C4 (262Hz) + C5 (524Hz)

PrecisionRecall 

75.6%94.3%With the overlap 
determination

86.7%44.3%
Without the overlap 
determination

78.3%Directional proximity only

Accuracy

89.2%Integrate both the clues

51.1%Timbre similarity only

Motivation:
Human listeners use a musical context to interpret the musical sources.
⇒ A melody model, which is defined as musical interval transitions to 
capture the musical context, can be used in sequential grouping.

Problem:
Musical interval transitions depend on a genre, a role of each part, 
and an instrument.

Solution:
Construct a melody model for each genre, each role and each instrument, 
and then apply the most appropriate melody model to sequential grouping.

4. Melody Model (Musical Interval Transitions)

l The framework of computational music scene analysis was presented.
⇒ To support various sources and various application, Ontology-based approach is important.

l As subtasks of computational music scene analysis, our studies on frequency component grouping, 
musical instrument identification and melody model construction were presented.

l Future works include integration of developed modules and construction of musical sound ontology.

5. Conclusions and Future Works
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Section 4

～For Improving Accuracy～
Problem: 

Timbres of musical instruments depend on 
the pitch.
⇒ Musical instrument identification should 
take into consideration the pitch dependency.

Solution: 
(1) Approximate the pitch dependency of 
features as a function of F0
(2) Classify based on a discriminant function 
defined by the function of F0

Experimental Results:
・The use of the pitch dependency improved 
accuracy of musical instrument identification: 
75.73% ⇒ 79.73%
・Piano’s identification was the best improved: 
74.21% ⇒ 83.27%
(The database of 6,247 solo tones of 
19 instruments was used)


