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Abstract

This thesis aims at establishing a model of temporal synchronization among in-

teracting individuals. Temporal synchronization occurs in many interactions with

various features such as the size, the place, the stationary state, and the par-

ticipants. To investigate a wide range of interactions, we analyze two cases of

interaction that have different features: human-robot ensembles and frog choruses.

The features of the human-robot ensembles are of small size (a few co-players),

indoor interaction, in-phase synchronization in the stationary state, and humans

as the participants. Here, in-phase synchronization means that the onset timings

of all co-players are the same. The features of the frog choruses are of large size

(dozens of frogs), outdoor interaction, anti-phase synchronization in the stationary

state, and frogs as the participants. Here, anti-phase synchronization means that

the call timings of two frogs alternate. This is because the chorus is for mating,

i.e., the male frogs call to attract female frogs. Therefore, call overlap should be

minimized so that females can localize males.

For the human-robot ensemble, we develop a temporal synchronization model

of multiperson ensemble and a human-robot ensemble system using the model.

The requirement with the human-robot ensemble is threefold: (1) development

of the music playing robot, (2) onset timing prediction of co-players, and (3)

estimation of the leadership in an ensemble. To satisfy the first requirement, we

develop a Thereminist Robot system that controls a robot to play the theremin.

To satisfy the second and third requirements, we construct a state-space model by

combining two components: the coupled oscillator model to represent the onset
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timing interaction and the leadership estimation to represent the dynamics of

leadership. We design a novel quantification of the leadership named leaderness

and develop its estimation method.

For the frog choruses, we develop a sound imaging system and analyze the

spatio-temporal structure of the chorus of Japanese tree frogs (Hyla japonica).

The chorus analysis is especially difficult for small nocturnal animals, e.g., frogs,

because dozens of conspecific individuals call at night at the same site. Therefore,

human researchers have difficulty on measuring the time and location of each call.

Also, the microphone array processing methods show insufficient performance.

We solve this problem by developing a sound imaging system that consists of two

components: a sound-to-light converting device named Firefly and an off-the-shelf

video camera.

This thesis consists of eight chapters. In Chapter 1, we show the motivation of

the thesis and the technical problems of the two case studies.

In Chapter 2, we review the literature related to the two cases. The reviewed

areas include the expression of music robots, human robot ensembles, and the

acoustic communication of animals.

In Chapter 3, we develop the Robot Thereminist system. The theremin is suit-

able for robot playing because it requires no physical contact. The problem is its

sensitivity to the surrounding environment. We develop a theremin’s pitch model

and its model parameter tracking method by using the unscented Kalman fil-

ter. Experimental results demonstrate that our method outperforms the extended

Kalman filter and block-wise update method.

In Chapter 4, we construct a two-person ensemble model by using the coupled

oscillator model. We assign two oscillators to a human and a robot and update

the model from the human’s onset timings. Experimental results show that our

method reduces the onset timing error by 46% on average compared with the

conventional method, that uses the extrapolation of the last tempo.

In Chapter 5, we construct a multiperson ensemble model by extending the two-
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person ensemble model. To realize the coupling strength estimation, we design the

leaderness and its iterative estimation method. In the experiment, we analyze

the multiperson tapping of humans as a simple ensemble. The results show that

the leaderness successfully captures the dynamics of the leadership and that the

prediction performance is equivalent to that of humans.

In Chapter 6, we develop the Firefly and video analysis method to extract

the time and location of each call. The device characteristics measurement shows

their feasibility for the field experiments. The simulation reveals that the Fireflies

should be placed six times denser than the target animals that call simultaneously.

From the indoor and field experiments, we observe anti-phase and 1:2 anti-phase

synchronizations that validate the coupled oscillator model of the choruses.

In Chapter 7, observations, general discussion, and the remaining work of the

thesis are described.

Finally, Chapter 8 concludes the thesis.
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Chapter 1

Introduction

1.1 Motivation

Interaction pursues synchronization. From several hundred years ago, synchroniza-

tion has been found in many interactions among both living and non-living things

[1–3]. For example, the pendulum clock, which is the phenomena first observed by

Christiaan Huygens in the 17th century, and coupled Belousov-Zhabotinsky chem-

ical reactions [4] are the synchronizations of the interactions among non-living

things. For the interactions of living things, synchronization is also found in many

areas, e.g., the frog choruses [5] and light timings of fireflies [6] in biology, the

cardiac cells [7] and circadian rhythm synchronization with the environment [8]

in physiology, and the timing of speaking and body movements [9] and nodding

during conversation [10] in human interaction. In addition, synchronization has

been implemented in robotics. For example, in human-robot interactions, Braezeal

developed an interaction robot that can synchronize its speaking and head motion

timings with humans for natural conversation [11].

The final goal of this thesis is to construct a model of the synchronization

among interacting individuals. We focus on the synchronization in the interactions

of intellectual individuals, such as humans and animals. This is because they are

challenging targets; they have complex internal processes, which have not been

mathematically modeled precisely. Through model construction, we analyze the
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CHAPTER 1. INTRODUCTION

Table 1.1: Interaction factors of the cases
Case 1 Case 2

Factor Human-robot ensembles Frog choruses
Number of participants a few dozens
Location indoor field
Stationary state in-phase anti-phase
Participant humans animals (H. japonica)

dynamics and structure of synchronization and develop an artificial participant

that can synchronize with others.

Synchronization occurs in a wide range of interactions with various factors,

e.g., the number of participants, the location of the interaction, the stationary

state of the synchronization, and the participants. Possible factors and interaction

examples are as follows. The number of participants is typically low for human

conversations and dozens for animal choruses. The location of the interaction is in-

doors, i.e., no environmental noise, for human music ensembles, and is outdoors for

wildlife animal communications. The stationary state of the synchronization is in-

phase synchronization, i.e., the event timings are the same time, for human-robot

ensembles, and is the anti-phase synchronization, i.e., the event occurs alternately,

for the mating calls in frog choruses. The participants are humans or animals.

We select two cases having different factors: (1) human-robot ensembles and

(2) the choruses of Japanese tree frogs (Hyla japonica). The factors of these cases

are summarized in Table 1.1. Here, we discuss the stationary state. The stationary

state of human-robot ensembles is in-phase synchronization because the timings

of the co-players should be the same in order to synchronize the ensemble. In

contrast, that of the frog choruses is anti-phase synchronization. This is because

the chorus is the mating call produced by male frogs, i.e., the call is to attract

female frogs for reproduction. Therefore, they try to call at different times in order

to be localized by the females.

The purpose of the first case, the human-robot ensembles, is twofold: to de-

velop a co-player robot that can synchronize with other players and to analyze the

2
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human-human ensemble. Realizing the co-player robot has two advantages. First,

we can realize entertainment that can be participated in. Music playing robots

have been actively developed such as a flutist robot [12], however, we are just an

audience in their performances. In contrast, with the co-player robots, we can

join their performances actively. Second, the robot can facilitate non-linguistic

communication among people with cultural and generational barriers. Since an

ensemble is a non-linguistic interaction, such people can interact together. The as-

sumptions of the target ensemble are as follows. First, we assume that the number

of participants is low in order to simplify the problem. Note that the constructed

model has theoretically no limitation on the number of participants. Second, we

assume a score-based ensemble; in other words, all co-players have their own score.

This is because we concentrate on the timing synchronization by ignoring artistic

aspects such as improvisation. Third, we assume that no conductors exist in the

ensemble because our purpose is to model self-organized synchronization without

any external force.

The purpose of the second case, the frog choruses, is to reveal the spatio-

temporal structure of their synchronization. Since acoustic communication is a

common medium for animals, synchronization has been found in many species,

such as frogs [5] and crickets [13]. Measuring the spatial and temporal information,

i.e., when and where they call, is extremely difficult because they call with many

conspecific individuals at night. Although a mathematical model of the H. japonica

chorus was proposed [14], it was validated only in indoor experiments. To solve

this problem, we develop a novel measurement device named Firefly and a sound

imaging system that uses multiple Fireflies. By using a measurement result, we

validate the model in the field. Since the sound imaging system is designed as a

general-purpose visualization system of the spatio-temporal structure of choruses,

it can be used for other species, such as crickets and other kinds of frogs.

The key model in the thesis is a coupled oscillator model. The model consists of

two components: (1) several oscillators that generate events sequentially and (2)

3
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coupling terms that affect event timings. The oscillator generates an event when its

phase becomes a multiplier of 2πn (n is a natural number). This model is suitable

for our purpose because we can design the oscillator to represent the interaction

participant and the coupling term to represent the mutual influence during the

interaction. For the first case, we represent the co-players as the oscillators. For

the second case, we represent the frogs as the oscillators.

1.2 Technical Problems and Solutions

This section summarizes the technical problems for each case. We solve three for

the human-robot ensemble as described in problems 1-1, 1-2, and 1-3 and two for

frog choruses as described in problems 2-1 and 2-2.

1.2.1 Problem 1-1: Dynamic Characteristics of Instrument

A music playing robot needs to track the dynamically changing characteristics of

music instruments because a music instrument’s internal state changes over time.

For example, the temperature of a brass, the wetness of a woodwind, or the tension

of a guitar changes during play, which causes the pitch to shift. In this thesis, we

use an electronic instrument, the theremin, for the robot’s instrument. Although

the theremin has advantages in that it is suitable for robots, e.g., no physical

contact is required, this problem is crucial for the theremin due to its sensitivity

to the surrounding environment.

We solve this problem with two steps. First, we construct a theremin paramet-

ric model by observing the theremin’s sound. The model represents the relationship

between the arm position and the theremin’s pitch. Second, we develop a method

for iteratively updating the model parameters. Since the model is nonlinear, we

solved it by using an unscented Kalman filter, a nonlinear version of Kalman filters.
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1.2.2 Problem 1-2: Onset Timing Prediction of Co-players

A co-player robot needs to predict the other co-players’ onset timings. The reason

is that they need to play an onset at the same time with others to achieve in-phase

synchronization. The problem is that the robot needs to move its body before the

onset observation because the robot’s motion speed is finite. A naive solution is to

extrapolate the last inter-onset interval (IOI) [15]. This method has a large error

because it assumes that the robot’s playing has no affect on a human. However,

the robot and the human are mutually dependent, i.e., the robot’s playing typically

affects humans.

We solve this problem by constructing an ensemble model that incorporates

this effect by using a coupled oscillator model. Consider an ensemble consisting

of one human and one robot. We model the whole ensemble with the coupled

oscillator model by assigning two oscillators to each participant. The phases of

the oscillators are updated by using (1) their speed and (2) the difference from the

phase of another oscillator. This models a situation in which the human and the

robot have their own tempos and try to synchronize with each other.

1.2.3 Problem 1-3: Leadership Estimation

Leadership estimation is an essential function for co-player robots, especially in a

multiperson ensemble. This is because the robot needs to know whom to follow

or when to lead. In conventional human-robot ensemble studies, this problem is

avoided by assuming that the leader is assigned in advance or only one leader exists

at the same time. However, in realistic human-human ensembles, the problem is

unavoidable because multiple leaders can exist and change over time.

Our solution is twofold: designing a quantified leadership named leaderness

and constructing a state space model by using the coupled oscillator model and

the leaderness. The design policy of the leaderness is that the co-player who plays

the new tempo and keeps it constant is the leader. This is because the leaders are
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necessary only when the tempo changes in order to lead the co-players to the new

stable tempo. In the model, the leaderness is used as the coupling strengths of the

oscillators.

1.2.4 Problem 2-1: Chorus Measurement in Noisy Envi-
ronments

Many microphone array processing methods show insufficient performance in the

field because many noise sources exist, such as the sound of wind blowing, the

calls of other species, and the calls of target species from other places. When we

tried to separate the call of the target frog in a paddy field with an independent

component analysis [16], we failed because the signal involved too many noise

sources to separate.

We solve the problem by using the sound-to-light converting device named

Firefly, which has an insensitive microphone and a LED. By distributing dozens

of them in the field, we can measure the call timings and locations from the light

pattern. This solution is less affected by the noise than the microphone recording

because each device captures only nearby sound.

1.2.5 Problem 2-2: Large Area of Interest

The area of interest is large because our target is the frogs’ habitat. For example,

a paddy field where Japanese tree frogs call is typically larger than 20 × 20 m.

To cover such a large area, we need to distribute many microphones. This causes

three difficulties: (1) many microphones, long cables, and heavy recording equip-

ment are required, (2) the multichannel recording equipment is expensive because

synchronization among microphones is required, and (3) measuring the microphone

array configuration is time consuming because a field is rough and dark, unlike the

indoor environment.

We solve this problem by using light instead of sound itself. We use the Fireflies

to convert the sound into light and an off-the-shelf video camera that captures their

6



1.3. ORGANIZATION

lighting pattern. Since the speed of light is enough high to ignore that the time

difference between the devices blinking and the video capturing, the inter-device

synchronization is not necessary. Therefore, we can avoid the difficulties because

(1) the system has no cables, (2) no synchronization equipment is required, and

(3) the configuration can be calculated from the light pattern in the video.

1.3 Organization

The organization of the thesis is shown in Figure 1.1. In Chapters 3, 4 and 5, the

case study of the human-robot ensemble is described. In Chapter 6, the case study

of the frog choruses is described.

In Chapter 2, we review the literature to clarify the unsolved problems. The

review includes the following three areas: music robots, human-robot ensembles,

and the acoustic communication of animals.

In Chapter 3, we develop a solo-playing function to play an instrument cor-

rectly. We describe a robot control system for theremin playing named the Robot

Thereminist system. First, we briefly introduce the theremin and a parametric

model of its pitch characteristics. Then, we develop a parameter update method

for keeping the pitch correct in a dynamic environment. In the experiment, we

evaluate the precision of pitch control by using both a simulation and a real robot.

In Chapter 4, we build an ensemble model of two-persons by using a coupled

oscillator model. First, we introduce two building blocks: (1) a real-time beat

tracking system for extracting the beat timings and tempos as the input to the

model and (2) a Kuramoto model, which is a widely used coupled oscillator model.

Then, we construct an ensemble model for a two-person ensemble. In the eval-

uation, we compare our method to the extrapolation-based method by using a

metronome and a human.

In Chapter 5, we construct a state space model of a multiperson ensemble.

The building blocks are twofold: (1) the extended version of the two-person model
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designed in Chapter 4 for a multiperson ensemble and (2) the leaderness, which

indicates how a co-player leads the ensemble. We evaluate the prediction accuracy

of the model and analyze the dynamics of the leaderness by using an experiment

with humans.

In Chapter 6, we develop a sound imaging system for visualizing a spatio-

temporal structure of animal choruses. We describe the Firefly and data analysis

method. We evaluate the system in two ways. First, we measure the device

characteristics including sound-pressure-level to light-intensity characteristics and

directional sensitivity. Second, we validate the temporal and spatial resolution

by using indoor experiments and a simulation. Finally, we investigate the spatio-

temporal structure of the Japanese tree frog choruses in the field.

We discuss the contributions of the thesis, general aspects of the case studies,

and the future work in Chapter 7. Finally, we conclude this thesis in Chapter 8.
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Figure 1.1: Organization of the Thesis
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Chapter 2

Literature Review

This chapter reviews the literature related to two cases. Section 2.1 summarizes

the music robot studies from three music expressions and the relevant thereminist

robots. Section 2.2 reviews the ensemble from psychological studies to human-

robot ensemble systems. Section 2.3 describes studies of animal acoustic commu-

nication and state-of-the-art communication investigation methods in the field.

2.1 Music Robot

2.1.1 Music Expressions of Robots

We review three main categories of the music expression studies of robots: instru-

ment playing, dancing, and singing. We select the instrument playing because of

two reasons; it involves body movement, and we can clearly evaluate the perfor-

mance comparing with the given score.

Instrument Playing

Many studies reported robots that play the instrument. The advantage of this

expression is twofold; (1) playing the instrument requires the body movement of

the robot. Therefore, this expression is suitable for robots. (2) We can define a

quantitative criterion, for example, a pitch error, compared with the score. The

common problem of conventional studies is that the control systems and the robot
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hardware are indivisibly united. Therefore, porting these systems to another robot

requires a lot of effort.

Recent instrument-playing music robots are studied from two motivations: to

develop more sophisticated music robots and to develop an ensemble between hu-

mans and robots. The former aims to realize a solo-playing robot that can play

like humans, and the latter aims to realize a co-playing robot that can play in

synchronization with humans. This section reviews the literature for the former,

and the section 2.2 reviews the literature for the latter.

Many instrument-playing music robots have no humanlike shape. Singer sum-

marized some works of automatic music playing machines [17] developed in League

of Electronic Musical Urban Robots (LEMUR) by artists and engineers. Kaneko et

al. developed a mechanical system to play a trombone [18]. Studies of humanlike

music playing robots have started from a keyboardist robot named WABOT-2 [19].

Similar to WABOT-2, many studies aim to develop a humanoid robot that plays

the instrument. Solis et al. developed robots that play the flute [12] and the

saxophone [20] that play the given score at the given tempo sophisticatedly. They

developed an artificial lip and an artificial lung to imitate the human breathing

during the play. Toyota developed the Partner Robot that plays the trumpet and

violin [21]. Shibuya et al. developed a violin playing robot [22]. Weinberg et

al. developed a drum playing robot Haile [23], and a marimba playing robot Si-

mon [24]. Kotosaka et al. developed a drum-playing robot that changes its tempo

according to a human’s drumming [25].

Dancing

Dancing is the most popular in the three music expression music of robots because

its minimum implementation is the easiest. The “dancing” can be achieved by

just moving arms, whereas instrument-playing requires to play a desired pitch at

the desired timing at the minimum. Therefore, the typical robot demonstrations

with music are dancing whose motion is pre-programmed, and the corresponding
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music is played simultaneously by humans.

In contrast, some researchers have developed sophisticated dancing robots.

Nakaoka et al. developed a control method to imitate a human dancing mo-

tion [26]. It extracts the key poses from the human dancing motion measured by a

motion capture system. They evaluated through the robot motion analysis based

on a Laban movement analysis [27]. Yoshii et al. and Murata et al. developed

a function of keep-stepping with an external music on a humanoid robot [28, 29].

They used the beat tracking method [30] for the tempo extraction, and the foot

pressure sensor for step timing adjustment. Kosuge et al. developed a dancer

robot Party Ballroom Dance Robot (PBDR) that can dance with a human by

predicting the human’s intention from physical interaction [31]. Michalowski et al.

developed a robot named Keepon which has four degrees of freedom and dances

with music [32].

Singing

This expression has the freest range because no physical limitations exist. Al-

though the simplest way is just to play a song from a loudspeaker on the robot,

this does not take advantage of the embodiment of the robot.

Some studies reported a singing robot that incorporates embodiment. Mizu-

moto et al. developed a beat counting by listening to music [33]. Murata et al.

developed a singer robot by adjusting its singing speed with the external music [34].

Kajita et al. realized a singing motion generator for controlling the singing face of

HRP-4C [35].

2.1.2 Theremin Playing Robots

Theremin is an electronic instrument that can be played without touching it.

Its pitch and volume are determined by the distance from the player’s arms and

the antennae. (Refer to section 3.2 for details.) Using the theremin’s feature

of the proximity control, some studies used the theremin as a proximity sensor
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for an interactive system [36] [37]. The problem is that the relationship between

the theremin’s sound and the player’s arm positions is strongly affected by the

surrounding environment, e.g., temperature, the player’s position, and the number

of people near the theremin.

Alford et al. created the first theremin playing robot [38]. Its control system

uses a look-up table that provides a corresponding arm position for a given note.

The table is calibrated by moving the robot’s arm to find the best arm position

for each note in advance. Therefore, the table must be re-calibrated when the

environment changes. This disadvantage makes it difficult to use this method

for human-robot ensembles, which has dynamically changing environment. Van

der Hurst developed the theremin playing robot using feedback control [39]. The

robot controls its arm by comparing the observed and desired pitches. Although

this method achieves a precise pitch control, it takes a long time to converge to

the desired pitch. Therefore, the method is unsuitable for melody playing.

Mizumoto et al. developed a parametric model of the theremin’s pitch [40].

The system works in two phases: calibration and performance. In calibration, the

robot records the theremin’s pitch at some robot arm positions. The key point is

that the robot positions have no restrictions. This is because the arm positions and

pitches are used the learning data for parameter estimation, unlike [38]. According

to [40], the pitch control accuracy saturates when the number of arm positions is

twelve. Wu et al proposed a pitch model update method [41]. They assumed

that the theremin’s pitch increase is linear in log-scale, and developed an update

method using a linear regression. However, because of the model’s simplicity, the

pitch control accuracy is less than the parametric model [40].

2.2 Human Robot Ensemble

Not only robot systems, psychological studies of human’s music activities are im-

portant because to realize a natural interaction for humans. We review the psycho-
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logical studies of an ensemble first and review the relevant human robot ensemble

studies.

2.2.1 Psychological Studies of Ensemble

An ensemble is a multimodal interaction. In addition to audio information, the co-

players also interact using visual information such as eye contacts [42] and gestures

[43]. Some psychological studies also pointed out the use of visual information in an

ensemble. For example, Thompson et al. reported that a singer’s face influences

the audience’s judgment of the singer’s emotion [44]. Ritchie et al. reported a

pianist’s playing motion has a correlation of the score [45]. Therefore, the robot

which has embodiment is an essential component for an ensemble.

Rhythm recognition has been actively studied. A typical task for the exper-

iments is called tapping task. In the task, a participant taps a key by listening

to the stimulus such as a metronome sound or a sequence of tones. Note that

the participant follows the stimulus, i.e., the stimulus is the leader and the par-

ticipant is the follower. Many psychological models have been proposed; Haken

et al. constructed a model of a human’s bimanual coordination in response to a

metronome sound, called Haken-Kelso-Bunz model [46]. Large and Jones proposed

a model of a human’s recognition model of a sequence of beeps [47]. In the exper-

iment, they used a stimulus of a beep sequence whose inter-onset intervals (IOI)

is manipulated.

An oscillator model is broadly used to build a model including the models in-

troduced in the above paragraph. The reason is that the oscillation is suitable to

represent succeeding events occurred in a constant interval. Many neurophysio-

logical studies suggest the existence of a neural clock, i.e., a timing representation

using pulses or oscillators, in our brain (see [48, 49] for detailed reviews). An

oscillator is also used for music processing, such as onset prediction [50], robot

drumming [51], and beat tracking [52].

Note that these studies investigated a human’s internal mental process in re-
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sponse to an external signal, not the interaction itself. Some studies tackled the

modeling of interaction in music. Braasch et al. built a model of a free jazz im-

provisation using a cybernetic model [53]. Pecenka et al. studied a duo ensemble

of pianists. They found a correlation between a pianist’s capability to imagine the

music from a score and a sensorimotor synchronization [54]. Keller proposed a

cognitive model of human in ensemble [55]. The detail of this model is described

in section 5.2 along with the relationship to our multiperson ensemble model.

2.2.2 Ensemble Systems with Humans

We start from human-computer ensembles that have a longer history than human-

robot ensembles. Dannenberg’s real-time accompaniment system [56] is the first

work on human-computer ensembles. We have categorized these studies into two

types: (1) a human leads an ensemble and a computer follows it, and (2) humans

and computers play an equal role. They started from the first type; Raphael

proposed a probabilistic approach [57] and Simon et al. proposed a method of

code generation based on a hidden-Markov model [58]. In the second type, Goto et

al. proposed a jazz system whose participants play the instrument by interacting

with one another [59]. Hamanaka et al. implemented a jazz system of three

guitar players that learns the participant’s playing style [60]. In these systems, the

participants play the same role.

We will now describe the studies on human-robot ensembles. They are catego-

rized into two types: score-based and improvisational. In score-based ensembles,

the robot plays a given score with humans. Petersen et al. presented an ensemble

system with a robotic flutist and a human saxophonist using a score [61]. The

robot and the human play melodies alternately, instead of playing simultaneously.

As our goal is to achieve synchronization, we need participants to play their in-

struments at the same time. Otsuka et al. developed an ensemble system with

the Robot Thereminist and a human drummer [15]. The robot changes its play-

ing speed according to the intervals of the beat in the human’s playing. They
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ignored the perspective of prediction, which is essential for synchronized playing.

The prediction of other participants is essential because a robot needs to generate

playing motions on time. Lim et al. developed a synchronized playing system that

combines gesture recognition of a flutist with a beat tracking method [62]. Itohara

et al. developed an audio-visual beat tracking method specialized for a guitarist

and an ensemble system using the method [63].

In improvisational ensembles, a robot plays a melody or a rhythm which is

not prepared in advance. Weinberg et al. proposed an ensemble system with two

humans and two robots: robotic drum and marimba players and human drum

and keyboard players [64]. They achieved a simultaneous and improvisational

performance with multiple-humans and multiple-robots. The robots play the in-

struments similar melodies or rhythms to the human’s playing by transforming

them stochastically. In other words, the robots play the similar melody or rhythm

to those of humans. Therefore, their approach is insufficient to realize the ensemble

in which each player plays different melodies.

2.3 Animal Acoustic Communication

Spatio-temporal structure is an important clue to understand the acoustic com-

munication of calling animals [5, 65]. Such acoustic communication has been well

studied for various kinds of animals including frogs [66–70], crickets [65, 71], and

bats [72–75]. Animals use the acoustic communications for various purposes, for

example, mating, territory maintenance, and localizing preys. Especially for the

frogs, the main purposes are twofold; the advertisement calls are for mating, and

the aggressive calls are for keeping territories.

Many investigation methods have been proposed for this purpose. The most

typical method is manpower. However, human observers are incapable of distin-

guishing calls in a chorus because it has more than ten frogs calling three to five

times per second. According to [76], humans have difficulty to distinguish more
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than three simultaneous talks. Attaching a logger to the animal is an emerging

method to record their activity precisely. This method is used, for example, diving

of hawksbill sea turtles (Eretmochelys imbricata) [77], tracking of a wild American

Crow [78], and Vocalight [79], which is a visualization device for acoustic commu-

nication of dolphins. The problem is that the logger affects the animal’s behavior

especially for small animals. Note that the snout-vent length of our target animal,

H. japonica, is about 3 - 4 cm.

Microphone array processing is a promising method. For example, sound source

localization using arrival-time differences has been used for various animals; for ex-

ample, bullfrogs (Rana catesbeiana) [80], Gulf Coast toads (Bufo valliceps), North-

ern cricket frogs (Acris crepitans) [81], marine animals [82], Lek-breeding reed frogs

(Hyperolius marmoratus) [83], Red-Winged Blackbirds (Agelaius phoeniceus) [84],

Bowhead whales (Balaena mysticetus) [85]. The drawback of the method is that

it assumes that only one call exists at the same time. This assumption does not

hold for dense choruses such as H. japonica. Schwarts estimated frog locations

by comparing sound power captured by microphones with a threshold [86]. Be-

cause the method selects the microphone closest to the frog, the spatial resolution

is limited by the number of microphones. Recently, multiple microphone arrays

are used to determine animal locations to investigate social communication of ani-

mals [87]. They used a global positioning system to localize each microphone array

unit, and cross-correlation methods to localize the sound. The problem of these

microphone array approaches is that they assume the temporal sparseness, i.e., the

calls must not be overlapped. This assumption does not hold for densely calling

animals. Although advanced microphone array processing methods can localize

multiple sounds, they have been developed for indoor use. Therefore, the per-

formance is severely degraded for outdoor recordings. For example, blind source

separation using independent component analysis [16,88] separates the sound mix-

ture without any prior information but the observed signal. A widely used sound

source localization method, MUSIC (MUltiple SIgnal Classification) [89], and a ge-
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ometrically constrained higher-order decorrelation-based source separation method

(GHDSS) [90] are incorporated in the open-source software, HARK [91].

2.4 Summary

In this chapter, we reviewed three areas relevant to the case studies of the the-

sis; music robots and human robot ensembles are relevant to the human-robot

ensemble, and the animal acoustic communication is relevant to the frog choruses

analysis.

The unsolved problems are the following: for the music robots, the robot needs

to adapt to the dynamic environment to keep playing correctly. For the human

robot ensembles, we need to (1) construct a model of the whole ensemble not only

the individual behavior, and (2) construct a model of the leader in the ensem-

ble. For the acoustic communication investigation, we need a robust visualization

method of the spatio-temporal behavior in their habitat.
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Chapter 3

Robot Thereminist

Solo-playing robot is a fundamental component of the human-robot ensemble.

In this chapter, we develop a music robot that plays the theremin named Robot

Thereminist. The key points are the theremin’s pitch model and the iterative

update of the model parameters.

3.1 Introduction

Robots that play instruments with humans in ensembles are expected to facilitate

an intuitive and natural human-robot interaction. Since a music ensemble requires

no common linguistic knowledge, it can overcome cultural barriers such as language

or generation. From the point of view of entertainment robotics, such robots will

provide a participable entertainment in which people can join the performance.

This crucially differs from existing studies of solo music-playing robots [19,40,92,93]

because, in these performances, people are the passive audience, not participants.

The theremin is an electronic instrument that is played without any physical

contacts (Figure 3.1). The player can control the theremin’s pitch and volume

only by moving the both arms; the theremin’s pitch increases when the right arm

approaches the right vertical antenna. The theremin’s volume decreases when the

left arm approaches the left horizontal antenna. The detailed description of the

theremin is in Section 3.2.
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Pitch antenna

Volume antenna

Figure 3.1: Picture of the theremin

The advantage of the theremin is twofold; one is that no physical contacts are

required to play. Unlike other instruments, we can play the theremin without

touching it. Therefore, the only mechanical requirement for the theremin playing

robot is to have two arms. Since this is obviously satisfied by almost all robots, the

system can be ported to many robots. In fact, we have ported the Robot Therem-

inist system on multiple robots [40]. The other is that the theremin generates the

continuous pitch. Like a trombone or a violin, the theremin’s pitch continuously

changes by the arm position. For example, we can play a microtone, glissando,

or portamento by the theremin. Therefore, the players can play a rich expression

than using the instruments having discrete pitches.

The problem on developing a Robot Thereminist is the theremin’s sensitivity

to the environment. The surrounding environment strongly affects the theremin’s

sound, e.g., the temperature of the room, the player’s position or the presence

of the audience. In other words, even if the player keeps the arm at exactly the

same position, the theremin’s pitch and volume will change depending on the

environment. This is an essential problem especially in ensemble because if a

human co-player is close to the theremin, the human’s motion interferes to the

robot’s theremin. Figure 3.2 shows an example; the robot’s theremin is affected

by the existence of the co-player.

To solve this problem, we construct a parametric model of the theremin and
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Antenna for pitch

Antenna for volume
Figure 3.2: Dynamic environment in ensemble

build a Robot Thereminist system of two phases; calibration and performance.

First, we describe the system that estimates the model parameters in the cali-

bration phase, and then plays in the performance phase, assuming that the envi-

ronment is stable after the calibration phase. Second, we describe the parameter

update method during the performance phase because the environment dynami-

cally changes in the ensemble by the co-player’s movement. The robot needs to

adapt the changing environment to keep playing correctly because the ensemble

will become out of harmony without adaptation. Note that this phenomenon is

not limited to the theremin, e.g., the temperature of the instrument, the wetness

of a wooden instrument, or the tension of a guitar, also causes the pitch shift.

The conventional music-playing robots mentioned above assume that such an en-

vironmental effect is ignorable, but environmental changes are especially crucial

in theremin playing. We empirically found that the environmental capacitance

actually changes even if the instrument is left alone in a room.

We present an adaptive Robot Thereminist system that can update the model

parameters iteratively. We build a state space model of the model parameters and

solve it using an unscented Kalman filter (UKF). The UKF has three advantages

[94] compared to the extended Kalman filter (EKF), which is broadly used for
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nonlinear tracking [95]:

1. The UKF requires no Jacobian of state update and observation functions.

Therefore, it works even for the indifferentiable functions.

2. The UKF can track nonlinear systems precisely. This is because the UKF

approximates the hidden state and covariance by the second order of Taylor

expansion whereas the EKF approximates by the first order .

3. The UKF works with a low number of samples compared to the probabilistic

methods such as particle filters [96]. This is because the UKF uses the sample

points named sigma points. The number of the sigma points is defined by

the dimension of the state, and the samples are selected deterministically.

3.2 Theremin Overview

The theremin is one of the oldest electronic musical instruments developed by

Léon Theremin [97]. It is a monophonic instrument with continuous musical scale.

Therefore, the theremin’s production of sound is more similar to that of trombones

or violins than pianos or flutes. As shown in Figure 3.1, the theremin has two

antennae: vertical one for pitch control and horizontal one for volume control,

respectively. The player can control the volume and the pitch only by changing

the proximity of the arms and the antennae without touching it. These features

are caused by the theremin’s mechanism.

The theremin produces sounds using the beat, which is a physical phenomenon

when two waveforms having slightly different frequencies are multiplied. We firstly

describe the pitch control. The theremin has two oscillating circuits for the pitch

control. Let f1 and f2 be the oscillating frequencies of the oscillators and f1 > f2.

When we multiply these outputs, the result has two frequency components, f1+f2

and f1 − f2, which is the beat. By filtering the signal with a low pass filter with

the cut-off frequency of f1 − f2 < c < f1 + f2, we obtain the signal having one
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component, f1− f2. This is the pitch of the theremin. The volume control has the

similar mechanism because two oscillators are multiplied. Only difference is that

the filtered signal is given to a frequency-to-voltage controller for the gain control

of the output signal.

How can we change the beat frequency? The key component is the virtual

capacitors. We can assume that the capacitance of the oscillating circuit’s capacitor

is controlled the player’s arm position. Since the frequency (f1) is determined by

the values of the parts, the player can change the output frequency by moving

the arm. The reason why the player can control the capacitance is as follows:

A capacitor consists of three components: two conductive materials and a non-

conductive material put between them1. The capacitance is mainly determined

by two factors: (1) the distance between two conductive materials and (2) the

substance of the non-conductive material. In the virtual capacitor, the antenna

and the player’s arm are the conductive materials, and the air between them is the

non-conductive material. Therefore, when the player changes the arm position,

the distance of the capacitor changes, then, the pitch and volume of the theremin

change.

This concept of the virtual capacitor also explains why the theremin’s pitch

characteristic is sensitive to the environment. When the temperature of the room

or the presence of the audience changes, the substance of the non-conductive ma-

terial changes corresponding to (2). Therefore, the theremin is sensitive to the

surrounding environment.

3.3 Static Pitch Control for Robot Thereminist

First, we describe a parametric model of a theremin’s pitch and a static pitch

control method. This is the basics of the adaptive pitch control method.

1Typically the conductive materials are the metals and the non-conductive material is the
ceramic.
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3.3.1 Parametric Pitch Model

Let p be the theremin’s pitch [Hz], θ = (θ0, θ1, θ2, θ3) be the model parameters, and

xp ∈ [0, 1] be the abstracted robot’s arm position. Here, xp = 1 and xp = 0 mean

the closest and farthest arm position to the antenna, respectively. We assume that

the robot’s arm moves along a line or a curve, and the trajectory monotonically

gets closer to the antenna.

The theremin’s pitch model Mp represents the theremin’s pitch p at given arm

position xp. The formulation is:

p = Mp(xp;θ) =
θ2

(θ0 − xp)θ1
+ θ3 (3.1)

The model is constructed based on the experimental observations; the theremin’s

pitch increases monotonically and nonlinearly. Because the pitch increase speed

depends on the environments, we used these four parameters to represent the

variety.

The inverse model, M−1
p , i.e., the function of the arm position that achieves

to play the given pitch, is important for playing a score. This can be derived

analytically from Mp:

xp = M−1
p (p;θ) = θ0 −

(
θ2

p− θ3

)1/θ1

(3.2)

3.3.2 Static Pitch Control

The static pitch control method consists of the two phases: calibration and per-

formance. In the calibration phase, the model parameter θ̂ is estimated using the

L+ 1 pairs of the arm positions x
(i)
p and the observed theremin’s pitch p(i) at the

position (i = 0, ..., L):

x(i)
p = i/L (3.3)

p(i) = Mp(x
(i)
p ;θT ) (3.4)
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where θT is the unknown true parameter. Note that Eq. (3.3) denotes the as-

sumption that the arm positions intervals are the same for calibration. Then,

the model parameter θ̂ is estimated by minimizing the squared error using the

Levenberg-Marquardt method [98]:

θ̂ = argmax
θ

L∑
i=0

|p(i) −Mp(x
(i)
p ;θ)|2 (3.5)

In the performance phase, the trajectory of the robot’s arm position x̂p(t) is

calculated from the estimated parameter θ̂ and the given musical score defined as

the desired pitch trajectory q(t):

x̂p(t) = M−1
p (q(t); θ̂) (3.6)

The conventional methods [38, 40] assume a stable environment, i.e., the true

model parameter θT does not change after the calibration phase. In an actual

situation, however, this assumption does not hold because the environment is

dynamically affected by (1) gradual environmental changes, such as room temper-

ature or a theremin’s internal state, and (2) the co-player’s instrument playing

motion.

3.4 Adaptive Pitch Control

We present an adaptive pitch control method using a UKF [94] for accurate

theremin play under a dynamic environment. In this section, we describe our

method as follows: (1) the problem statement, (2) a review of the UKF, and (3)

its application to our problem including designs of the state-update and observa-

tion functions. Fig. 3.3 depicts the overview of the Robot Thereminist System

with the adaptive pitch control.

3.4.1 Problem Statement

The adaptive pitch control problem is summarized below.

27



CHAPTER 3. ROBOT THEREMINIST

Arm position     pitch

Thremin
Controller

Model 
parameters 

Fitting to 

Score

Model 
estimation 
using UKF

Calibration Performance

P
a
ra

m
e
te

r u
p
d
a
te

Arm position 

Arm position 

Pitch
Pitch

Robot dependent

to joint angles 

transforma�on

Static Pitch Control 

Figure 3.3: Overview of Robot Thereminist System

� �
Assumption
The true parameter θT (t) performs a random walk.
The initial parameter of pitch model θ(0) is estimated in advance.

Inputs
Desired pitch trajectory q(t− 1)
Estimated parameter θ̂(t− 1)
Observed pitch p(t− 1)

Outputs
Estimated parameter θ̂(t)
Pitch-control arm position x̂p(t) = M−1

p (q(t); θ̂(t))� �
This is a tracking problem of θT (t) to minimize the squared error of q(t) and p(t).

The robot estimates the parameter θ̂(t) from three values: a given musical score

q(t − 1), an observed theremin’s pitch p(t), and the estimated model parameter

θ̂(t − 1). Using θ̂(t − 1), the robot moves its arm to x̂p(t). Next, the robot

observes the pitch p(t) that is generated from the theremin with the unknown

model parameter θT (t). Using p(t), the robot estimates the parameter θ̂(t+ 1).
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3.4.2 Unscented Kalman Filter

Overview

The UKF is an iterative estimation method of a nonlinear system. It is based

on the unscented transform (UT), or the sigma-point transform, which calculates

the mean and covariance of a symmetric probability distribution after propagating

through any nonlinearity. They are calculated by the weighted summation of

deterministically selected sample points called sigma points. The number of sigma

points is 2D + 1, where D is the dimension of the distribution.

The UKF differs from both the EKF and the particle filter. The EKF approx-

imates the nonlinearity with the first-order approximation using the Jacobians of

the state-update and observation function [95]. When the system’s nonlinearity is

strong, the EKF makes serious estimation errors. Here, the strength of the non-

linearity is defined as the summation of the Taylor expansion terms higher than

the second order. In contrast, the UKF approximates more accurately because it

considers the Taylor expansion terms higher than the second order. The particle

filter, a kind of Monte Carlo filters, estimates the hidden state using hundreds of

samples, which are drawn from a proposal distribution stochastically [96]. The

UKF uses much smaller number of samples determined automatically from the

dimension of the state. The samples are also deterministically selected from the

mean and covariance before the nonlinear propagation.

Unscented Transform (UT)

The UT is a method that estimates the mean and covariance after propagating a

probability distribution through a nonlinear function using those before the prop-

agation. The most accurate solution for this problem the Monte Carlo approxi-

mation: draw many samples from a prior distribution, propagate them through

the nonlinear function, and calculate the mean and covariance from them. How-

ever, this method has a high computation cost because it requires many samples.
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The UT can achieve the similar performance with deterministically selected sigma

points.

Let z = f(x) be a given nonlinear transformation. Let x̄ ∈ RD andΣx ∈ RD×D

be the mean and the covariance matrix of a probability distribution before the

transformation, and z̄ ∈ RD and Σz ∈ RD×D be those of after the transformation.

First, given x̄ and Σx, we calculate the 2D + 1 sigma points, χ0 · · ·χ2D:

χ0 = x̄ (3.7)

χi = x̄+ (
√

DΣx)i (i = 0 · · ·D) (3.8)

χi+D = x̄− (
√

DΣx)i (i = 0 · · ·D) (3.9)

where (·)i denotes the l th column of a matrix and
√
· denotes the square root

of a matrix; the square root A of M , M = AAH , is calculated using Cholesky

decomposition. Next, we calculate the weights, w0 · · ·w2D for each sigma point:

wi =

{
κ/(D + κ) if i = 0
1/(2(D + κ)) otherwise

(3.10)

where κ is the scaling parameter. Hereafter, we define the operator Sigma

[χ0 · · ·χ2D, w0 · · ·w2D] = Sigma(x̄,Σx) (3.11)

as the process that calculates the sigma points and corresponding weights from

the mean x̄ and covariance Σx.

Then, the sigma points are propagated through the function f :

Zi = f(χi) (i = 0 · · · 2D) (3.12)

Finally, z̄ and Σz calculated by the weighted summation of the sigma points after

propagation:

z̄ =
2D∑
i=0

wiZi (3.13)

Σz =
2D∑
i=0

wi(Zi − z̄)(Zi − z̄)T (3.14)
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Note that this procedure is performed only with the given mean and covariance

of a prior distribution and the nonlinear function. No Jacobian or probabilistic

estimations are required, unlike the EKF or the particle filters.

Kalman Filter using UT

The Kalman filter is expanded to nonlinear state update function f and nonlinear

observation function h using UT [94]. The basic equations of the state update and

observation equations are:

x(t+ 1) = f(x(t),v(t)) (3.15)

z(t) = h(x(t),w(t)) (3.16)

where t denotes time, x(t) ∈ RDx and v(t) ∈ RDv denote a state and state-

transition noise, and z(t) ∈ RDz and w(t) ∈ RDw denote an observation and

observation noise, respectively. The means of v(t) and w(t) are both zero, and

their covariances are Σv and Σw.

First, we define the augmented state and its covariance matrix:

xa = (xT ,vT ,wT )T (3.17)

Σx
a =

 Σx 0 0
0 Σv 0
0 0 Σw

 (3.18)

where xa ∈ RD, Σx
a ∈ RD×D, D = Dx +Dv +Dw. We assume that x, v, and w

are uncorrelated each other. Then, the UKF algorithm is summarized as follows.

1. Calculate the 2D + 1 sigma points from the state x̂a(t − 1) and covariance

P̂a
x(t− 1) at time t− 1.

[χa
0,t−1 · · ·χa

2D,t−1, w0 · · ·w2D] = Sigma[x̂a(t− 1), P̂a
x(t− 1)] (3.19)

where χa
i,t−1 denotes the ith sigma point of augmented state x(t − 1)a at

time t-1. The weights wi have no time subscription because they are time

independent.
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2. Estimate the mean and covariance after state update.

χi,t = f(χa
i,t−1,0) (3.20)

x̂−(t) =
2D∑
i=0

wiχi,t (3.21)

P̂−
x (t) =

2D∑
i=0

wi(χi,t − x̂−
n (t))(χi,t − x̂−

n (t))
T (3.22)

3. Estimate the observation and error covariance:

Zi,t = h(χi,t,0) (3.23)

ẑ(t) =
2D∑
i=0

wiZi,t (3.24)

P̂z(t) =
2D∑
i=0

wi(Zi,t − ẑ(t))(Zi,t − ẑ(t))T (3.25)

4. Calculate the covariance between the state estimation and observation:

P̂xz(t) =
2D∑
i=0

w
(i)
t (χi,t − x̂−(t))(Zi,t − ẑ(t))T (3.26)

5. Calculate the Kalman gain:

K = P̂xz(t)
(
P̂z(t)

)−1

(3.27)

6. Modify the state and covariance estimation using the observation z(t) at

time t:

x̂(t) = x̂−(t) +K(z(t)− ẑ(t)) (3.28)

P̂x(t) = P̂−
x (t)−KP̂z(t)K

T (3.29)

7. Augment the estimation x̂(t) and P̂x(t):

x̂a(t) = (x̂−T (t),0T ,0T )T (3.30)

P̂a
x(t) =

 P̂x(t) 0 0
0 Σv 0
0 0 Σw

 (3.31)

Then, go back to the first step.
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Figure 3.4: Data flow of unscented Kalman filter

Figure 3.4 illustrates the data flow of the UKF. The next state is estimated

by calculating the weighted summation of the sigma points after the state update

function f . Similarly, the observation is estimated by calculating the weighted

summation of the sigma points after the observation function h. Finally, the

estimations of the next state are modified using the observations.

3.4.3 Application to Adaptive Pitch Control

Model Design

We design the state update and observation functions for an adaptive pitch control.

Let the state be the model parameter θ ∈ R4. The state update function is

designed as a random walk according to our assumption discussed in section 3.4.1.

The observation function is designed using the pitch model Mp (Eq. (3.1)) because

we observe the theremin’s pitch.
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The state space model is summarized as follows.

State update :

θ(t) = f(θ(t− 1),v(t− 1))

= θ(t− 1) + v(t− 1) (3.32)

θ0(t) = max(θ0(t), 1 + ε) (3.33)

θ1(t) = max(θ1(t), 0) (3.34)

Observation :

p(t) = h(θ(t), w(t))

= Mp(xp(t);θ(t)) + w(t) (3.35)

where v(t) ∈ R4 and w(t) ∈ R denote the state update noise and the observation

noise, respectively. Eqs. (3.33) and (3.34) are additional constraints to ensure that

Mp in Eq. (3.1) is real and finite. Although these constraints make indifferentiable

points, the state-update function is still valid for the UKF because it requires no

Jacobian.

The observation function should be discussed because if we simply substitute

Eq. (3.2) with Eq. (3.35), the function is p(t) = q(t), which is not a nonlinear

mapping of the hidden state θ(t); i.e., the observation function does not observe

the hidden state. This is not true because the parameters used for Eqs. (3.1) and

(3.2) are different. Let θT (t) be the true parameter of the theremin. Then, the

observation function after substitution is

p(t) = Mp(M
−1
p (q(t); θ̂(t));θT (t)). (3.36)

If the parameter estimation is not perfect, i.e., θ̂ 6= θT , Mp and M−1
p are not

the inverse functions. Therefore, Eq. (3.35) is a nonlinear mapping until the

parameter estimation succeeds. The parameter estimation is unlikely to become

perfect because the unknown noise v(t) fluctuates the true parameter θT (t). The

v(t) corresponds to the physical noise such as the temperature change and the

theremin’s internal noise.
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Physical Constraints

A robot’s arm speed is limited because of its physical limitations. Even if the

controller commands an optimum arm position, the arm cannot reach the position

if it is too far from the current position. We then set the maximum arm speed

xplim to incorporate this constraint defined as:

xplim > |xp(t)− xp(t+ 1)| (3.37)

If the |xp(t) − xp(t + 1)| exceeds xplim, the next arm position is xp(t + 1) =

xp(t) + xplim. Then, we guarantee that the arm speed is limited. In the following

experiments, we empirically set xplim = 0.05.

3.5 Experiments

We evaluate our method both in simulation and on a real robot. In section 3.5.1,

we evaluate the pitch error in a simulated dynamic environment and compare

our method with two adaptive pitch control methods, the EKF and a block-wise

update. The EKF approximates nonlinear models by the first-order as discussed

in 3.4.2. The block-wise update method accumulates the pairs of pitches and arm

positions for duration, then, re-estimates the model parameters by a nonlinear

optimization method. This method is a simple extension of the static pitch control

discussed in section 3.3.2. In 3.5.2, we demonstrate our system implemented on a

humanoid robot, HRP-2, that plays the song Aura Lee.

3.5.1 Simulation Experiment

Parameterization of Dynamic Environment

Generation of a dynamic environment for simulation should have physical meaning.

Therefore, just fluctuating the model parameters θ is inappropriate because it has

no physical meaning. In this experiment, we generate the model parameters using

the linear interpolation of actually measured model parameters.
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We define a time series of an environment parameter e ∈ [0, 1]. For each value

of e, we define a model parameter θ using the N + 1 model parameters, θ0 · · ·θN

measured in advance. The projection from e to measured model parameters is

defined using the linear interpolation of the set of pairs, (i/N,θi) where i = 0 · · ·N .

Then, we design a dynamic environment using the time series of e(t). A sinu-

soidal function with different frequencies ω is used to control the speed of environ-

mental change:

e(t) = 0.5 sin(2πω) + 0.5 (3.38)

with the frequency set to ω = 1, ..., 15. This design represents interference by the

co-player’s motion. Since the co-player plays the instrument close to the theremin,

its motion is like oscillation, i.e., getting closer to and going far away from the

robot.

Evaluated Methods and Evaluation Criteria

We evaluated three methods: The UKF, the EKF, and block-wise parameter esti-

mation. The configurations of the compared methods are as follows: For the UKF,

the initial values are: Σx = Σv = diag(5, 5, 5, 5), Σw = 10, κ = 2. For the EKF,

we used the Jacobian of Eq. (3.1), which is derived in [40]. Note that, to ensure

the estimated parameters are limited values, we added a constraint θ0 ≥ xp by

substituting θ0 with xp when the constraint does not hold. The noise covariances

Σv and Σw are the same as those of the UKF. For the block-wise parameter es-

timation, we set the interval of parameter re-estimation to five seconds. In other

words, the parameters for arm control in the current five second is estimated from

the pairs of arm positions and pitches collected in the past five seconds.

The evaluation criterion is the pitch error c defined by c = 1200 log(p/q), where

c, p, and q denote the pitch error [cent], the observed pitch [Hz], and the desired

pitch [Hz], respectively. The 100 [cent] pitch error is equivalent to the half-note

error. For each condition, we performed the experiment for 10 times and then

averaged the errors.
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Figure 3.5: Pitch errors in simulated dynamic environments

Results

Fig. 3.5 summarizes the pitch errors for each condition. The vertical axis denotes

the pitch error [cent]. The horizontal axis denotes the frequency ω of the envi-

ronment parameter e(t) in Eq. (3.38), meaning that how fast the environment

changes. A dashed blue line shows the result of the block-wise update method, a

dashed blue line shows the result of the EKF, and a solid red line shows the result

of the UKF (proposed) method.

The UKF method performed the lowest error. This is because the UKF can

estimate nonlinear model precisely. The EKF performed the highest error. because

the observation model (Eq. (3.1)) has high nonlinearity. In addition, even when we

use the constant e(t) as the stable environment, the estimation performance is low

because of the error accumulation. The block-wise update performed the middle

of the EKF and UKF. It is better than the EKF because it executes a nonlinear

optimization method many times. However, since it assumes that the true model

parameters change only for every five seconds, its performance is lower than that
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Figure 3.6: Pitch trajectories of the theremin

of the UKF. The pitch error is especially high at ω = 3 in Fig. 3.5. This suggests

the sensitivity to the timing of the re-estimation. The worst case for this method

is that the model parameters for parameter estimation and playing are completely

different. In other words, the environment parameter for parameter estimation is

around e(t) = 1, whereas that for the theremin playing is around e(t) = 0.

3.5.2 Robot Experiment

We implement our method on a humanoid robot, HRP-2, to demonstrate the

performance of our system on a real robot. The robot’s arm position and the model

parameters are updated at 62.5 [msec] interval. We adopt the auto correlation

based pitch estimation shown in, e.g., [99]. We used the initial parameter measured

in the different configuration to test the adaptation capability. For a musical score,

we used an American folk song Aura Lee.

Fig. 3.6 shows the pitch trajectory of the theremin played by the robot. The

horizontal line denotes the time [sec] and the vertical line denotes the relative pitch

[cent], where the cent c is calculated from the pitch h [Hz] by c = 1200 log2(h/220).

Here, we used the pitch of 220 Hz, the note A3, as the 0 [cent]. The black broken
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Figure 3.7: Pitch errors of the theremin

line denotes the desired pitch trajectory calculated from the score and the red solid

line denotes the played pitch trajectory.

As the pitch converges to the correct pitch in 4 [sec], the robot can play the pitch

correctly even if the initial pitch is incorrect. However, there remains fluctuation

because of two reasons: (1) the estimated pitch and the arm position have time

difference and (2) the target pitch changes frequently before the error converges.

Fig. 3.7 shows the pitch error calculated from Fig. 3.6. The horizontal axis

denotes the time and the vertical axis denotes the pitch error [cent]. The mean

absolute pitch error was 72.9 [cent], which is less than the half-note. The trajectory

has some peaks, e.g., at 8, 16 and 36 seconds, because it takes time to reach the

next pitch after the desired pitch changes.

3.6 Summary

We presented an adaptive pitch control method for accurate theremin playing in a

dynamic environment for human-robot ensemble. We constructed the theremin’s

pitch model and its state space model. Utilizing the UKF, we solved the nonlinear
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model. Experimental results showed that our method achieves more accurate

pitch control than both EKF and a block-wise model update method. We also

demonstrated the Robot Thereminist system on a real robot. The robot played

the given score correctly even if the initial parameter is different from the true

one.
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Chapter 4

Two-person Ensemble Model
using Coupled Oscillators

For the first step to extend the solo-playing robot to the co-playing robot, we

develop a timing synchronization method for two-person ensemble. We develop

the ensemble model using the coupled oscillator model, and implement on the

Robot Thereminist for the two-person ensemble.

4.1 Introduction

This chapter aims to achieve an ensemble between a human and a robot, especially,

a two-person ensemble between a robot thereminist and a human drummer, which

is one of the simplest forms of an ensemble. We define an ensemble as a synchro-

nized performance involving interactions among independent players. According

to our definition, the ensemble consists of three components: (1) a human player,

(2) a robot player, and (3) a synchronization method. The technical challenges are

the second and third components. For the second one, we have already developed

Robot Thereminist in Chapter 3. For the third one, Otsuka et al. developed a

simple synchronization method [15] using a beat-tracking [34]. The Robot Therem-

inist is required to predict the human drummer’s onset time for synchronization.

However, conventional methods only adapt to an interval of a human, ignoring the
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Robot
thereminist

Figure 4.1: Snapshot of our ensemble system

human’s adaptation to the robot. This limits the synchronization accuracy.

We present a novel synchronization method using a coupled oscillator model for

predicting the human drummer’s onset timing. The behavior of coupled oscillator

model has been actively studied from theoretical analysis to applications to explain

the behaviors of various physical phenomena [3], e.g., frogs’ calling behavior [14].

To apply the concepts of the model, we assume that each participant is a self-

sustaining oscillator and they adjust their timings using onset timings. Based on

this idea, our synchronization method reduces the difference of two participants’

onset timings compared with the existing Robot Thereminist, which only adjusts

the robot’s playing speed using the human’s drumming speed. This is because the

robot predicts the human’s drum hitting considering two-way influence between

the human and the robot.

The advantage of the method is twofold: (1) A robot can predict another par-

ticipant’s behavior. This is essential for synchronized motion generation because

the robot can start moving its body before the onset time comes. (2) Our model

can be applied to various ensemble situations by changing the parameters such as

coupling strengths, and the number of participants. This extension is discussed in

Chapter 5.
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Figure 4.2: Block diagram of duet ensemble system

4.2 Ensemble System with Coupled Oscillators

This section describes the ensemble system for two-person ensemble. First, we

present an overview of our system in Section 4.2.1. Then, we explain its two main

components: a real time beat tracking method that recognizes a human’s drum-

ming speed in Section 4.2.2 and an ensemble model for synchronized performance

in Section 4.2.3. Note that another main component, Robot Thereminist system

is explained in Chapter 3,

4.2.1 Overview of Two-Person Ensemble System

Figure 4.2 is an overview of the ensemble system consisting of three main modules:

(1) a beat-tracking module for estimating the onset of a human’s playing, (2) a

robot-control module for playing music, and (3) an ensemble model for predicting
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the human’s behavior.

Our system works as follows: it records the sound of a human playing through

its own microphone. Then, the beat-tracking module estimates the beat interval

in the sound of the human’s playing. Our model updates the angular velocity

of the human’s oscillator model using the estimated interval. This model is used

to simulate and predict the human’s behavior. The robot waits until the phase

of the robot’s oscillator becomes zero by updating the human’s and the robot’s

oscillators. When the phase becomes zero, our model commands the theremin

controller to play the next musical note from a given score.

4.2.2 Real Time Beat Tracking

We briefly review the beat tracking method developed by Murata et al. [34]. The

algorithm has three phases: (1) tempo estimation, (2) beat detection, and (3) beat

time prediction. The input is a musical signal of the human’s performance.

Tempo Estimation

Let P (t, f) be the Mel-scale power spectrogram of the given musical signal where

t is the time index and f is the Mel-filter bank bin. Since we use 64 filter banks,

we define f = 0, 1, ..., 63. Then, we apply Sobel filtering, which is a widely used

edge emphasis method in image processing, to P (t, f) to emphasize the onset and

obtain d(t, f):

d(t, f) = −P (t− 1, f + 1) + P (t+ 1, f + 1)

−2P (t− 1, f) + 2P (t+ 1, f) (4.1)

−P (t− 1, f − 1) + P (t+ 1, f − 1)

where f = 1, 2, ..., 62 because the edges f = 0, 63 has no values after Sobel filtering.

Then, we derive the onset belief dinc(t, f) by the equation:

dinc(t, f) =

{
d(t, f) if d(t, f) > 0
0 otherwise

(4.2)

44



4.2. ENSEMBLE SYSTEM WITH COUPLED OSCILLATORS

The tempo is defined as the interval between two neighboring beats. To esti-

mate the tempo, we first calculate the normalized cross correlation (NCC), R(t, i):

R(t, i) =

62∑
f=1

W−1∑
k=0

dinc(t− k, f)dinc(t− i− k, f)√√√√ 62∑
f=1

W−1∑
k=0

dinc(t− k, f)2 ·
62∑
f=1

W−1∑
k=0

dinc(t− i− k, f)2

(4.3)

where W and i denote the window length and the shift offset. To stabilize the

tempo estimation, we derive the local peak of R(t, i) defined as

Rp(t, i) =

{
R(t, i) if R(t, i− 1) < R(t, i) and R(t, i+ 1) < R(t, i)
0 otherwise

(4.4)

Next, we calculate the beat interval I(t), which is an inverse of the musical

tempo. For each time t, we determine I(t) using Rp(t, i). Basically, I(t) is chosen

as I(t) = argmax
i

Rp(t, i). However, this naive estimation will fluctuate rapidly

when a complicated drumming pattern is in the input signal. To prevent the beat

interval misestimation, we derive I(t) shown in Eq. (4.5). Let I1 and I2 be the

first and second peaks in Rp(t, i) when moving i.

I(t) =


2‖I1 − I2‖ if (‖In2 − I1‖ < δ or ‖In2 − I2‖ < δ)
3‖I1 − I2‖ if (‖In3 − I1‖ < δ or ‖In3 − I2‖ < δ)
I1 otherwise

(4.5)

where In2 = 2‖I1−I2‖, In3 = 3‖I1−I2‖, and δ denotes an error-margin parameter.

Beat interval I(t) is confined to a range between 61 – 120 beats per minute

(bpm). This is because this range is suitable for controlling the robot’s arm.

Beat Time Detection

The beat time is detected using the onset belief dinc(t, f) and the beat interval I(t).

First, we define two kinds of beat reliabilities: the reliability of the neighboring

beat and that of the continuous beat. The neighboring beat reliability, Sn(t, i),
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defined in Eq. (4.6) measures how precisely the adjacent beat lies on the I(t)

interval.

Sn(t, i) =


62∑
f=1

(dinc(t− i, f) + dinc(t− i− I(t), f)) if (i ≤ I(t))

0 if (i > I(t))

(4.6)

The continuous beat reliability Sc(t, i) defined in Eq. (4.7) measures how precisely

the sequence of musical beats lies on the estimated beat intervals.

Sc(t, i) =

Nbeats∑
m=0

Sn(Tp(t,m), i) (4.7)

Tp(t,m) =

{
t− I(t) if m = 0
Tp(t,m− 1)− I(Tp(t,m)) if m ≥ 1

where Tp(t,m) is the m-th previous beat time at time t, and Nbeats is the number

of beats used to calculate the reliability. These two reliabilities are then integrated

into the beat reliability S(t):

S(t) =
∑
i

Sn(t− i, i) · Sc(t− i, i) (4.8)

Finally, the latest beat time, T (n+ 1), is detected as one of the peaks in S(t)

that is the closest to T (n) + I(t), where T (n) is the nth beat time.

Beat Time Prediction

We predict the next beat time T ′ by extrapolation using the latest beat time T (n)

and the current beat interval I(t).

T ′ =

{
Ttmp if Ttmp ≥ 3

2
I(t) + t

Ttmp + I(t) otherwise
(4.9)

Ttmp = T (n) + I(t) + (t− T (n))− {(t− T (m)) mod I(t)} (4.10)

4.2.3 Coupled Oscillator Model for Synchronization

This section describes coupled oscillator and its application for a synchronized

ensemble. We explain the oscillator model in Section 4.2.3 and its application to

the ensemble system in Section 4.2.3.
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The key advantage of the model is that the robot which has the model can

know the time when a human hits the drum through the model. Because of

this advantage, the robot can reduce the time delay because it can start moving

beforehand to generate the rhythm on time.

General Description of Coupled Oscillator Model

A coupled-oscillator model consists of two components: oscillators and their inter-

actions. The oscillator is a self-sustaining system, which keeps working repeatedly

by itself. For example, a pendulum clock and a drummer who maintains the same

speed can be considered to be oscillators.

We define an oscillator’s phase φ(t) with

φ(t) = (φ0 + 2πt/Tosc)mod 2π (4.11)

where t denotes the time, Tosc denotes the period of the oscillator, and φ0 de-

notes the initial phase. φ(t) = 2πn denotes the same state in an oscillator. The

oscillator’s dynamics is described by the differential equation of its phase:

dφ1

dt
= ω1 (4.12)

where ω1 denotes an angular frequency of the oscillator. When two oscillators

interact, we call them coupled. A coupling is represented by adding a 2π-periodic

function to Eq. (4.12). We show a coupled two oscillators below:

dφ1

dt
= ω1 +K1Q(φ2 − φ1) (4.13)

dφ2

dt
= ω2 +K2Q(φ1 − φ2) (4.14)

where φ1 and φ2 are the phases of the coupled oscillator, the Q is a coupling term

which is a 2π-periodic function of the phase difference, K1 and K2 are the positive

coupling strengths, and ω1 and ω2 are the natural frequencies.
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Attractor

(a) K1 = K2 = 1

Attractor

(b) K1 = 0,K2 = 1

Figure 4.3: Attractors in Kuramoto model

We present the Kuramoto model, which is a basic oscillator model [2].

dφ1

dt
= ω1 +K1 sin(φ2 − φ1) (4.15)

dφ2

dt
= ω2 +K2 sin(φ1 − φ2). (4.16)

The key feature of this model is that a sinusoidal function is used as a coupling

term. We can hence analyze the behavior of these two oscillators. First, we define

the phase difference, φ = φ1 − φ2. Then, the dynamics of φ is described as:

dφ

dt
= ω1 − ω2 +K1 sin(−φ)−K2 sin(φ) (4.17)

= (ω1 − ω2)− (K1 +K2) sin(φ) (4.18)

Assuming the natural frequencies of two oscillators are the same, we can determine

the behavior of them by plotting a graph of Eq. 4.18.

Figure 4.3 shows the behaviors of the two oscillators with two parameters,

K1 and K2. The vertical axis denotes the differential coefficient of the phase

difference and the horizontal axis denotes the phase difference. Figure 4.3 (a)

plots the situation when two oscillators are coupled equally (K1 = K2 = 1).

In this situation, two oscillators are synchronized when the phase difference is

zero. Figure 4.3 (b) shows that even if only the second oscillator is influenced

(K1 = 0, K2 = 1), the attractor is at the same place.
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Application to Ensemble Model

We use two assumptions to apply the oscillator model to an ensemble system. q

1. A participant has an internal oscillator. He generates an onset when his

oscillator’s phase is zero. For example, a drummer hits a drum when his

internal oscillator’s phase becomes zero.

2. A participant knows the other’s phase when its onset begins. For example,

the partner of the drummer knows that the drummer’s phase is zero when

he hits the drum.

We focus on a two-person ensemble between a human drummer and the Robot

Thereminist. We then define the rule for onset timing; for a drum sound, the onset

timing is when the drum is hit. For a theremin sound, the onset timings are de-

fined as the time when the pitch is changed. However, calculating the theremin’s

onset timings from the pitch trajectory is difficult because the trajectory has con-

tinuous value unlike a piano. Therefore, we hence rounded the trajectory down to

the nearest 100 [cent] to emphasize the onset timings, then, we detect the onset

timings.

We use the Kuramoto model in Eqs. 4.15 and 4.16 as the oscillator model. In

addition, we add an update rule to reduce the robot’s natural frequency to that of

a human. This is because a drum usually dominates the rhythm of an ensemble.

Our ensemble model is summarized as follows:
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� �
Let φr and φh be the robot’s and human’s phases, Kr and Kh be the robot’s
and human’s coupling strength, and µ be a learning coefficient.
The phase dynamics of two oscillators are:

dφh

dt
= ωh +Kh sin(φr − φh) (4.19)

dφr

dt
= ωr +Kr sin(φh − φr) (4.20)

The update rule of ωr is:

ωr ← ωr + µ(ωr − ωh) (4.21)� �
4.3 Experiments

We evaluate the accurately of onset prediction with three experiments. The en-

semble partner is different for each experiment: (1) a metronome as a completely

accurate drummer, (2) a fluctuating metronome that simulates a drummer with

fluctuation without entrainment, and (3) a human drummer who has both fluc-

tuation and entrainment. Note that we do not evaluate the performance of beat

tracking because it has already been evaluated by Murata et al. [34].

In the second experiment, we show a simulation result how much the amount

of fluctuation or the coupling strengths affect the onset prediction accuracy. If

the amount of fluctuation, i.e., the variance of IOIs, is too large, it is impossible

to predict the onsets whereas the prediction should be stabilized if the variance is

relatively small. This experiment presents the quantitative evaluation about the

prediction error.

We also evaluate a human’s onset prediction error to compare our method

with human’s ability. We asked four subjects who are non-professional drummers

to listen to a sequence of one hundred 440Hz pure tones and press a key at the

same time by predicting them. We prepared the sequences with four tempos (66,

80, 100, and 112 bpm), and two noise ratios (0 and 10%.) The noise ratio is defined

50



4.3. EXPERIMENTS

Figure 4.4: Musical score of Aura Lee

in section 4.3.3. The results are compared in sections 4.3.2 and 4.3.3.

4.3.1 Configurations

We implemented the Robot Thereminist system and our synchronization method

on a humanoid robot, HRP-2. We placed the robot and the theremin, Etherwave

Theremin of Moog Music Inc., at the 50 cm distance. φr, φh and ωr are updated

at 50 [msec] interval. We use an American folk song Aura Lee as a musical score

shown in Fig. 4.4. We use four different metronome tempi: 66, 80, 100 and

112 bpm. These tempi cover the possible speeds of the beat tracking. For all

experiments on the robot, three trials are conducted for each tempo.

The four parameters of the oscillator model are empirically set as: Kr = 0.4,

ωh = ωr = 2π/700 and, µ = 0.01. We set Kh = 0 for the first and second

experiments because the metronome is never influenced by the robot. In contrast,

we set Kh = 0.4 for the third experiment since the human drummer should be

influenced by the robot. The value of Kh = 0.4 is equal to Kr; the human and

the robot are influenced by each other with the same strength. The effect of the

coupling parameters Kr and Kh are examined in Section 4.3.3.

We compare our onset prediction method with the extrapolation based method

[15] as the baseline. This method directly uses the latest IOI estimate. If no onset

correction mechanism is used, the initial timing difference persists through the

performance. For example, if the robot starts playing 50 msec behind the human

player, this delay is kept until the end of the performance. Only the human can

adjust his/her onset timing to that of the robot, but this is not the goal of our

targeted co-player robot. Both the robot and the human should mutually adjust

their onset timings like a human-human ensemble.
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The evaluation criteria are the mean onset error (Eq. (4.22)) and the nor-

malized mean onset error (Eq. (4.23)). The normalized mean onset error is used

to evaluate the regardless of the tempo by showing the prediction error in the

note-length whose duration changes depending on the tempo. Let onsett(i) and

onsetd(j) be the theremin’s ith and the drum’s jth onset, respectively. The mean

onset error e is defined as the mean of the minimum differences between onsett(i)

and onsetd(j):

e =
1

N

N∑
j=1

min
i=1,...,M

∣∣onsett(i)− onsetd(j)
∣∣ (4.22)

where N denotes the number of drum onsets and M denotes the number of

theremin onsets. This criterion is same as [34] and [30] with the exception that

they decide whether the onset prediction is “correct” by comparing a threshold for

each error. In contrast, we directly use the error itself for detailed evaluation of

onset prediction. The normalized mean onset error is defined as the mean onset

error e normalized by the ground truth IOI:

Normalized error =
e

60/T
(4.23)

where T is the ground truth tempo in bpm: 60/T is the ground truth IOI. The

worst normalized error is 0.5 since if the error exceeds the half of the IOI, the onset

is assigned to the next onset. Thus, the worst normalized error corresponds to the

eighth-note error.

4.3.2 Ensemble with a Metronome

We evaluate the accuracy of the onset prediction using a metronome, which rep-

resents the “perfect” drummer, instead of using a real human drummer.

Fig. 4.5 shows the result. The horizontal and vertical axes denote the tempo

of the metronome and the normalized mean onset error. The red bars denote the

errors of our method, while the black bars denote those of the baseline method.

The errors of our method are 0.106, 0.149, 0.158, and 0.156, and those of baseline
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Figure 4.5: Onset errors in an ensemble with a metronome

method are 0.214, 0.244, 0.239, 0.245 for 66, 80, 100, and 112 bpm, respectively.

Our method reduces onset errors of the baseline method by 39% on average. There-

fore, the robot with our prediction method can play a melody in synchronization

with a human more accurately than the baseline method.

The results with the human’s onset prediction were 35.9, 39.8, 43.2, and 31.6

msec, with the tempos of 66, 80, 100, and 112 bpm, respectively. The normalized

errors were less than 0.06 for every condition. Comparing these results with our

method, this shows that there is a room for improvement to achieve the equivalent

onset prediction capability of humans.

Next, we evaluate the sensitivity of the coupling strengths Kr and Kh. We set

the coupling strengths Kr and Kh to 0, 0.3, 0.6, 1.0. The tempo of the metronome

is fixed to 80 bpm in call cases. The score used in this evaluation is a simple score:

a sequence of notes increasing from C4 to D5 and then decreasing from D5 to C4

for 8 times, having 136 notes. This is for evaluation of the onset errors regardless

of the note length. The results are summarized in Fig. 4.6. The onset error is

significantly high if Kr = 0 because the zero coupling strength means no influence;

the robot plays the score without prediction nor adaptation. On the other hand,

when the Kr is more than zero, the errors are around 40 msec regardless of other
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Figure 4.6: Onset errors in different coupling strengths. The horizontal line denotes
Kh and the color denotes Kr.

conditions. Therefore, our method is stable to coupling strengths.

Then, we evaluate the convergence time after the tempo change. The score is

the simple sequence defined in the previous paragraph. The tempo is switched for

five times between 80 bpm and 100 bpm. We used two sets of coupling strengths:

(Kr, Kh) = (0.3, 0.3) and (0.6, 0.6). The convergence time is defined as the time

when the onset prediction error becomes less than 1000 samples (22.7 msec). The

result is as follows: The mean convergence times are 2.31 sec for (Kr, Kh) =

(0.3, 0.3) and 2.01 sec for (Kr, Kh) = (0.6, 0.6). The result suggests that a larger

coupling strength accelerates the convergence of the phases of the both oscillators.

This is because the larger strength means the more effect on the robot’s coupling

oscillator.

Finally, we evaluate the sensitivity of the learning coefficient µ using three

values; 0.01, 0.001, and 0.0001. We fixed (Kr, Kh) = (0.6, 0.6). Since µ is used to

adapt to the human’s natural frequency, we evaluate with the convergence time.

The results are: 2.04 sec for µ = 0.01, 2.03 sec for µ = 0.001, and 2.01 sec for

µ = 0.0001. This result suggests that the convergence time to the changing tempo

is more dependent on the coupling strengths than on the leaning coefficient.
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4.3.3 Ensemble with a Fluctuating Metronome

We evaluate the fluctuating metronome in this experiment to simulate a human’s

drumming without entrainment. The standard deviation of the tempo fluctuation

is 10% of the IOI. We also evaluate the error by changing the coupling strengths

Kr, Kh, and the amount of the fluctuation in Section 4.3.3.

The fluctuated IOIs are the samples drawn from the normal distribution with

the mean of the ground truth IOI and the standard deviation defined as the noise

ratio. For example, if the tempo is 80 bpm, i.e., the IOI is 750 msec, and the noise

ratio is 5%, the IOIs are the samples drawn from the normal distribution with

the mean of 750 msec and the standard deviation of 750× 0.05 msec. The noise

ratio simulates the human’s inevitable tempo fluctuations whose amount depends

on the drummer’s capability of the rhythm keeping.

Synchronization with Fluctuating Metronome on a Robot

Fig. 4.7 shows the bar chart of the results. The horizontal and vertical axes

represent the tempo of a metronome and the normalized mean onset error. The

results reveal that the improvement with our method is suppressed compared to

the first experiment while our method still outperforms the baseline method.

We compare the result to the human prediction error. For the four tempos,

66, 80, 100, and 112 bpm, the errors were as follows: When the noise ratio is

1%, the errors were 59.8, 94.3, 48.9, and 52.2 msec, respectively; when the noise

ratio is 10%, the errors were 224.9, 259.7, 192.7, and 158.4 msec, respectively.

The normalized mean onset errors on average were 0.235 for human, 0.256 for our

method, and 0.278 for the baseline method. The errors of both ours and humans

are significantly increased when the IOIs are fluctuated.

The reason of this error increase is that our model assumes that the IOIs

changes gradually, which does not hold in the experiment. The result that the

human’s prediction error also increases for the fluctuating metronome supports

that the use of the coupled oscillator model for the human behavior modeling.
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Figure 4.7: Onset errors in an ensemble with a fluctuating metronome

Synchronization with Fluctuating Metronome in Simulation

This section evaluates the onset prediction error using various noise ratios and cou-

pling strengths in simulation. The setup for the simulation is as follows: We set the

coupling strengths Kr and Kh to 0, 0.1, ..., 1.0, the noise ratio to 1%, 2%, .., 20%,

and the tempo to 66, 80, 100, 112 bpm. For each parameter combination, we eval-

uated the normalized mean onset error using 1000 beats. In this experiment, we

assume that the onsets of the human’s performance are extracted exactly, i.e., the

beat tracking works perfectly.

The error curve for various noise ratios is illustrated in Fig. 4.8. The vertical

and horizontal axes denote the error and the noise ratio, respectively. The red solid

line denotes the average of the baseline method of 10% noise ratio calculated from

the Fig. 4.7. The plot is obtained by averaging the error for all combinations of

Kr, Kh, and the tempos. Although the error increases as the noise ratio increases,

it saturates after 15%. The error at the 10% noise ratio is the same situation as

the second experiment shown in Fig. 4.7. The point is that, even if the noise

ratio is 20%, i.e., the twice more than the second experiment, the error is still less

than those of the baseline method shown as the red solid line. This suggests the
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Figure 4.8: The onset error in various fluctuations

robustness of our method against fluctuating beat intervals.

Next, we discuss the effect of the noise ratio by comparing the sub figures

in Fig. 4.9. For each figure, the vertical and the horizontal axes denote the

robot’s and human’s strengths, respectively. The color denotes the normalized

mean onset error as shown in the color bar. According to the result, the error

is highly dependent on Kr and Kh when the noise ratio is low because the error

(or color) much differs for different Kr, Kh as shown in Figs. 4.9(a) and (b).

In contrast, when the noise ratio is high, the dependency decreases as shown in

Figs. 4.9(c) and (d). Thus, the influence of the coupling parameters decreases as

the amount of tempo fluctuation increases because the model assumes that the

human’s drumming is the same interval.

In the Fig. 4.9(a), the error of various coupling strengths is clearly found.

If Kh is zero, the error is low for any Kr. This means that if the human do not

listen to the robot and keeps its drumming, the robot easily follows the drumming.

However, since the human listens to the robot’s play and be influenced in nature, it

is inevitable for Kh to have a positive value. Therefore, in a natural ensemble, no

clear distinction of a leader and a follower exists because Kr > 0 and Kh > 0. In
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Figure 4.9: Normalized mean onset errors in various coupling strengths.

other words, both the human and the robot (implicitly) lead each other. Another

point is that, even if the Kh is positive, the best coupling strength Kr exists that

minimizes the error. Therefore, if we can tune Kr from the human’s play, we can

achieve the synchronization in an ensemble with low onset error. This idea will be

realized in Chapter 5. On the other hand, the error is high when both Kr and Kh

are high. This suggests that the synchronization corrupts if the both participants

try to follow the other participant too much. This matches our experience for

successful demonstration: The human should keep the tempo and adjust with the

robot just slightly.

4.3.4 Experiment 3: Ensemble with a Human

Finally, we evaluate we evaluate the performance of the system using a human.

This experiment is carried out with three subjects. They are all non-professional
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Figure 4.10: Onset errors in an ensemble with a human

Table 4.1: The error statistics in experiment with a human
Initial Maximum [msec] Minimum [msec] Average [msec]
tempo Proposed Baseline Proposed Baseline Proposed Baseline
66 bpm 156 223 -127 -119 45.38 99.14
80 bpm 218 214 -75 -150 43.36 82.01
100 bpm 223 219 -86 -153 44.55 75.19
112 bpm 224 224 -187 -138 43.20 78.80

drummers, males, and from 22 to 25 years old. The procedure of the experiment

is as follows: Prior to each trial, the human listens to a metronome as an initial

tempo. Then, he starts drumming according to the sound. After the drumming

becomes stable, the robot starts playing and the metronome is stopped in order

to ensure hum to interact only with the robot’s playing sound.

Tab. 4.1 summarizes the maximum, minimum, and average of the mean onset

error with our and baseline methods for each tempo in [msec]. The minimum

and the maximum errors are equivalent for the proposed and baseline method. In

contrast, the average has the significant difference. Fig. 4.10 shows the average of

the normalized mean onset error. The vertical axis denotes the normalized error

and the horizontal axis denotes the initial tempo. The results reveal that our

method reduces the onset error by 46% on average. As the Tab. 4.1 shows, the
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average error of our method is almost the same for all tempos whereas that of

the baseline method is increasing as the initial tempo becomes slower. However,

as shown in Fig. 4.10, the normalized estimation error increases as the tempo

becomes faster even for our method. This is because the tolerance of the onset

prediction error becomes smaller as the tempo becomes faster. Therefore, the more

accurate prediction is required for the faster tempo.

The typical errors in human are 35 msec in an orchestra [100], and 10-20 msec

for stabilizing the tempo in an ensemble [101]. Compared to these results, our

method thus achieves a comparable onset prediction with human in orchestra while

the baseline method do not achieve. However, the prediction error is insufficient for

tempo stabilization. In fact, from the experience of the experiment, the subjects

tend to hit the drum faster during a trial.

4.4 Summary

We presented a two-person ensemble using a coupled oscillator model and a syn-

chronization method using the model for a co-player robot. The model consists of

the Kuramoto model an update equation of a natural frequency for tempo adap-

tation to the human. We implemented the ensemble system between a human

drummer and a robot theremin player that predicts the human’s drumming time.

The experimental results revealed that our system reduce onset error more than

the extrapolation based method. The results also revealed that coupling strengths

should be tuned for better prediction performance.

As future work, we need to evaluate and discuss our ensemble model more

strictly by comparing with the observations of a human-human ensemble since

we only evaluated the onset errors of robot-human ensemble in this paper. We

have also three research projects planned for the future. First, we should extend

our ensemble model, for example, it may be more suitable to use a relaxation

oscillator, whose oscillations emit spikes like a drum sound. Second, we need
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extend our ensemble system into multiple-robots and multiple-humans to evaluate

our model’s scalability. Third, we need to develop a visual-cue recognition system,

e.g., one that can identify gestures. This is important because an ensemble involves

multi-modal interactions. When we add visual information to a system, we need

to consider how to integrate audio and visual cues.
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Chapter 5

Multiperson Ensemble Model
using Leadership Estimation

In this chapter, we extend the two-person ensemble model to the multiperson

ensemble. The most important problem for multiperson ensemble is to find the

leader. We present the quantified leadership metric, leaderness, and its estimation

method. Then, we construct a state space model of the ensemble and evaluate the

model using the human tapping task.

5.1 Introduction

An ensemble is a common activity to most human societies. The number of en-

semble co-players can range from two to dozens, e.g., from a duo ensemble to an

orchestra. Regardless of the ensemble size, humans can synchronize their playing

timings with each other. This chapter aims to realize the robots to play their

instruments in synchronization with the co-players in such multiperson ensembles.

The problem of the co-playing robot in a multiperson ensemble is who to follow

and when to lead. Conventional human-robot ensemble studies avoided the prob-

lem by assuming that only one leader exists at the same time [50,64,102]. A tap-

ping task, which is used to investigate human’s response to rhythms in psychology,

uses the assumption; the leader is the stimulus and the follower is a participant.
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However, in a multiperson ensemble of humans the problem is inevitable because

the leaders have two features:

1. Multiple leaders exist: More than two co-players sometimes lead the

ensemble together. For example, if the ensemble score has two main melodies,

the main-melody players will be the leaders, and the bass part and the drum

part in a band will cooperate to lead the ensemble.

2. Leaders change: For example, if the current leader makes a mistake, an-

other co-player will be a new leader to keep the rhythm, and when a main

melody part in a score changes, the leader will change.

We present an estimation method of both of them: (1) the multiple and time-

varying leaders and (2) the tempos and beat timings of all co-players in a multiper-

son ensemble. We define the ensemble tempos as the aggregation of the co-players’

rhythms because the ensemble tempo can be interpreted as the consensus of the

individual tempo among the co-players. This interpretation is analogous to the

multiple person decision making (MDPM) problems [103]. It models the consensus

making process among experts who have their own opinions, e.g., policy making

in a political committee. The MDPM involves three steps: the experts give their

opinions with preference or confidence, these opinions are aggregated into one opin-

ion, and the experts modify their opinion to get closer to the aggregation. Many

researchers have been studied this problem, e.g., aggregating different preference

representations [104] and an opinion dynamics analysis [105]. The multiperson

ensemble is also a MDPM problem because the rhythm synchronization in the

ensemble has the similar steps: the co-players generate a tempo as an opinion,

the tempo is aggregated into the ensemble tempo, and the co-players modify their

tempo to get close to the ensemble tempo.

The key idea is a leaderness that represents the co-player’s leadership, i.e.,

the power to influence the others. Fig. 5.1 illustrates our representation of a

multiperson ensemble; each participant has an individual tempo and leaderness,
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Figure 5.1: Time-varying and continuous leaderness

and the leaderness is time-varying. These tempos are aggregated into the ensemble

tempo. We define the leaderness as the product of the tempo stability and the tempo

difference from the ensemble tempo. The tempo stability reflects the reliability of

the co-player; this metric works as a filter to select only the co-player who can keep

the tempo stable. The tempo difference reflects the co-player’s desire to change

the tempo; this metric means that a co-player having a strong desire to change

the tempo will obtain the high leaderness.

The leaderness distribution depends on a situation; if no co-players have a

desire to change, they simply try to match each other. In this case, the leaderness

has a uniform distribution because no leaders exist. In contrast, if a co-player tries

to change the tempo, his/her leaderness becomes high, i.e., the leaderness has a

sparse distribution. Then, the ensemble tempo will approach his/her tempo. From

the view point of dynamical systems, the leaderness is the attractor of the tempo

because the co-player’s tempo converges to the ensemble tempo.

On the basis of this idea, we build a nonlinear state space model consisting

of three parts: the leaderness update, the individual tempo update using the

leaderness, and a coupled oscillator model for rhythm synchronization. This model

has a relationship to psychological models as discussed in section 5.2. We estimate

a hidden state from the observed onset timings and inter-onset intervals (IOIs)
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Table 5.1: Notations
t Time
∆t Time interval
N Number of co-players
M Number of past onsets used to calculate stability
i Index of a co-player (i ∈ {1, ..., N})

ωs(t) Ensemble tempo
ωi(t) ith tempo
θi(t) ith phase (Onset is produced when θi(t) = 2nπ.)

li(t) Leaderness of the ith participant (
∑N

i=1 li(t) = 1)
si(t) Stability of the ith co-player.
pi(t) Difference from the ensemble tempo of the ith co-player.
x(t) State vector, x(t) ∈ R1+N(M+2)

z(t) Observation vector, z(t) ∈ R2N)

using on an unscented Kalman filter (UKF) [94].

5.2 Psychological Models of Ensembles

We introduce a psychological model of an ensemble co-player proposed by Keller

[55]. The model is relevant to our model as we discuss in section 5.3.5. Briefly, his

model consists of cognitive processes: anticipatory auditory imagery, prioritized

integrative attention, and timing adaptation.

The anticipatory auditory imagery is a co-player’s mental imagery of the ideal

music, i.e., a goal image shared among all co-players. The co-player plays the

music in synchronization with the other performances anticipated by the imagery.

While playing, each co-player modifies the imagery by observing the others’ perfor-

mances. This process is also relevant to motion control in addition to the cognition;

the ability to making imagery and an ability to generate a motion in synchroniza-

tion with the heard sound, i.e., an ability to generate a motion, have a positive

correlation [54,106].

The prioritized integrative attention is a process to select who to pay atten-

tion by giving priority. The co-player needs to pay attention to others and him-
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self/herself because each co-player has to achieve both his/her successful play and

synchronization with the others. Obviously, the leaders gather more attention than

the followers. The point is that the prioritized integrative attention has a priority

instead of binary selection. In other words, this is a hybrid of selective attention

and non-prioritized attention models: The former selects only one leader and the

latter pays attention to all the others equally.

Timing adaptation is a process for adjusting the beat timings and tempos,

called a mental timekeeper. The co-players play using the timekeeper and adjust

it to compensate onset timing mismatches with others. The mental timekeeper

adjustment is twofold: phase and period correction [107]. The phase correction

is a timing update that occurs regularly and unconsciously, whereas the period

correction is a tempo update that occurs only if the participant notices an obvious

tempo change. This correction occurs not only for the beat timings but also for

subdivisions of beats [108].

5.3 Multiperson Ensemble Model

This section presents a model of multiperson ensemble for estimating the beat tim-

ings, tempos, and leaderness of co-players. First, we define a problem statement.

Then, we build a state space model of the ensemble. Finally, we describe the state

estimation using the UKF. Table 5.1 summarizes the notations.
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5.3.1 Problem Statement and Model Overview

Problem statement� �
Input: Last onset timings and IOIs of all co-players
Output:
Leaderness of all co-players
Next onset timings and tempos of all co-players
Assumptions:
(1) Simple ensemble: All co-players generate onsets at all quarter notes
(2) Cooperative ensemble: All co-players try to synchronize with each other� �

The inputs are obtained using a beat tracking methods such as [34]. The out-

puts are for prediction; the next onset timings, tempos, and leaderness. The first

assumption is for simplicity. We can avoid considering a complex beat structure

and focus on the timing prediction. Note that this assumption can be relaxed by

representing the beat structure using a coupled oscillator model [109]. The second

assumption is typically satisfied because all co-players try to cooperate with each

other for success of the ensemble.

We solve this problem by building the state space model of co-players’ rhythms.

The model overview is shown in Fig. 5.2. The ith co-player has two parameters:

an individual tempo ωi(t) > 0 and a phase θi(t) > 0. The ith co-player generates

an onset when θi(t) = 2nπ(n ∈ N). The ensemble tempo ωs(t) is aggregated by

averaging ω1(t) · · ·ωN(t) using li(t) · · · lN(t) as the weights. The individual tempos

are updated so that they converge to ωs(t) with a step size of 1− li(t). The phase

θi(s) is updated using both ωi(t) and the phase differences from the others. li(t) is

updated using ωs(t) and the ith co-player’s past M tempos, ωi(t) · · ·ωi(t−M−1).

5.3.2 State Update Model

The state update model consists of three parts; tempo, phase, and leaderness.
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Tempo Update

If a co-player has a higher leaderness, his/her tempo has a greater effect on the

ensemble tempo. Therefore, we design the ensemble tempo aggregation as the

leaderness-weighted average of the individual tempos:

ωs(t+ 1) =
M∑
i=1

li(t)ωi(t) (5.1)

The co-players adjust their tempos so that they converge to the ensemble

tempo. The amount of the adjustment is less for leaders and more for follow-

ers. Therefore, we use the leaderness as the step size of the individual tempo

update:

ωi(t+ 1) = ωi(t) + (1− li(t))(ωs(t)− ωi(t)) (5.2)

Note that 1− li(t) means the rest of the leaderness, in other words, the leaderness

owned by the other co-players since the total of them is one.

This calculation is similar the ordered weighted average in a consensus model

[103], which is one of a MDPM models. The opinions ω1(t) · · ·ωN(t) are generated

by N co-players with the preference or confidence l1(t) · · · lN(t) they are aggre-

gated into one opinion ωs(t + 1) in Eq. 5.1, and opinions are updated using the

aggregation in Eq. 5.2.

Phase Update

We design the beat generation using a coupled oscillator model as we described in

Chapter 4. The coupling oscillator model consists of phases, natural frequencies,

and coupling strengths. The natural frequencies and coupling strengths correspond

to the tempo and the leaderness, respectively. The phase is updated using its

tempo and the phase difference from the other oscillators measured by a 2π periodic

function called the coupling function. We use a sinusoidal function as the coupling
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Figure 5.2: Overview of multiperson ensemble model

function, known as Kuramoto model [2]. The phase update is formalized as:

θi(t+ 1) = θi(t) + ωi(t)∆t+
N∑
j=1

lj(t) sin(θj(t)− θi(t)) (5.3)

Leaderness

We design the leaderness as the product of the stability and the difference from

the current ensemble tempo. This is because the leader should have both a desire

to change the tempo and an ability to keep it. Without the former, the model is

incapable of representing the tempo dynamics. Without the latter, the model is

incapable of ignoring the perturbations caused by mistake or unreliable players.

The stability, si(t), is defined as the exponential of the standard deviation (std)

of past M tempos including the current tempo ωi(t):

si(t) = exp (−Std[ωi(t), · · ·ωi(t−M − 1)]) (5.4)

where Std[·] denotes an operator to calculate the std. Instead of directly using
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the std, we use an exponential because we need to limit the range of si(t) in [0, 1].

Thus, si(t) becomes maximum if the past M tempos are exactly the same and

becomes less if the tempo fluctuates more.

The difference from the tempo, pi(t), is defined as the shifted-sigmoid function

of the absolute difference:

pi(t) =
3

2

(
1

1 + exp (− |ωi(t)− ωs(t)|)
− 1

2

)
(5.5)

The sigmoid-like function is used to ensure that pi(t) ∈ [0, 1].

Then, the leaderness is updated as the multiplication of them:

li(t+ 1) = si(t)pi(t) (5.6)

Note that we need not considering the scales of them because the both values have

the same scale. Finally, li(t+ 1) is normalized to satisfy
∑N

i=1 li(t+ 1) = 1.

The leaderness determines the attractor of the individual tempos because they

converge to the ensemble tempo (Eq. (5.2)) and the ensemble tempo is calculated

(Eq. (5.1)). If the leaderness remains stable, the individual tempos converge to the

ensemble rhythm. Therefore, our definition can be paraphrased that the leaders

are the co-players who change the tempo attractor.

State Vector

In summary, the state vector x(t) is the vector with i+N(M + 2) dimension:

x(t) = (ωs(t), ω1(t), ..., ωN(t),

ω1(t− 1), ..., ωN(t−M − 1),

l1(t), ..., lN(t), θ1(t), ..., θN(t))
T (5.7)

The breakdown of the dimension is as follows: the ensemble tempo (1 dim., Eq.

(5.1)), the individual tempo (N dim., Eq. (5.2)), the individual phase (N dim., Eq.

(5.3)), the leaderness (N dim., Eq. (5.6)), and the past M − 1 tempos (N(M − 1)

dim.).
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5.3.3 Observation Model

In consideration of the problem statement in section 5.3.1, the system can observe

the co-players’ tempo and onset timings only at their onset timings. Therefore,

the observation occurs partially.

We now design the observation model. Let the ith (i = 1, .., N) element of z(t)

be zi(t). The first half elements of z, z1(t) · · · zN(t), are assigned to the tempos

and the rest of them, zN+1(t) · · · z2N(t), are assigned to phases. When an onset

from ith co-player is not observed, we substitute ∅ to zi and zi+N to indicate no

observation. When it is observed, we obtain two kinds of information; the tempo

(zi(t)) and the phase (zi+N(t)) being zero at the time.

Therefore, the observation model is (i = 1 · · ·N):

zi(t) =

{
ωi(t) if θi(t) = 2nπ
∅ otherwise

(5.8)

zi+N(t) =

{
0 if θi(t) = 2nπ
∅ otherwise

(5.9)

5.3.4 Unscented Kalman Filter for State Estimation

We estimate the state x(t) using an UKF [94] because both the state update and

observation models are nonlinear. The UKF utilizes an unscented transform; it

estimates the mean and covariance after any nonlinear transformation from given

mean and covariance before the transformation using deterministically selected

samples. The UKF approximates the nonlinear state space model at least second

order. Note that although no noise terms are included in sections 5.3.2 and 5.3.3,

we consider additive Gaussian noises which are the design parameters of the UKF.

The observation vector can have ∅ because the observation is obtained partially.

In that case, we skip the state estimation update by an observation, i.e., the

innovation is assumed to be zero.

The robot control is possible from the estimated state. Let the robot be the

jth participant. If the UKF successfully estimate the hidden state, the robot can
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predict when it should generate an onset from ωj(t) and t. The robot can play an

instrument based on this prediction.

5.3.5 Relationship to Psychological Model

We discuss the relationship between our model and the three parts of Keller’s

model introduced in section 5.2.

The anticipatory auditory imagery, which is used for anticipation and is ad-

justed during the ensemble, corresponds to the individual and ensemble tempos,

ωi(t) and ωs(t). The reason is twofold: (1) ωi(t) is used for anticipating the next

onset time. The robot can predict the ith co-player’s next onset time using ωi(t)

and the last onset time by extrapolation. (2) The ensemble tempo ωs(t) behaves

as the shared goal of the co-players because all ωi(t)s converge to ωs(t). As shown

in Eq. (5.2), the co-players adjust the individual tempo ωi(t) so that it converges

to ωs(t).

The prioritized integrative attention corresponds to the leaderness li(t). A par-

ticipant with a higher leaderness receives more attention because li(t) determines

the influence of the ith co-player as shown in Eqs. (5.1), (5.2), and (5.3). In

addition, li(t) is a generalization of selective and non-prioritized attention models;

if we add a constraint on the leaderness to only one co-player’s leaderness is one

and the others are zero, the leaderness represents the selective attention model. In

contrast, if we add a constraint that the leaderness is li(t) = 1/N , the leaderness

represents the non-prioritized attention model.

The timing adaptation corresponds to the coupled oscillator model in Eqs. (5.2)

and (5.3). Eq. (5.3) represents the phase correction, and Eq. (5.2) represents the

period correction.
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5.4 Simulation Experiment

In the simulation experiment, we evaluate three aspects of our model and estima-

tion method: (1) the convergent IOIs for various initial tempos, (2) the convergent

IOIs for various numbers of co-players, and (3) the onset estimation error for

various numbers of co-players, i.e., the ensemble size. The first two experiments

are designed for revealing the model limitation, and the third one is designed for

evaluating the robustness against the ensemble size.

5.4.1 Configuration

For all experiments, the time step ∆t is 0.05sec, the simulation is performed for

40sec, and the initial leadernesses are the same, li(0) = 1/N . For the first experi-

ment, we set N to 3, and the initial IOIs ω1(0), ω2(0), ω3(0) to all combinations 1.0,

0.75, 0.6, 0.5sec corresponding to 60, 80, 100, 120bpm, respectively. In total, the

number of conditions is 43 = 64. For the second experiment, we set N from 2 to

21. The initial IOI ωi(0) is set to (60+60i/N)bpm. In other words, the initial IOIs

are equally spaced between 0.5 and 1.0sec. For the third experiment, we use the

same conditions as the second experiment. The number of past tempos M is set to

10, and the state update and observation noise matrices are the diagonal matrices,

diag(0.05, · · · , 0.05). The evaluation criterion for the third experiment, the onset

error, is defined as the mean of the absolute difference between the nearest onset

timings. Let o
(i)
A and o

(j)
B be the ith and jth onset times of the co-players A and

B. Let L be the number of A’s onsets. Then, the onset error eAB is defined as

eAB =
1

L

L∑
i=1

min
j

∣∣∣o(i)A − o
(j)
B

∣∣∣ (5.10)

Finally, the onset errors of all co-player combinations are averaged.
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Figure 5.3: IOIs for various numbers of participants: the black and red lines denote
the mean of initial IOIs and the convergent IOIs.

5.4.2 Results and Discussion

The result of the first experiment is the convergent IOI of various initial tempos.

For all combinations, three IOIs, ω1(t), ω2(t), ω3(t) are converged to the same IOI

after less than 500msec. This shows that our state update model is stable. The

mean difference between the mean initial IOIs,
∑3

i=1 ωi(0)/3, and the convergent

IOI is 16msec with the std 25msec. Because the difference is small, the mean of

initial IOIs may be used as the predictor of the convergent IOI. This intuition is

evaluated by the next experiment.

The result of the second experiment is the convergent IOIs for various ensemble

sizes. As shown in Fig. 5.3, the convergent IOI is less than the mean of initial

IOI if the ensemble size is small (N < 5). In contrast, the difference increases as

the size increases. In other words, the convergent tempo becomes slower as the

ensemble size becomes larger. The intuitive understanding of the result is that

they need to slow down the tempo to synchronize a large ensemble.

The third result is obtained by the absolute onset estimation error. The mean

onset error is 120msec, and the std is 36msec. The median of them is 80msec, and

the std is 40msec. This result that the mean is larger than the median suggests
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Figure 5.4: Configuration of the multiperson tapping task

that the onset prediction succeeds mainly, but it fails occasionally.

5.5 Multiperson Tapping Experiment

The target of this experiment is humans. We analyze the human’s behavior using

a multiperson tapping task and evaluate the onset estimation errors.

5.5.1 Configuration

We collected nine participants without any motor or sensory impairment ranging

in age from 21 to 38 (8 men and 1 woman). From them, we randomly formed

two kinds of groups: four pairs (named A and B) and three triads (named A, B,

and C). For each group, we gave a keyboard and a headphone to each participant

and asked to sit on a chair. When a participant taps a key of the keyboard, a

sound is played through a loudspeaker. The sounds are pure tones of 880, 440,

and 220Hz for participants A, B, and C, respectively. The positions of participants

and equipment are shown in Fig. 5.4. Note that the position C was empty for the

pair experiment.

We gave four instructions: (1) Initial tapping tempo is given through the head-

phone at the beginning of the trial. When a starting cue is given from the head-

phone, they start tapping at the tempo. (2) Tap the key and synchronously with

others. (3) Close your eyes and only use eyes. (4) When a metronome sound is

given through the headphone, follow it and ignore the others. The first instruction
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Table 5.2: Stimulus for multiperson tapping experiment

Pair tapping
Pre-stimulus Main stimulus

A 60 sil cue sil sil 80 sil cue
B 80 sil cue sil 50 sil sil cue

Duration [sec] 25 5 0.1 25 25 25 25 0.1

Triad tapping
Pre-stimulus Main stimulus

A 50 sil cue sil 80 sil sil sil cue
B 60 sil cue sil sil 50 sil sil cue
C 80 sil cue sil sil sil 80 sil cue

Duration [sec] 25 5 0.1 25 25 25 25 25 0.1

is to force the timing correction through interaction. The second instruction is to

satisfy the cooperative ensemble assumption. The third instruction is to avoid the

audio visual integration since our model ignores visual information. The fourth

instruction is to control the dynamic change of the leaders.

The stimuli are summarized in Tab. 5.2. The top table is for pairs, and the

bottom table is for triads. The column starting A, B, and C are for the stimulus

for participants A, B, and C, respectively. The values in the duration row denote

the duration of parts. The number denotes the metronome tempo in bpm given

through a headphone, the cue denotes the 0.1sec, 880Hz pure tone, and the sil

denotes the silence. The total durations are 115.2sec and 140.2sec for pairs and

triads, respectively. The cue in pre-stimulus means the starting cue and that

in main stimulus means the ending cue; the participants start tapping with the

starting cue and ends with the ending cue. The stimuli consist of two parts: pre-

stimulus and main stimulus. The former is before the tapping starts, and the

latter is during the taping. We generate the stimulus in advance and gave to the

participants using a multichannel audio player, Roland UA-101. We expect that a

participant given a metronome obtains a high leaderness. For each pair or triad,

we asked to do four trials, one for a practice and three for experiments.
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Figure 5.5: Multiperson tapping result of triads

5.5.2 Results and Discussion

Figs. 5.5 and 5.6 show the result of triad tapping and pair tapping, respectively.

The figures have the same structure; the top figure shows the IOI trajectories.

The black solid line denotes the given tempo. The red, green, blue lines denote

the mean trajectories of A, B, and C, respectively. The dotted black lines denote

the IOI trajectories of all trials. The middle figure shows the leaderness of all

participants. The leaderness is smoothed by a moving average with window size 5

to reveal the trend. The color assignment is the same as the top. The bottom figure

shows the std of all trajectories. The vertical axis of all figures denotes the time,
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Figure 5.6: Multiperson tapping result of pairs

79



CHAPTER 5. MULTIPERSON ENSEMBLE MODEL USING LEADERSHIP
ESTIMATION

and the horizontal axis of the top, middle, and bottom denote IOI, leaderness, and

std of IOI, respectively. Fig. 5.5 is divided into five parts on the basis of the given

tempo: silence, 0.75sec (80bpm) to A, 1.2sec (50bpm) to B, 0.75sec (80bpm) to C,

and silence. Similarly, Fig. 5.6 is divided into four parts: silence, 1.2sec (50bpm)

to B, 0.75sec (80bpm) to A, and silence. For implementation, the initial values

of leadernesses are equal, and start updating after observing M onset because the

stability calculation requires M samples.

IOI trajectories

We discuss the top of the figures, the IOI trajectories. We can confirm that the

participants achieved the task well from the mean trajectories of the participants

(colored solid lines) and the target IOI (black solid lines) of both figures; this is be-

cause when the target IOI is given to a participant, his/her IOI quickly approaches

the target and then the others approach later.

From the first and the last part of all trials (dotted lines) of both figures, we can

confirm that the convergent IOI depends on the initial tempo as we hypothesized

in the simulation experiment. This is because the dotted lines are widely spread

in the first part, whereas they spread narrower in the last one. This difference is

caused by the initial tempos; they are different for the first part, whereas they are

similar for the last; this is because the IOIs are largely different in the beginning,

whereas they are similar after the interaction in the past interaction.

As shown in the last part in Fig. 5.5, one triad keeps the previous IOI (around

0.7 sec), whereas those of the others are increasing. This suggests that the former

group has higher capability of tempo keeping than other groups. This behav-

ior difference depending on the participants capability reveals the limitation of

the model; we assume that the co-players are identical and ignore the individual

dependence.
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Leaderness Dynamics

We describe the dynamics of the leaderness from the middle of the figures. First,

we focus on Fig. 5.5. In the first and the last part, the leaderness is almost

uniformly distributed meaning that the ensemble has no leaders. In the second

part, the leaderness of A is the highest and those of B and C are low. Thus, A

is the leader, and B and C are the followers in the part. In the third part, the B

becomes the leader in the first half, then the explicit leader disappears in the last

half. The reason is that the tempos are converged as shown around 60sec in the

top figure. In the fourth part, the A and C become the follower and the leader,

respectively. However, the B still have a high leaderness because B keeps a tempo

far from ωs(t).

Next, we focus on Fig. 5.6. The leaderness is uniformly distributed in the first

and the last part, similar to Fig. 5.5. In the beginning of the second and the

third part, the leaderness is biased to the participant given a target tempo. In this

case, the bias quickly disappears because the IOIs of the participants are converged

quickly. This indicates that the pair tapping task is easier to synchronize than the

triad.

Standard Deviation

The bottom of Figs. 5.5 and 5.6 shows the tempo convergence. The std of IOIs

is high at the beginning of all parts, then, it decreases over time. This indicates

that the IOIs converge to the ensemble tempo, as in Eq. (5.2).

Onset Errors and IOI Errors

The onset errors among participants are summarized in Table 5.3. The onset error

definition is the same as Eq. (5.10) for the pair tapping and the triad tapping.

Comparing the average errors of them, we find that the triad task is more difficult

because the error of the triad is larger than the pair. The errors are especially large

when the target IOI is slow. This is because the motion becomes less rhythmic
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Table 5.3: Onset errors in multiperson tapping task
Pair tapping Triad tapping

Trial Mean Std Mean Std
1 123 53 247 60
2 147 101 230 56
3 188 50 204 66

Average 153 68 227 61 [msec]

Table 5.4: Mean and median of IOI and onset estimation errors
IOI error Onset error

Condition Median Mean Median Mean
Pair tapping 33 63 181 204
Triad taping 110 154 241 246
Average 72 109 211 225 [msec]

in the slower tempo. Therefore, predicting the onset timings in the slow tempo is

more difficult than in the high tempo.

The error increases as we conduct more trials for the pair tapping; it decreases

for the triad tapping. Because the amount of the participants and the trails are

insufficient, we need to increase them to obtain a reliable result of this learning

effect.

The IOI and onset prediction errors are summarized in Table 5.4. The IOI error

is the mean absolute error, and the onset error is the same as Eq. (5.10). The

median IOI errors are 33msec for the pairs, and 110msec for the triads. The error

in triad tapping is equivalent to humans. The median onset errors are 181msec

for the pairs, and 241msec for the triads, i.e., a co-player robot controlled by our

method will have these onset errors. Recalling that the onset errors among humans

were 153msec for the pairs and 227msec for the triads, the robot can play to a

comparable accuracy with humans.
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5.6 Summary

This chapter presented a state space model of a multiperson ensemble and its

estimation of onset timings, tempos, and leadership. Our model has a relation-

ship to psychological model of a co-player in ensemble. The main contribution

is that we quantified the multiple and time-varying leaders in an ensemble using

the leaderness. The simulation experiment showed that our model was stable for

a wide range of ensemble size and initial tempos. The multiperson tapping task

showed that the leaderness can capture the changing leadership, and out method

can predict the onset timings equivalent accuracy to humans.

We have three future plans; implementing our method on real human robot

ensemble, integrating the visual information, i.e., modify the observation model,

and introducing hierarchical oscillators to represent a complex rhythm.
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Chapter 6

Sound Imaging: Spatio-Temporal
Analysis of Frog Choruses

This chapter discusses the second case study of frog choruses. In this case, mea-

surement itself is difficult because the frogs call at night in held. We present the

measurement and analysis system of the frog choruses. The key idea is to see

the sound. By converting the calls to the lighting pattern using the novel device

Firefly, we visualize the frog chorus. Experimental results show the characteristics

of the system and the synchronization state in the frog choruses.

6.1 Introduction

Spatio-temporal structure of animal choruses is an important clue to understand

the acoustic communication [5, 65]. They call for various purposes, for example,

mating, territory maintenance, and localizing preys. Because the acoustic com-

munication is invisible, investigation methodology limits the information that the

researchers can obtain. Especially for small nocturnal animals such as frogs and

crickets, observing the communication is difficult because experiment must be held

in the dark, and they stop calling if the researchers get too close to them. Here,

we define the chorus as the set of many individuals call at the same time place.

Therefore, a general-purpose observation method should satisfy the following re-
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quirements:

1. to work in animals’ habitat,

2. to detect multiple and simultaneous calls automatically,

3. to minimize the influence on the animal behavior, and

4. to work with various spatial distributions of animals.

We present an inexpensive and easy-to-use sound imaging system for bioacous-

tic investigations. The system consists of dozens of sound-to-light converting de-

vices named Firefly and an off-the-shelf video camera. The Firefly is composed of a

microphone, an amplifier, and a light-emitting diode (LED). It converts the nearby

sounds captured by the microphone into the light of the LED. The sound imaging

system follows the procedure: Fireflies are placed on the ground around the sound

sources, and their light emissions are recorded with a video camera. The recorded

emissions are analyzed to obtain a visualization of the animal spatio-temporal

calling behaviors. This visualization enables us to estimate when and from where

the animals called. The system works in the three steps: deploy Fireflies, record

their light intensities using an off-the-shelf video camera, and analyze the video.

The system satisfies all the four requirements because (1) it visualizes the time

and place of each animal call in their habitat, (2) Fireflies at different locations

respond to different calls because each one responds to only nearby sounds, (3)

observers do nothing once starting the recording, and (4) the system can be used

for different species by changing the number of Fireflies and inter-Firefly distances.

This chapter is organized as follows: In 6.2, details of hardware of Firefly,

procedure of experiments, and analysis method are described. In 6.3, we conduct

the detailed analysis of Firefly, simulation experiment to reveal the limitation of

the system, and frog chorus visualization experiments in indoor and fields.
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LED
Microphone

Figure 6.1: Pictures of Firefly

6.2 Materials and Methods

6.2.1 Data Acquisition Equipment

The sound imaging system consists of (1) an off-the-shelf video camera and periph-

eral equipment and (2) a set of sound-to-light converting devices called Fireflies.

We use a HandyCam video camera (Sony, HDR-XR520; 29.97 fps) with a wide

angle (0.7x) conversion lens (Sony, VCL-HGA07) on a tripod (Sony, VCT-80AV).

The video camera is used with a high definition mode (1480×1080 resolution).

The wide conversion lens is used to widen the range 1.4 times. The tripod is used

to position the camera in a fixed location.

A Firefly mainly consists of a microphone, a variable resistor, a light emitting

diode (LED), and a plastic box (LM-100C, Takachi Electronics, Enclosure, Co.

Ltd). It requires two AAA batteries. When a Firefly detects a sound nearby, it

drives the LED to indicate the existence of the sound. Figure 6.1 shows the picture

of a Firefly. The left picture depicts a cover-opened Firefly for depicting circuit

implementation, and the right picture depicts Firefly used in experiments. Figure

6.2 shows the top-view schematic drawing of a Firefly shielded by a plastic box.

The block diagram of a Firefly is shown in Figure 6.3. The circuit consists of

four modules: a power source, a microphone, an amplifier, and a sound-to-light

conversion. The power source module generates two voltages, 2.4V and 5V, for

other modules. The microphone module, which consists of an electret condenser
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Figure 6.2: Schematic drawing of a Firefly
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microphone and its peripheral circuit, captures nearby sound. Then, the amplifier

module increases the amplitude of the sound’s waveform by 46dB in maximum.

This gain can be adjusted using a variable resistor. Finally, the sound-to-light

conversion module drives the LED using the rectified waveform.

The circuit diagram of a Firefly is depicted in Figure , and its components list

is in Table 6.1. The main specifications of the electronic components are as follows.

The batteries (two AAA batteries, each of which is 1.2V) provide the power source

of 2.4V, and the power supply controlling integrated circuit, TL499A, generates

5.0V from the battery voltage. The microphone is omnidirectional, WM-E13UY by

Panasonic, which has almost flat frequency response from 50 Hz to 15k Hz. For the

amplifier module, an operational amplifier integrated circuit, NJM386, is used with

the 46dB gain. A red LED, OSR5PA5201A by OptoSuuply, typically 40,000mcd,

is used as an indicator of the sound existence. The red color is selected based on

the observation that photopositive animals are insensitive to the red color [110].
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Table 6.1: List of components for Firefly
Component description Symbol in Fig. 6.2.1
200Ω resistor RCL

14kΩ resistor RE1

4.7kΩ resistor RE2

100mH inductor L1
100µF electrolytic capacitor CF

0.1µF ceramic capacitor CP

Panasonic Eneloop AAA rechargable battery V 1, V 2
TL499A, power-supply controller IC TL499A
2.2kΩ resistor R1
1µF ceramic capacitor C1
WM-E13UY, electret microphone MIC
10Ω resistor R2
5kΩ variable resistor V R1
10µF electrolytic capacitor C2
0.1µF ceramic capacitor C3
10µF electrolytic capacitor C4
0.05µF ceramic capacitor C5
250µF electrolytic capacitor C6
NJM386, amplifier IC Q1
1kΩ resistor R3
1kΩ resistor R4
50Ω resistor R5
220Ω resistor R6
2SC1815, NPN Transistor Q2
Diode bridge D1
OSR5PA5201A, Red LED D2
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Because Japanese tree frogs are photopositive in our experience, we assumed that a

red LED has less effect than other colors. A linear taper variable resistor is used to

adjust the sound-pressure-level to light-intensity characteristics of a Firefly. Here,

the word adjust means that rotating the angle of the variable resistor manually to

maximize the dynamic range of the light intensity in response to a nearby sound.

The resistor can be rotated from 0 to 270◦, corresponding to 0 to 5k Ω. The effect

of the rotation is measured experimentally later. All the resistors and capacitors

are 5% tolerance.

The LED is covered with a silicon cap as a light diffuser. It is made of white

rubber, and the dimension is the same as LED. Without the cap, the light intensity

is less when its lighting pattern is captured from the side [111] because of the LED’s

directivity. The cap reduces its directivity by scattering the LED light. The effect

of the cap on sound-pressure-level to light-intensity characteristics is measured

later.

All sound pressure levels are recorded using a sound level meter NL-32 by

RION, Co., Ltd. We used it with the flat response curve mode and the fast

mode which has the shortest time constant. The shortest time constant is selected

because the frogs have short note durations of the advertisement calls.

6.2.2 Data Acquisition Procedure

The data acquisition procedure comprises of two steps: deploy the Fireflies on the

field and record them with the video camera. To use our system in light rain, we

wrap the video camera in cling film or place in a water-resistant housing (Sony,

SPK-HCG).

The data acquisition for field experiments are performed taking care to the

following points: (1) the Fireflies are deployed along the edge of a rice paddy

where Japanese tree frogs call, (2) the video camera is fixed on a tripod, and (3)

all the experiments were performed after sunset since they call after sunset.

We can assume that the frogs call on the edge of the paddy field. The stiffness
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of the rice stalks is insufficient to cling in the frogs’ mating season because the rice

has not matured yet. Therefore, they cannot call inside of the paddy field.

6.2.3 Data Analysis

Visualizing the light pattern of Fireflies requires two functions: (1) detecting a

weak light emitted by each small device (2) eliminating the individual differences

among devices. The key ideas to fulfill these requirements are (1) increasing the

contrast between the emitted lights and the background using frame averaging and

(2) subtracting its mean from the light intensity time series for each light. The

procedure is described as follows.

The data analysis comprises of six steps: (1) split a video sequence into frames,

(2) calculate the mean of the frames, (3) detect the LEDs in the frame, (4) generate

a mask covering the LEDs, (5) extract time series of the light intensities, and (6)

detect the times and places of calls.

(1) Video Split

We divide the video file into individual frames using a movie processing tool,

TMPGEnc by Pegasys Inc. Open source software (ffmpeg) can also be used for

this process.

(2) Mean Frame Calculation

We convert the frames into gray-scaled frames since we are interested in the frame

intensity. The conversion is based on the equation for calculating the brightness of

a color pixel defined by the National Television System Committee (NTSC) [112].

Let Ig(x, y, t), IR(x, y, t), IG(x, y, t), and IB(x, y, t) be the brightness and the red,

green, and blue components of pixel (x, y) in the tth frame. The equation is

Ig(x, y, t) = 0.2989IR(x, y, t) + 0.5870IG(x, y, t) + 0.1140IB(x, y, t) (6.1)

where Ig(x, y, t) ∈ [0, 255].
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We calculate the mean of the frames using

Ī(x, y) =
N∑
t=1

Ig(x, y, t) (6.2)

(3) LEDs Detection

We binarize the Ī(x, y) to detect the LED areas. The discriminant analysis based

binarization [113], which is the most popular binarization method, cannot be used

because it assumes that the histogram of pixels of an image is bimodal. However,

our data have almost unimodal histogram; a majority of small values correspond-

ing to the background area while a minority of large values corresponding to the

LEDs area. This step consists of an automatic LED detection considering this

characteristics, and manual LED position correction using a newly developed a

graphical user interface (GUI)-tool.

For automatic LED detection, we first estimate the threshold θ to distinguish

the LEDs and the background areas. The algorithm has two steps: set the initial

value of θ with the peak of the histogram, then increase θ as long as the number of

occurrences decreases. The formal description is the following: Let Imean(x, y) ∈
[0, 255] be a pixel value at (x, y) in the mean frame, and h(i) be the number of

pixels whose value is i defined as h(i) = |{Imean(x, y)|Imean(x, y) = i}| where |A|
denotes the number of elements in the set A. The algorithm is as follows:

θ ← argmax
i

h(i)

while h(θ) > h(θ + 1) and θ < 255 do

θ ← θ + 1

end while

Mean frame Ī is binarized using threshold θ.

Next, we assign a label to each four-connected component in the binary frame

using scipy.ndimage.label in the Python library scipy. An equivalent function

bwlabel(BW, n) in the MATLAB image processing toolbox can also be used [111].
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Figure 6.5: Screenshot of GUI-based mask correction tool

For each assigned label, the center of gravity (cxi, cyi) is calculated (i ∈ [1, ...,M ],

where M denotes the number of LEDs detected).

For manual LED position correction, we developed the GUI-based tool shown

in Figure 6.5. The user can select the Gamma correction parameter and threshold

by the slide bars for legibility. All the centers of gravity of masks are displayed

in the window as yellow circles. The users can correct them by adding a missing

mask by left clicking on the image, moving the mask by dragging, or deleting a

misestimated mask by right clicking.

(4) Mask Generation

Using the detected and corrected LED positions and the following bottom-up

algorithm, the system generates a mask image containing all the LED positions.

We define mask image as a binary image in which the values of the pixels covering

the LEDs are 1, and the values of the others are 0. Let M be the number of masks

detected, result be the set of coordinates in the mask, and pos be the initial value

of mask generation, i.e., the seed for mask generation. Note that threshold θ is

determined in the third step. The bottom-up mask generation procedure is:

procedure maskGeneration(result, Imean, pos, θ)

94



6.2. MATERIALS AND METHODS

if Imean > θ then

append pos into result

maskGeneration(result, Imean, pos+ (1, 0), θ)

maskGeneration(result, Imean, pos+ (−1, 0), θ)
maskGeneration(result, Imean, pos+ (0, 1), θ)

maskGeneration(result, Imean, pos+ (0,−1), θ)
end if

end procedure

Calling the procedure for each center of gravity, the system generates mask image

Imask(x, y)

initialize Imask all zero

for i = 1 to M do

maskGeneration(result, Imean, (cxi, cyi), θ))

Imask(x, y) =

{
1 (x, y) ∈ result
Imask(x, y) (x, y) 6∈ result

end for

(5) Time Series Extraction

The time series of each device’s light intensity l(m, t) is extracted by using the

masks:

l(m, t) =
W∑
x=0

H∑
y=0

(
Imask(x, y)Ig(x, y, t)

)
(6.3)

where W and H denote the frame width and height, respectively, and m and t

denote the indexes of the LED and the frame, respectively.

(6) Call Timings and Places Detection

Next, the timing and position of each call are localized. In preprocessing, we set

any component less than threshold α to zero to eliminate noise; in our analysis,

we empirically set α to 0.1.
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Table 6.2: Sound pressure levels of advertisement calls of H. japonica
Sound pressure level [dB SPL] Snout-vent length [mm] Weight [g]

85-88 31.3 1.9
83-86 36.7 3.0
85-90 32.5 2.5
90-95 32.8 2.4
88-93 33.9 2.6

Peaks are detected by sliding a square window of size L along the time series

l(m, t). If the center of the windowed time series is the maximum value, we say

the position corresponds to a call. In this algorithm, for every (m, t), a call is

made at location m and time t if (m, t) satisfy l(m, t) ≥ l(m′, t′) for all m′ ∈
[m− L, . . . ,m+ L] and t′ ∈ [t− L, . . . , t+ L]. We empirically set L to 5.

6.3 Experiments

In this section, we evaluate the Firefly and entire sound imaging system. We mea-

sure the light intensity in response to various sounds in 6.3.1, reveal the limitation

of the system regarding to the inter-frog distances and inter-Firefly distances by

simulation in 6.3.2. We then conduct two experiments using H. japonica in indoors

(Section 6.3.3) and in their habitat (Section 6.3.4).

6.3.1 Device Analysis

Sound-Pressure-Level to Light-Intensity Characteristics

We measure the light intensity of a Firefly in response to various sounds. We use

six kinds of test sounds (H. japonica call, 1k, 2k, 4k, 8k, and 16k Hz pure tones)

from 30cm far from a Firefly’s microphone. The distance is almost the same width

of the dike of our target paddy field. The H. japonica call is used to evaluate the

response to our target animal call, and 1k-16k Hz pure tones are used to evaluate

the wide range of sounds. The results of pure tones can be used for other species

having different frequency spectrum. Table 6.2 shows the sound pressure levels of
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H. japonica’s advertisement calls. This is measured at 30cm distance from the frogs

on 24 Mar. 2012 in Iwakura, Kyoto, Japan. The sound pressure levels are from 80

to 95 [dB SPL], and 86.8 [dB SPL] on average, and the main frequency components

are 1.7 and 3.0 kHz. We use five angles of the variable resistor (0, 90, 135, 180, and

270◦) to cover the entire range of the rotation, ten sound pressure levels (From 70

[dB SPL] to 100 [dB SPL], measured at 30cm distance from the loudspeaker.), with

or without a silicon cap. For each condition, we use five Fireflies to compensate the

individual difference of Firefly. For each sound pressure level, the sound is given to

a Firefly for two seconds, and the light intensity for each condition is taken as the

average. The light intensity is captured by the video camera and analyzed using

the procedure described in the data analysis section.

Figure 6.6 shows the result. Vertical axes denote the light intensities in pixel

value. Horizontal axes denote the sound pressure levels of the test sound in dB

SPL. The figures (a)-(f) are the result with a plastic cap, and the figures (g)-(l)

are without the cap. From the left, each figure corresponds to each test sound,

H. japonica call, 1k, 2k, 4k, 8k, and 16k Hz pure tone. For each figure, all lines

correspond to an angle of the variable resistor. The error bars denote the standard

deviation of all Fireflies.

For any conditions, the best angle of the variable resistor exists between 90 to

135◦, which maximizes the dynamic range of the light intensity. Comparing the

figures (a)-(f) and (g)-(l), we notice two advantages of the silicon cap; it increases

the dynamic range of the light intensity, and it decreases the error bar, i.e., the

individual difference of Fireflies. Therefore, we confirmed that adding a silicon cap

contributes to make LED detection easier.

Directional Characteristics

We evaluate the light intensity from different directions, i.e., the directional char-

acteristics. We play the H. japonica call at ten different sound pressure levels (from

70 [dB SPL] to 100 [dB SPL], measured at the microphone of the Firefly) from
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Figure 6.6: Sound-pressure-level to light-intensity characteristics
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[dB SPL]

Light intensity 
[pixel value]

Figure 6.7: Directional characteristics of Firefly

eight directions (0◦, 450◦, ..., 315◦, the right side of Figure 6.2 is 0◦, and the top

side of the figure is 90◦). The distance between the loudspeaker and the micro-

phone of the Firefly is 30cm. For every direction, we use five different Fireflies to

compensate the individual differences. The variable resistors are set to 135◦. The

light intensity of the Firefly is captured and analyzed in the same process as the

sound-pressure-level to light-intensity characteristics evaluation.

Figure 6.7 shows the directional sensitivity. The directions 0◦ and 90◦ corre-

spond to the right and top of Figure 6.2. The lengths correspond to the total pixel

values of the mask of LED. Each line corresponds to different sound pressure level

of the test sound. The thickest line corresponds to the loudest, and the thinnest
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corresponds to the quietest. The standard deviation of all conditions is 384 [pix-

els]. According to the figure, the light intensity is the largest if the sound comes

from 180◦ (corresponding to the left side of Figure 6.2).

Practical Aspects

Some important practical aspects of the sound imaging system are evaluated.

Battery life The analysis of 20 Fireflies indicates that the Fireflies work for 221.4

min on average with two full-charged standard 750[mAh] batteries.

Waterproof The left column of Table 6.3 shows the humidity of our past ex-

periments. The data is collected by the experiments held from the field

experiments held from 17 to 21 June 2010 and from 9 to 17 June 2011 on

Oki Island, Shimane-prefecture, Japan, and from 14 May to 17 June 2010 on

the experiment farm of Kyoto University, including three days of the light

rain. The humidity was from 96 to 53.5%.

As the table suggests, our system is robust against high humidity and light

rain. Note that, no Fireflies malfunctioned among 100 copies during four-

year experiments except the stripped thread of the variable resistor. The

reason is twofold: a Firefly is made of discrete parts, which are more robust

against the water, and is almost entirely enclosed in a plastic box except for

a hole for the variable resistor. Therefore, rain rarely reaches the Firefly in

case of light rain.

Temperature resistance The right column of Table 6.3 shows the temperature

of our past experiments. The temperature was from 12 to 24◦C.

The data suggests that the system works for typical temperatures in habitats

of Japanese tree frogs. However, the range of investigated temperatures is not

wide enough to judge whether our system is robust against the temperature.

A detailed investigation under a wider range of temperatures is needed for
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Table 6.3: Humidity and temperature histograms
Humidity [%] Frequency Temperature [◦C] Frequency

40 - 50 1 10 - 15 2
50 - 60 2 15 - 20 11
60 - 70 7 20 - 25 15
60 - 80 5
80 - 90 7
90 - 100 6

other species. Note that this is not the problem for Japanese tree frogs since

they mainly call during the rainy season of early summer.

6.3.2 Simulation Experiments

We evaluate the number of localization error and the absolute localization error

with various inter-frog distances in simulation. In the simulation, we assume that

all the animals call at the same time. This is unrealistically difficult condition

because H. japonica calls alternately. This in-phase synchronization situation is

the most difficult because the temporal sparseness does not exist. Therefore, we

can use only the light intensity difference. We used this condition to reveal the

limitation of our system.

The simulation setup is as follows: (1) the number of frogs is set to 10 and the

inter-frog distance changes from 10 to 400cm. The frog positions are equally placed

at the given inter-frog distance first, then, perturbed at most ± 25cm randomly.

(2) The number of Fireflies are set to 100, and the inter-Firefly distance is set to

25cm or 50cm. (3) The sound pressure level of the frogs are randomly selected from

79 to 81 [dB SPL]. (4) The sound-pressure-level to light-intensity characteristics

of the Fireflies are set using the result (Figure 6.6) of the condition of H. japonica

call, with a cap, and the 135◦ variable resistor angle. We then add ± 10% error for

all Fireflies to represent the individual differences of them. Then, we calculated

the received sound pressure level for each Firefly based on the fact that the sound
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pressure level decays in proportion to the inverse square of the distance. For each

placement of frogs and Fireflies, the peaks of light intensities are detected by sliding

a window (see the 6th step). We changed the window length L from 1 to 7.

We use two evaluation criteria: the number of localization error and the ab-

solute localization error. The purpose of the former is to evaluate whether the

number of frogs are accurately estimated. We defined it as |M −N | where M and

N denote the correct number of frogs (10 in this case) and the number of estimated

peaks. The purpose of the latter is to evaluate how precisely the frogs locations

are estimated. The definition is as follows: Let N be the number of detected frogs,

M be the correct number of frogs, (x̂i, ŷi) be the coordinates of the detected frog

positions, and (xj, yj) be the coordinates of the correct frog positions. Then, the

criterion is:

1

N

N∑
i=1

min
j=1...M

(
(xj − x̂i)

2 + (yj − ŷi)
2
)1/2

(6.4)

Figure 6.8 shows the result. Each line corresponds to the window length for

peak picking (L = 1, 3, 5, 7). The standard deviations are used for error bars.

(a) and (b) show the number of localization error. The positive value means

too many sound localization, and a negative value means too less. (c) and (d)

show the absolute localization error in centimeters. The less error means better

performance. Note that we assumed that all sounds are produced simultaneously.

In Figure 6.8(a) and (b), L must be larger than 1 to detect the number of

frogs accurately. For L > 1, the number of frogs error reaches zero when the

inter-frog distance is wider than 125cm (L = 3), 175cm (L = 5), and 225cm

(L = 7) for 25cm inter-Firefly distance, and 225cm (L = 3) and 325cm (L = 5)

for 50cm inter-Firefly distance, respectively. In Figure 6.8(c) and (d), the absolute

localization error reaches the minimum when the inter-frog distance is wider than

150cm, 200cm, and 250cm for 25cm inter-Firefly distance, and 225cm and 325cm

for 50cm inter-Firefly distance, respectively. In summary, the best L is 3 because

it is the shortest window length so that the best performance of the criteria. Then,
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(a) Inter-Firefly distance is 25cm (b) Inter-Firefly distance is 50cm

(c) Inter-Firefly distance is 25cm (d) Inter-Firefly distance is 50cm

Figure 6.8: Simulation results

the inter-frog distance should be longer than 6 and 6.5 times for 25cm and 50cm

inter-Firefly distances, respectively.

Note that we assume the most difficult situation, that is all frogs call simul-

taneously. However, they call in anti-phase synchronization rather than in-phase

synchronization. Therefore, “inter-frog distance” in this simulation is wider than

the actual one.
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(a) Indoor experiment

(b) Field experiment

(c) Recorded image

Paddy field

Figure 6.9: Experimental conditions

6.3.3 Frog Choruses Visualization in Indoor

Experimental Setup

The indoor experiment was conducted on 8 June 2009. Two Japanese tree frogs

were caught in the field of the experimental farm of Kyoto University, Japan, and

placed in separate cages. The snout-vent lengths were 38.83mm and 32.85mm,

and their respective weights were 2.4g and 2.5g.

The experiment setup is shown in Fig. 6.9(a). In the indoor experiment, we

used 10 Fireflies (rectangles, 20 Fireflies in total) in each row at a 21.5cm interval,

and installed an off-the-shelf video camera above the experimental area at a height

of 5.13m. Fig. 6.9(c) shows an example of an image recorded. Then, we placed

one frog between the 3rd and 4th Fireflies and the other one between the 7th and

8th Fireflies (shown in gray circles in the figure.) The humidity was 54% and the

temperature was 25.0◦C. We recorded the Firefly emissions throughout one night.
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Figure 6.10: Spatio-temporal visualization of the calls of two frogs (2009)
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Results

Fig. 6.10(a)-(c) show the indoor experimental results. Fig. 6.10(a) is the visu-

alization of calling behaviors for the indoor experiment. The x-, y-, and z-axes

denote time, the device index, and the normalized intensity, i.e., the sound inten-

sity of the call, respectively. The upper panel in Fig. 6.10(b) is a magnification

of Fig. 6.10(a) from 15.0 to 17.0 s. The lower panel shows the localization; each

white pixel represents a call. The anti-phase synchronized calling behavior is ev-

ident. Figure 6.10(c) shows the waveforms corresponding to the calls; they were

separated using independent component analysis.

The two peaks in the sound imaging results (Fig. 6.10(a) shows an excerpt

of the result) around the 3rd and 7th Fireflies correspond to the frogs’ locations.

This means that our method correctly visualize the sound source locations. The

magnification in Fig. 6.10(b) for 15.0 to 17.0s clearly shows the sequences for the

two peaks. The alternation of the peaks means that the two frogs called alternately.

This anti-phase synchronization behavior is the same as that reported by [14,114].

Figure 6.10(c) shows the waveforms recorded for the calls of the two frogs.

They were recorded using two microphones placed near the frogs to enable us to

evaluate the temporal accuracy of our system. Because their calls were loud, the

recorded waveforms were a mixture of the two frogs’ calls. We separated them

using an independent component analysis [16,88]. Note that the ICA is applicable

to this case, because (1) the number of sound sources is the same as that of

microphones and (2) the amplitude histogram of Japanese tree frog calls is non-

Gaussian [114]. The waveform in the upper panel in Fig. 6.10c corresponds to the

sequence of peaks for the 3rd Firefly, and the lower one corresponds to that for

the 7th Firefly. Calling detections illustrated as white pixels (the lower panel of

Fig. 6.10b) coincide with the peaks of the waveform (Fig. 6.10c). This means that

our method correctly visualize the temporal aspect of the calling behaviors. These

results demonstrate that our method is capable of visualizing the spatio-temporal
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calling behavior, i.e., both the call times and locations, of Japanese tree frogs.

The lower panels in Figs. 2b and 2e show the times of the calls and the locations

of the two frogs estimated from the corresponding upper panels. The average

locations of the frogs were 131.2cm and 61.3cm for the indoor experiment and

221.1cm and 315.8cm for the field experiment. The standard deviations were 7.1cm

and 7.6cm for the indoor experiment and both zero for the field experiment. These

values were calculated by multiplying the device index by the Firefly intervals

(21.5cm for the indoor experiment and 31.6cm for the field experiment).

We calculated the estimation error for the indoor experiment because the lo-

cations of the frogs were known. They were near the 3rd and 7th Fireflies, which

correspond to 64.5cm and 150.5cm, respectively. Therefore, the mean estimation

errors were 3.2cm and 19.3cm, respectively. These errors are less than the device

interval.

6.3.4 Frog Choruses Visualization in Field

Experimental setup

We conducted two field experiments in 2009 and 2011. For each year, the exper-

iments are conducted in the same island, but different paddy fields. Note that in

this case, the frog locations are unknown.

For experiments in 2009, we conducted alongside a rice paddy field in Oki

Island, Shimane Prefecture, Japan, on 3 July 2009. The humidity was 76%, and

the temperature was 24◦C. The experimental setup is shown in Fig. 6.9(b). We

placed 20 Fireflies in a row along the edge of the paddy along the edge of a rice

paddy 6m long, and the off-the-shelf video camera on the side of the paddy.

For experiments in 2011, we conducted the experiments at a paddy field in Oki

Island from 9 to 16 June 2011 (Figure 6.11). The field was covered with moist

soil and grasses of 10cm high. We deployed the Fireflies with 40cm inter-Firefly

interval along the edge of the paddy field indicated by the arrow in Figure 6.11.

We deployed them for 33.8m length from the red circle point in the figure. We then
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Figure 6.11: The paddy field of our field experience.

captured them by the video camera from the blue square point. This placement

is determined because the frogs typically call on the edge of the paddy field with

a few meters inter-frog distances. This sparse distribution is validated from our

experience and two investigations; (1) the prolonged breeders have sparse spatial

distribution [115], and (2) H. japonica has long breeding season (typically three

months) [116]. Therefore, the distribution of H. japonica is sparse. The Firefly at

the red circle corresponds to the origin, i.e. 0[m], of the visualization results. The

video camera is placed around the blue square in Figure 6.11, where is about 2m

higher than the paddy field.

Results

For field experiment in 2009, we recorded 20 frog-calling sequences. The average

number of calls per sequence was 238. Figure 6.12 shows a duration histogram of

the sequences. Each duration is defined as the difference between the starting time

of the first call in a sequence and ending time of the last call in the same sequence.

The typical duration was between 20 and 40s, and the longest was 108s.

Figures 6.10(d) and 6.10(e) show the results for the field experiment the axes

are the same as Fig. 6.10(a) and (b). As visualized in Fig. 6.10d, two frogs near

the 7th and 11th Fireflies started calling at 2.5s and ended at 15.0s. The sequence

of the peaks for their call from 5.0s to 7.0s (Fig. 2e) shows that the two frogs
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Figure 6.12: Histogram of the call sequence durations:

called alternately, i.e., in anti-phase synchronization. This result confirms that

two Japanese tree frogs call in anti-phase synchronization even in their natural

habitat. We thus succeeded in observing the calling behavior of Japanese tree frogs

in their natural habitat with high temporal (1/30s) and spatial resolutions (21.5cm

indoors and 31.6cm in the field). Although the locations of the frogs were unknown

in the field experiment, we evaluate the distance between them. The distance was

calculated by multiplying the device index by the intervals to be 102.6cm. This is

consistent both with the finding of a previous study that Japanese tree frogs are

sparsely distributed in a field [115, 116], and with our empirical observation that

they call at a distance of 1m to 3m.

Figure 6.13 shows a visualization of simultaneous calls in the field experiment.

The axis labels are the same as in Figure 6.10(b). From 1.0s to 3.0s, the system

separately localized the overlapping calls of two frogs. This indicates the visual-

ization capability of overlapping calls of the system in animals’ habitat.

For field experiment in 2011, we present two sets of results to demonstrate the

system’s call visualization capability. Figure 6.14 shows the results of multiple

frog visualization. The upper panel shows time series of normalized light intensi-
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Figure 6.13: Visualization example for temporal overlapping

ties, the middle shows the time and locations of calls, and the bottom shows the

corresponding sound recorded by the video camera. Vertical axis of the upper and

the middle denote the distance from Firefly closest to the video camera, and that

of the bottom denotes the magnitude of the waveform. The horizontal axes of all

panels denote time.

In Figure 6.14, we can find six sequential calls at 0, 1, 3, 4, 6, and 8[m] meaning

that this chorus consists of six frogs. For later discussion, we name these frogs as

a, b, c, d, e, and f. Based on the inter-frog distance, they form three pairs at (a, b),

(c, d), and (e, f), respectively. These three pairs call alternately, i.e., in anti-phase

synchronization. This synchronization state is well known behavior [111, 114].

Therefore, we confirmed that even in large frog choruses, the frogs can synchronize

in anti-phase with neighboring frogs. Note that the pair of (e, f), the state of

anti-phase synchronization is less stable than the others. For example, they are

anti-phase synchronized from 5 to 6 [sec], are in-phase synchronization from 10 to

11.5[sec].

For quantitative discussion of this chorus, we analyzed the call sequences of

the neighboring frogs using the stroboscopic technique [1]. Figure 6.15 shows the

sketch of this technique. Assume that we have two call timings sequences of two

frogs, named Sequence A and Sequence B. We define the phase of the sequence A
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Figure 6.14: Visualization of a frog chorus consisting of six frogs (12 June 2011)
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Sequence A

Sequence B

Figure 6.15: Overview of the stroboscope method

shown in the middle graph of Figure 6.15 as follows: the phase is zero at the call

timing, and it linearly increases as time advances so that it becomes 2π just before

the next onset timing. Then, we extract the phase values for each call timing of

the sequence B. Therefore, the number of the phase values is the same as that of

the calls of sequence B (The red circles in Figure 6.15).

Using the phase values, we can examine whether these sequences are synchro-

nized or not (Right side in Figure 6.15. If the call timings of two sequences are

in-phase synchronized, the mean phase becomes zero. If the call timings of two

sequences are anti-phase synchronized, the mean phase becomes π. Note that the

mean phase is calculated by the mean direction [117], which is used for directional

statistics. We can statistically test the phase values using the Rayleigh test that

tests whether the phase is uniformly distributed or not [117]. If the phase dis-

tribution is significantly biased, we can interpret that the sequences A and B are

synchronized.

We calculated the phase values for all neighboring frog calls and tested whether

they are synchronized or not. Figure 6.16 shows the histogram of the phases and

Table 6.4 summarizes the phases. From the left of the table, the columns mean

that the name of the calling frogs, their distance, mean direction, and the p value

for the Rayleigh test. The p value columns has ∗ if the phase is significantly

biased (p < 0.01). From the table, we can find that two frog pairs (a, b) and (c,
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Figure 6.16: The histogram of the phases for each frog pair. According to Table
6.4, the pairs (a, b) and (c, d) called in anti-phase synchronization

Table 6.4: Statistical analysis of synchronization (p < 0.01)
Frog A Frog B Distance[m] Mean direction[deg] p-value

a b 0.8 179.4 ¡ 0.01*
b c 2.0 179.5 0.13
c d 0.8 181.2 ¡ 0.01*
d e 2.4 185.1 0.32
e f 2.0 4.5 0.34

d) called anti-phase synchronization whereas the pair (e, f) was not significantly

synchronized. Therefore, this can be interpreted that the pair (e, f) located too

far, 2.0m, to synchronize.

Figure 6.17 shows another example of 1:2 anti-synchronization of three frogs

discussed in [114]. The horizontal and vertical axes are the same as Figure 6.14.

The calls of two frogs at 4.5 m and 7.2 m were synchronized in-phase, and those

of the frog at 6.2 m and of two others were synchronized anti-phase. Thus, the

chorus of the three frogs is 1:2 anti-synchronization. This result suggests that the
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Figure 6.17: Visualization of 1:2 anti-synchronization calling in the field

model proposed by Aihara [114] is also valid for natural habitats.

6.4 Discussion

6.4.1 Requirements of General-purpose Investigation Method

We have shown that the sound imaging system satisfies all the requirements for a

general investigation method of acoustic communication. (1) It can be used in the

natural habitat. (2) It can detect multiple animal calls (Figures 6.14 and 6.17).

(3) It has little influence on the animals because the observers can be away from

the site after setting up the system. The influence is further reduced by selecting

an LED color that is difficult for the animals to detect. (4) It can be applied

to different species that have a two-dimensional distribution. Even if the target

animal has a different distribution density, it can be applied by changing the design

parameters, such as the number of Fireflies, the inter-Firefly distance, the color of

the LED, and/or the microphone’s frequency response, waterproof, and directivity.

114



6.4. DISCUSSION

6.4.2 Characteristics of Firefly

In Figure 6.6, we can find the angle of the variable resistor that maximizes the

dynamic range of the light intensity for any sounds from 1 kHz to 16 kHz not only

for H. japonica calls. This suggests that, if we apply the system to other species,

we can find the best tuning to visualize their calls from Figure 6.6 as far as their

frequency components are from 1 kHz to 16 kHz.

The result of Figure 6.6 from other distance can be calculated based on the

fact that the sound energy decays in proportional to the square of the distance.

Note that Figure 6.6 is measured using the sounds at 30cm distance. For example,

if the Figure 6.6 is shifted 3 [dB SPL] to the left, the figure corresponds to the

result of the sound from 60cm.

We adopted a continuous resistor for the gain adjustment component rather

than a discrete one because we need to control the gain precisely to absorb the

environmental effects, e.g., the sound pressure levels of the animal calls, the wind

noise, and the rustling sound of trees. A discrete resistor such as a switch-selected

attenuator is easy to adjust and record the adjusted value. However, the size of

the attenuator becomes larger if we make the step size smaller. To take advantage

of the discrete gain control, we are developing a new version that uses digital gain

setting via a wireless communication.

The reason of the non-omnidirectional sensitivity of Firefly is its asymmetric

shape. For example, in the condition that the loudspeaker is at 180◦, the distance

from the edge of Firefly is the shortest than other directions even if the distance

from the microphone is kept 30cm. This changes the sound propagation speed

because the plastic box brings the sounds with less decay than in the air. Note

that, for practical use, this directional sensitivity gives less effect to the result by

deploying Fireflies with the same direction.
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6.4.3 Synchronizations in a Frog Chorus

Figure 6.14 suggests that even in large choruses, frogs interact with only the nearest

neighbor. From the viewpoint of mating, it is natural that two frogs call in anti-

phase synchronization because it maximizes the call timing difference from the

other so that the females can localize the male frogs’ calls. In contrast, non-nearest

frog pairs have no such synchronization. This phenomenon can be interpreted by

the selective attention [118,119], which is an aspect of the frog behavior that they

are affected by only neighboring calls having loud calls.

In the Figure 6.14, the first two pairs (a, b) and (c, d) call in anti-phase

synchronization significantly. However, the synchronization of the last pair (e, f)

was insignificant. This is because the distance of the last pair is longer than the

others. The selective attention of frogs can explain this difference; when the pair

is at close place, their interaction is strong because they pay more attention each

other. In contrast, when the pair is at the far place, their interaction is weak

because they pay less attention each other.

6.4.4 Advantages of Sound Imaging System

The main advantage of the sound imaging system compared to multichannel mi-

crophone recording is that no inter-channel synchronization is required. This is

because the speed of light is sufficiently faster than that of sound to make the time

difference of arrival negligible. Therefore, users can easily increase the number of

Fireflies without having the equipment to synchronize the recording, as required

for microphones.

The frogs’ call behavior has been widely studied. [5] discusses many studies of

various kinds of calls, such as territorial calls, aggressive calls, and advertisement

calls, and their spectrum pattern and roles for territory keeping. However, the

main focus on these works is individual characteristics and one-to-one interaction

of frogs. In contrast, our goal is to investigate the whole interaction in frog choruses
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of many frogs.

Recently, microphone arrays are used for bioacoustic investigation [80, 81, 87].

The advantage of microphone-array processing is that rich information is available

e.g., spectrogram. The disadvantage is that precise synchronization must be used

to apply signal processing techniques. The advantage of our method compared

to these methods is that the video camera and Fireflies are physically separated.

This makes the flexible Firefly placement depending on the target animal distribu-

tion, not considering to, e.g., the length of a microphone cable. This also enables

researchers to use our method intuitively; just deploy Fireflies of the target field,

and capture all lights with a video camera.

Some companies are producing sound visualization systems named acoustic

camera, e.g., High Definition Acoustic Camera of LMS International, visualizes

the existence of sound precisely (for example, see [120]). The advantage of our

method is that it can visualize the sound existence of wide depth (16m in our ex-

periment). Because microphone array processing requires precise synchronization

of microphones, microphones are not distributed in a wide range. Therefore, the

distance between the microphones and the sound sources is long for far sounds.

This degrades the localization performance because of the decaying sound energy

and other interfering sounds such as other frogs and background noise. In contrast,

our method can be distributed along the large field because our method needs no

synchronization of microphones. This is because we use light, which propagates

so fast. Therefore, we can assume that the times of a LED flashing and a video

receiving are the same.

6.4.5 Limitations of Sound Imaging System

First limitation of the system is about the field. We discuss the feature of the

field that is difficult to use the system. The field must have a place for a video

camera where it can capture all the LEDs. For the vegetation, the grasses on the

ground must be short enough to ensure that all LEDs can be seen. If the grasses
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are tall, attaching a stick on the back of Fireflies to heighten the LED positions

may solve the problem. For the terrain, the ground must be plain enough to

capture all the LEDs. Even if it is too rough to capture all the LEDs, it will be

still possible to use the system by capturing through multiple video cameras and

common reference points. Obviously, the video cameras must be synchronized in

advance. For the weather, too strong wind or rain will disturb the system because

all the LEDs will light by the blowing air or hitting raindrops regardless of the

sounds existence. In addition, the strong rain will break also a video camera.

According to our experience, the weak rain and the wind has not significant effect

to the visualization result because the temporal lighting pattern is different from

animal calls.

Another limitation is about animal distribution. First, according to the simu-

lation result, the inter-animal distance must be wider than 6-6.5 times than inter-

Firefly distance. Therefore, the inter-animal distance should be roughly known in

advance, and the Fireflies must be deployed densely than it. Note that H. japon-

ica tend to call alternately. Therefore, the inter-frog distance can be wider in a

practical situation. Second, dimension of the distribution must be linear or planar,

i.e., one or two dimensional. If the animal distributes linear as the same as our

experiment, the system can visualize the spatio-temporal structure of their chorus.

For the animals having planar distribution, the system still can visualize although

more Fireflies are required to cover the habitat than the linear distribution case.

However, for the animals having a tridimensional distribution such as bats and

birds, the system is incapable of visualizing because Fireflies must be placed on

the ground.

The Fireflies respond to all nearby sounds between 50 Hz to 15 kHz according to

the data sheet of the microphone without any distinction. Therefore, the Fireflies

are incapable of distinguishing the coexisting frog calls, e.g., the calls of R. rugosa

and H. japonica in the paddy field of Kyoto University, Japan. To solve this

problem, we are developing a new Firefly that has band-pass filters to realize the
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specie-specific sensitivity based on the frequency component.

The system can retrieve only the positions and timings, not sounds themselves.

This limitation can be overcome by combining the synchronized microphone ar-

ray recording. Because some sound separation methods such as beamforming [121]

requires the sound locations, the system can give the sound locations for the meth-

ods.

Current problem is that the sound-pressure-level to light-intensity character-

istics is adjusted manually. Therefore, the human errors can occur and giving

exactly the same adjustment is difficult. To solve this problem, we are developing

a new version of Firefly whose gain can be adjusted via a remote controller. Be-

cause the remote controller sends the gain by infrared communication, this new

version will achieve no-manual adjustment.

Because the system has no function to distinguish individuals, it is impossible

to relate calls of the different times at the different locations. As for H. japonica,

which calls at a short cycle and does not move during calling, we can say that

one sequence of calls is produced by the same frog. However, for example, the

situation that two animals call at the almost same place simultaneously is beyond

the capability of the system.

6.5 Summary

In this chapter, we presented a sound-to-light converting device, Firefly, and a

sound imaging system using Fireflies. We analyzed the device and system limi-

tation, and presented indoor evaluation and field experiments. According to the

field experiments, we successfully observed the synchronization in frog choruses of

Japanese tree frogs. These observations support the mathematical models of the

frog choruses.

We have some plans to improve the current system. For example, add another

LED to indicate the battery level, add another LED color to distinguish different
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calls. When we use multiple colors, exploiting LED characteristics will be useful

to distinguish colors. We also plan to apply the sound imaging system to other

species to evaluate the feasibility.
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Chapter 7

Discussion

This chapter discusses the two cases. First, we summarize the result and the

contribution for each case study. Next, we discuss the temporal synchronization

model of the interaction in general. Finally, we discuss the remaining work.

7.1 Observations

7.1.1 Dynamic Characteristics of Music Instruments

A technical problem with the music robot was the dynamic characteristic tracking

of the music instrument. We developed both a parametric model of the theremin

and its tracking method by using the UKF. The experiments using a simulation

and real robots showed that the robot can keep playing the theremin correctly by

using our method.

The contribution of the theremin playing robot is that it can be ported to other

robots. Therefore, if a researcher wants to start the study of a co-player robot,

he/she can select the robot on the basis of the research purpose. In addition, com-

paring control methods in a different embodiment is possible because the theremin

playing system can work with different robots.
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7.1.2 Human-Robot Ensemble Model

For the human robot ensemble, we constructed a state space model of the timings

and tempos of the co-players in a multiperson ensemble. We used a coupled os-

cillator model for representing onset generation and designed leaderness in order

to represent the influence on the others. The leaderness is used as the coupling

strength of the coupled oscillator model. In the experiment, we implemented the

model in the Robot Thereminist system and achieved a lower onset error than the

conventional methods. We also validated the design of the leaderness by analyzing

the multiperson tapping task.

Our contribution is twofold: the first is the coupled oscillator model. In con-

ventional studies, the robot co-player predicted the human’s next onset timing by

extrapolation. This means that the robot assumes that the human’s playing tempo

as constant; in other words, the human ignore the robot’s playing. Our coupled os-

cillator model involves the robot’s effect on the human by using the coupling term.

Experimental results showed the effectiveness of the onset prediction accuracy.

The second is the leaderness estimation. Conventional ensemble studies as-

sumed that only one leader exists at the same time. Moreover, many studies

also assumed that the leader is given in advance. However, leadership will be

transferred dynamically and partially among the participants. In other words,

a co-player can be “more” leader and “less” leader. We designed the quantita-

tive metric of leadership, leaderness, and its estimation method. Analysis of the

human-human tapping task validated the leaderness design.

7.1.3 Spatio-temporal Visualization of Frog Choruses

In conventional studies, frog choruses are studied in indoor experiments or qual-

itatively. This is because audio analysis in the field is difficult, e.g., much noise

exists such as that of other species and blowing wind, and a heavy and expensive

multichannel recording system is required because of the large target area.
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Our contribution is that we developed an inexpensive and easy-to-use visual-

ization system for spatio-temporal structures. By using the system, we visualized

the spatio-temporal structure of frog choruses at a temporal resolution of 1/30

seconds and a spatial resolution of 20 - 30 cm. We observed (1) an example of

three frogs calling in 1:2 anti-synchronization and, (2) an example of multiple pairs

calling alternatively in a chorus. The second observation suggests that they select

who to interact depending on the distance, i.e., selective attention.

7.2 General Discussion

We used the coupled oscillator model for both the human-robot ensemble and the

frog choruses. We assumed that the individuals generate a sequence of events to

others and receive it from the others. For the human-robot ensemble, we con-

structed a state space model by assigning each co-player to each oscillator. In our

design, we assigned the co-players’ onsets to the generated events and their tem-

pos to the natural frequencies, and the coupling strength was estimated by using

the leaderness. For the frog choruses, we validated a mathematical model of the

interaction by using a coupled oscillator model [14]. The model assigns each frog

to each oscillator, their calls to the events, and the coupling term as the place. We

developed the sound imaging system for the spatio-temporal structure analysis.

From the field experiments, we confirmed the synchronization states predicted by

the model: anti-phase and 1:2 anti-phase synchronization.

A common observation in both cases is that as the number of participants in-

creases, the natural frequency decreases. For the first case, the simulation result

of the multiperson ensemble in section 5.4.2 shows that the convergent IOI in-

creased as the number of co-players increased. This means that the stable tempo

became slow when the ensemble size is large. For the second case, Horai et al.

found that the inter-call interval of solo-calling is shorter than that of anti-phase

synchronization [122].
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The leader/follower problem is also the common aspect in the both cases. For

the first case, we designed the leaders to be the co-players who change the current

tempo and keep it constant. Then, we designed the quantified metric of the leader-

ship, leaderness, and confirmed that it captures the dynamically changing leaders

by using the multiperson tapping task. For the second case, many researchers

defines that the leader is the frog that calls the first time [5]. However, from the

intuition of the leaderness design, another leader can exist; for example, a leader

frog might change the synchronization state, such as from in-phase to anti-phase.

7.3 Remaining Work

7.3.1 Human-Robot Ensemble

Score Following

This work is focused on the timings and tempos of music, in other words, the

local position information in time. Therefore, if a robot misses a beat to play, it

is difficult to recover. In contrast, if the robot can recognize where in the score it

is playing, i.e., global position information, recovering is possible. This problem is

called score following [123]. Some on-line score process methods such as [124] will

be a promising method to integrate.

Multimodal Ensemble

In this thesis, we focused only on audio information, whereas the ensemble is es-

sentially a multi-modal interaction. The auditory information becomes unreliable

in some phases, for example, the beginning, because no sounds exist before an

ensemble, and the ending, because an ensemble typically finishes with a fermata,

a lengthened note. Some studies developed an audio and visual integration for

ensemble robots, e.g., beat tracking [63, 125], and gesture recognition [62]. Inte-

grating such techniques will make the ensemble system more reliable.
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7.3.2 Frog Choruses

Leadership of Frog Choruses

Many researchers have pointed out the existence of the leader in frog choruses [5].

Here, the leader means the male frog that can attract females the most. A typical

definition of the leader is a frog that calls the first time. This is because calling

is a dangerous activity; it consumes the energy, and predators can find the caller.

However, other definitions of the leader can exist, for example, the frog that has the

largest territory or the frog that changes the current tempo. The sound imaging

system has the potential to reveal the true “attracting” calling behavior because

it can capture not only their timings but also their locations.

The ideas of the leaderness, that is, the leader is an interaction participant who

changes the tempo, will be applicable to frog choruses. The frog’s calling behavior

have a tradeoff between female attracting and energy consumption, corresponding

to positive and negative reasons of calling, respectively. On the other hand, all

frogs have a positive reason to call in alternation to be localized by a female. If

the “leader” frog changes the calling tempo of the chorus based on its internal

state, the chorus becomes profitable to the frog. Therefore, the “leader” frog in

our definition will have an advantage of both survival and reproduction.

By using these experimental results, we can estimate the network structure of

a frog chorus. In theoretical studies of coupled oscillator models, the estimation of

the network structure, including coupling strength estimation, is actively studied

[126] [127]. These techniques can be used for the estimation.

Application of Sound Imaging to Other Species

Although we tested the sound imaging system by using only Japanese tree frogs,

it can be applied to many species. For example, it is known that many other frogs

also from choruses [5], and crickets [128] also calls for mating.

The system should be customized to apply to the situation. For example, to
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visualize the choruses of ultrasound frogs [69], we need to replace the microphone

with an ultrasound microphone. For crickets living in tall grass, the LEDs of the

Fireflies should be extended so that the video camera can capture them. If multiple

species call in the same field, we need to distinguish them by using their difference.

For species having different spectrums, band-pass filters will be useful [129]. For

species having different temporal structure, e.g., the call duration of Rana rugosa is

longer than that of H. japonica, the species can be distinguished from visualization.

7.3.3 Temporal Synchronization Model

The theoretical limitation of the coupled oscillator model is that this model targets

the succeeding interaction. Therefore, current model is incapable of representing

“When the interaction starts/ends?” and “When the synchronization transits to

other state?” To answer this question, we need to model the dynamics of the

parameters of the coupled oscillator model such as the coupling strengths. The

frog’s internal energy or the co-player’s intention will be the clue of the modeling.
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Chapter 8

Conclusion

The final goal of this thesis is to establish a model of synchronization among

interacting individuals. We tackled this problem through two case studies: human-

robot ensembles and frog choruses. These two cases have different factors, for

example, the size, the place, the stationary state, and the participants. For the

first case, we developed a co-player robot, the thereminist Robot system, for solo-

playing and the oscillator-based two-person ensemble model for co-playing. Then,

we constructed a multiperson ensemble model with leadership estimation. We

performed human-robot ensemble experiments to demonstrate the capability of the

co-player robot and analyzed human-human multiperson tapping task to evaluate

the leadership estimation method. For the second case, we developed a sound

imaging system for the animal choruses and analyzed the spatio-temporal structure

of the H. japonica choruses. The sound imaging system consists of a sound-to-light

converting device named Firefly, an off-the-shelf video camera, and a visualization

method for the captured video. We evaluated the characteristics of the device in

indoor experiments and revealed the limitation of the system in a simulation. In

field experiments, we observed the anti-phase synchronization and 1:2 anti-phase

synchronization in the choruses in the frogs’ habitat. Therefore, we validated the

mathematical model of the choruses.

In both cases, we used the coupled oscillator model. This is widely used to
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describe synchronization in interaction. For the first case, we adopted coupled

oscillators for the onset prediction of co-players and developed coupling strength

estimation as the leaderness estimation. For the second case, we validated the

mathematical model of the frog choruses by using the coupled oscillators. Since

the model was validated only in indoor experiments and a simulation, we observed

the same synchronization state in their noisy habitat.
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