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1. What is Computational Music Scene Analysis? 3. Musical Instrument Identification
The aim of computational music scene analysis is Automatic Knowledge Acquisition _ : - .
to obtain a symbolic representation of musical 7from Musical Sources on the Net For ImprOV|ng Accuracy For FIeX|b|e |deﬂtIfICathn
acoustic signals. | Problem: Problem and Solution:
————— Aﬂ Knowedge Base Timbres of musical instruments depend on Humans recognize musical instrument sounds hierarchically.
(| Prection 1IDAIPD) f d o A the pitch. —They can identify at higher level (e.g. strings) even if they
7 T . Musical instrument identification should cannot identity at lower level (e.g. violin, viola)—
e . . . . I I I 1fi I I I
I ety take into consideration the pitch dependency. Hierarchical identification with a confidence measure
y y J Music Score ExampIeS'
x ¢ Solution: o . . .
S Frequency Atst-Harble Hancock</ATlst> (1) Approximate the pitch dependency of (a) A classical guitar’s sound was identified correctly.
. —>| Spectral Analysis 3|  FO Estimation Component InstrumencBass</insument> : The identification result was accept. (Threshold=0.90)
Various Types of Musical Sources ¢ Groupmg Annotation for Retrieval fzatclilres aS 3 fungtlon OdeO - - f - s T (:CM)
. . Y assify based on a discriminant function Piano 0.0001
:é?;slgig?:so’plg?liazgf?_rmance’ \\| I%hoﬁ_NE}[_me - Simultaneous Grouping fje)flned bfythe funCtiOI’l Of FO Decayed Classi(;al Guitar | 0.9994 (correct)
_Monaural, Stereo. .. il (enerate anote fom Other Representation y Instruments Ukulele 0.0000
- Single Tones, Multiple Tones, ... w ¢ _ Seqﬂemié Gm%ping . | | CM=1.0000 Acoustic Guitar | 0.0004
Musical Instrument : (feeq”féﬁﬁi?enrgfeosﬁa' o o T o} PR LE Instruments Violin 0.0000
|dentification : : Section 2 5o B Strings ’< Viola 0.0000
Section 3 o : g
"""""""""""""""""""" inierdependent 2 rumants < Cello 0.0000
® Computational music scene analysis should support various types of musical sources. g i E
® Computational music scene analysis should be useful for various applications. p L= | ° 1 . b) An al , q dentified as © , |
Ontology_based Informatlon Integratlon . OOFundamentaFI(—')quuency [cen‘[]moo0 30OOFundamen‘[allsltz)?eoquency [cent]9000 ( ) n aito Saxssoun was ldentirie aS tenor sax" Incorrect y
Only the individual-level result was reject. (Threshold=0.90)
Ontology-based Information Integration can take into consideration interdependency of processing modules. EXperll_n;]‘ZntzleiefiEgS: teh dependency improved oecayed
. . . . . . . . . . . . u |
® If visual information of musical sources is available, it may be used to disambiguate auditory information. f P inst P i y t'f'p fon: Strings  f=— Posteriori Prob. (=CM)
T _ _ _ _ _ _ , accuracy of musical instrument identification: T srass |—]_Tmpet _Jooow
® |[f directional information of musical sources is available (musical sources is stereo), 75 7304 79.73% Trombone 10.0000
it may r mbiguities in frequency component grouping.  See Section 2 . e . Sustained
o ;in:gtiemdbﬁz if r:l?sical instrurgen " ii/e P J . PIng Piano’s identification was the best improved: Instruments > S0 2082 (correct)
pend on the pItCh1 14 .21% 83.27% CM=1.0000 Sax Tenor Sax 0.5264
their identification should take into consideration the pitch dependency. See Section 3 (THe databasé of 6.247 solo tones of - Wind CM=0.9980 Baritone Sax ] 0.2628
y nstruments
® A melody model defined by musical interval transitions is an important knowledge for frequency component 19 instruments was used) CN=1.0000 Double Reedsf=— |2 ——{
grouping, which has a role of a language model in automatic speech recognition.  See Section 4
2. Freqguency Component Grouping using Direction 4. Melody Model (Musical Interval Transitions)
Simultaneous Grouping Sequential Grouping Motivation: J
: ® Problem: - AL Human listeners use a musical context to interpret the musical sources.
Harmonic structure is the main %\f A melody model, which is defined as musical interval transitions to
clue for simultaneous grouping capture the musical context, can be used in sequential grouping. r
IN previous studies. Problem: Probabilities of musical intervals
: Amblgu;ty remam? 'P forming Problem and Solution: Musical interval transitions depend on a genre, a role of each part, (exampie)
" C4(262H2) + C5 (524H2) notes of octave relation. Human listeners use directional prox- and an instrument. cg‘:gj'
— Solution Imity to separate multiple sounds. Solution: ’;;"g’i 0‘
. Tl 0 ulr:?enr.aural hase difference (IPD) of overlapped Timbre similarity have been used In Construct a melody model for each genre, each role and each instrument, R
frequenc I?:om onents has large variancepp previous study. and then apply the most appropriate melody model to sequential grouping. e e TS S
G g Y P ge ' Integrate directional proximity and Interval
i —— Introduce the overlap determination of frequency . .
e by e e . timbre similarity by Dempster
= , components based on the variance of IPD. Shafer theory s g K
= Experimental Results: - oormenta o 5. Conclusions and Future Works
EEEEEEEEE = Recall | Precision : ocurac ® The framework of computational music scene analysis was presented.
== . = Without the overlap 44.3%  86.7% e similarity o - 1(;/ To support various sources and various application, Ontology-based approach is important.
= — — -~ -~ —_ determination | | ——— Y= o ® As subtasks of computational music scene analysis, our studies on frequency component grouping,
= = With the overlap | o, a0c| 75 g0y Directional proximity only 78.3% musical instrument identification and melody model construction were presented.
R e . . . 0 . 0 ] . ] i i
= ——=_ _determination Integrate both the clues 89.2% ® Future works include integration of developed modules and construction of musical sound ontology.




