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Abstract
In speaker recognition, it is a problem that speech fea-
ture varies depending on sentences and time di�erence.
This variation is mainly attributed to the variation of
phonetic information and speaker information included
in speech data. If these two kinds of information are
separated each other, robust speaker recognition will be
realized. In this study, we propose a speaker identi�ca-
tion and speaker veri�cation method by separating the
phonetic information and speaker information by a sub-
space method, under the assumption that a space with
large within-speaker variance is a \phonetic space" and
a space with small within-speaker variance is a \speaker
space". We carried out comparative experiments of the
proposed method with a conventional method based on
GMM in an observation space as well as in a space trans-
formed by LDA. As a result, we could construct a robust
speaker model with a few model parameters using a few
training data by the proposed method.

1. Introduction

In speaker recognition, it is a problem that speech feature
varies depending on sentences and time di�erence. This
variation is mainly attributed to the variation of phonetic
information and speaker information included in speech
data. If these two kinds of information are separated
each other, robust speaker recognition will be realized
by using only the speaker information. However, it is
di�cult to separate the phonetic information and speaker
information included in speech data at present.
In speaker recognition, GMM(Gaussian Mixture Model)
has been conventionally used and is statistically con-
structed using features of speech data[1]-[3]. The con-
ventional GMM is based on a statistical method but not
based on the separation of the phonetic information and
speaker information included in speech data.
We have already proposed speaker recognition based on
a subspace method in order to extract the speaker in-
formation included in speech data [4]-[6]. In this pro-
posal, we noticed that speech feature variation is mainly
caused by the variation of the phonetic information, not
the speaker information included in speech data. This
insight leads us to the separation of the phonetic infor-
mation and speaker information based on the variance.
Namely by performing PCA(Principal Component Anal-
ysis) to each speaker's speech data, phonetic informa-
tion locates in a subspace constructed by the principal
component axes(lower order axes), and speaker informa-
tion locates in a complementary subspace constructed by

the higher order axes. According to this insight, we call
the subspace with the large variation constructed by the
lower axes \phonetic space" and the subspace with the
small variation constructed by the higher axes \speaker
space".

In this study, we propose a speaker identi�cation and
speaker veri�cation method based on a statistical speaker
model(GMM) in the \speaker space" using the speech
data projected to the speaker space where the phonetic
information is already suppressed.

In this paper, we carried out comparative experiments to
show an e�ectiveness of our proposed method with the
conventional two methods: a method based on GMM
in an observation space and a method based on GMM
in a space transformed by LDA(Linear Discriminant
Analysis)[7].

2. Conventional Space Transformation
by LDA

2.1. LDA for Multiple Classes

We discuss the LDA de�ned by a linear transformation of
an n-dimensional feature space for multiple classes(c >2).

A sequence of training data fx
(i)
t

g (t = 1; 2; � � � ; N (i)) of
a speaker i is observed in an n-dimensional observation
space. A mean vector of this training data and a covari-
ance matrix are denoted by �(i) and �(i). A priori prob-
ability of speaker i and a mean vector of total speakers
are denoted by P (!(i)) and � respectively. A within-class

covariance matrix �W = �ci=1P (!
(i))=N (i)�N

(i)

t=1 (x
(i)
t

�

�
(i))(x

(i)
t

� �
(i))T and a between-class covariance matrix

�B = �ci=1P (!
(i))(�(i)��)(�(i)��)T are de�ned as fol-

lows: where N (i) denotes the number of training data of
speaker i and N denotes the number of training data of
total speakers. Here, a priori probability P (!(i)) of each

speaker can be represented by P (!(i)) = N
(i)
=N .

The within-class covariance matrix ~�W = A
T�WA and

the between-class covariance matrix ~�B = A
T�BA af-

ter linear transformation are represented using a trans-
formation matrix A. A Fisher's criterion J�(A) =
jAT�BAj=jAT�WAj which can represent a class sepa-
ration is de�ned as a ratio of a between-class variance to
a within-class variance. To obtain the optimal transfor-
mation matrix A, the above described Fisher's criterion
J�(A) is maximized. The solution is obtained by maxi-
mizing jAT�BAj under a condition of AT�WA = I. This
can be solved as an eigenvalue problem �BA = �WA�.
� denotes a diagonal matrix whose diagonal components
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are eigenvalues �i(i = 1; � � � ; k; � � � ; n). If �W is a non-
singular matrix, the transformation matrix A is obtained
by an eigenvalue decomposition of �W

�1�B . Therefore,
eigenvectors for the large eigenvalues up to k numbers
construct a k-dimensional space.

2.2. Speaker Recognition in Space Transformed by LDA

A sequence of training data fx
(s)
t

g of a speaker s is ob-
served in an n-dimensional observation space. LDA is
applied to all the speech data of all the speakers and
eigenvectors ai(i = 1; � � � ; k; � � � ; c � 1) are obtained by
the eigenvalue decomposition. The transformation ma-
trix A is a matrix whose columns are the eigenvectors
and a subspace constructed by faig is a space with the
largest separation for all the speakers. Then the training
data is projected to the subspace by Eq.(1).

x̂
(s)
t

= A
T
x
(s)
t

(1)

After projecting a training data of each speaker to the
subspace, the speaker model of GMM is trained in the
subspace.

Fig.1 shows an example of the space transformation by
LDA. As shown in Fig.1, the separation ratio of all the

A B

Subspace by LDA

Figure 1: Space transformation by LDA

speakers becomes largest after the projection to the sub-
space obtained by LDA.

In speaker identi�cation, a sequence of input feature vec-
tor fxtg is projected to the subspace by Eq.(1) and a log

likelihood log P (x̂tj�
(c)) of each customer c is computed

by GMM. An identi�cation result is obtained as customer
s with maximum log likelihood shown in Eq.(2).

s = argmax
c

log P (x̂tj�
(c)
) (2)

In speaker veri�cation, a sequence of input feature vec-
tor fxtg is projected to the subspace by Eq.(1) and a log

likelihood log P (x̂tj�
(s)) of the claimed speaker s is com-

puted by GMM. Then the log likelihood is normalized
based on likelihood ratio shown in Eq.(3).

log �P (x̂tj�
(s)
) = log P (x̂tj�

(s)
)�max

i6=s
log P (x̂tj�

(i)
) (3)

In this normalization method, the log likelihood
log P (x̂tj�

(s)) of the claimed speaker is subtracted by
a maximum likelihood of the other speaker except the
claimed speaker. If the normalized log likelihood is larger
than a threshold, the speaker is accepted as the true
speaker.

3. Projection to Speaker Space

3.1. Subspace Separation

Speech data includes both of phonetic information and
speaker information. If they are separated each other,
robust speaker recognition will be realized by using only
the speaker information. Here we propose a separation
method of these information.
The speech feature variation is mainly caused by the
variation of the phonetic information included in speech
data. This insight leads us to the separation of the pho-
netic information and speaker information based on the
variance. Namely by performing PCA to each speaker's
speech data, phonetic information locates in a subspace
constructed by the principal component axes(lower or-
der axes), and speaker information locates in a comple-
mentary subspace constructed by the higher order axes.
According to this insight, we call the subspace with the
large variation constructed by the lower axes \phonetic
space", and the subspace with the small variation con-
structed by the higher axes \speaker space".
In this study, we propose a speaker identi�cation and
speaker veri�cation method based on a statistical speaker
model(GMM) in the proposed \speaker space" using the
speech data projected to the speaker space where the
phonetic information is already suppressed.

A sequence of training data fx
(s)
t

g (t = 1; 2; � � � ; N (s)) of
a speaker s is observed in an n-dimensional observation
space. Then a mean vector �(s) and a covariance matrix
R
(s) are computed from the training data as follows:

�
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1

N (s)

N
(s)X
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t

(4)
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(5)

By eigenvalue decomposition, the covariance matrix R(s)

is decomposed as:

R
(s)

= �
(s)
�
(s)
�
(s)T

(6)

Here, �(s) is a diagonal matrix whose diagonal compo-

nents are eigenvalues �
(s)
i
(i = 1; � � � ; k; � � � ; n) of R(s).

�(s) is a matrix whose columns are eigenvectors '
(s)
i
(i =

1; � � � ; k; � � � ; n) of R(s).

The eigenvalues �
(s)
i

which are obtained by the eigenvalue
decomposition represent a variance on the eigenvectors

'
(s)
i

which are orthonormal bases. In this study, a space
constructed by the lower order eigenvectors correspond-
ing to the large eigenvalues up to k numbers is called
\phonetic space". A space constructed by the higher
order eigenvectors corresponding to the remaining small
n�k eigenvalues is a complementary subspace of the pho-
netic space and is called \speaker space". Therefore, the
phonetic space constructed by axes with large variance is
a space where the phonetic information is powerfully rep-
resented. On the other hand, the speaker space, which is
complementary to the phonetic space, is a space where
the speaker information is well represented by suppress-
ing the phonetic information. Consequently, the input
speech can be separated into phonetic information and
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speaker information by projecting to the speaker space
and to the phonetic space respectively.

In this study, a speaker identi�cation and speaker veri�-
cation are carried out in the following way:

1. Construct a speaker space for each speaker by per-
forming PCA for his/her speech data and selecting
the higher order axes.

2. Project a training data to his/her speaker space.

3. Construct a statistical speaker model GMM in the
respective speaker space.

We call the proposed method \SSGMM(Speaker Space
GMM)".

3.2. Speaker Recognition by Projection to Speaker Space

MFCC(Mel-Frequency Cepstral Coe�cient) is commonly
used in speaker recognition. MFCC is obtained from
the log �lter-bank amplitudes using DCT(Discrete Co-
sine Transform). However DCT is not designed to trans-
form a space by considering a data distribution as well
as correlation of feature parameters. In this study, we
employ PCA instead of DCT to diagonalize a data co-
variance matrix and decorrelate the feature parameters
of the log �lter-bank amplitudes. This PCA used instead
of DCT for signal processing can also construct respective
speaker space. Therefore, this PCA plays two roles.

A sequence of training data fx
(s)
t

g of a speaker s is
observed in an n-dimensional observation space. A
subspace constructed by the higher order eigenvectors
'i

(s)(i = k; � � � ; n) which were obtained by PCA for the
training data is a speaker space. The orthogonal matrix
P
(s) is a matrix whose columns are the eigenvectors 'i

(s).

Training data is projected to the speaker space by Eq.(7)
and the speaker model GMM is trained in the speaker
space by using the projected training data.

x̂
(s)
t

= P
(s)T

(x
(s)
t

� �
(s)
) (7)

Fig.2 shows an example of the projection to the speaker
space. In Fig.2, PA and PB, shown by rectangles, denote

Observation space After projection to speaker space

A

PA
A PA

B

PB

B

PB

Figure 2: Projection to speaker space

a speaker space of speaker A and speaker B respectively.
The regions enclosed by ellipses indicate the speech data.
As shown in Fig.2, the speaker space is a space con-
structed by axes whose variance is small. Therefore, after
projecting the training data of each speaker A and B to
each speaker space, a within-speaker variance becomes
small compared with that in an observation space, leav-
ing a between-speaker variance �xed.

In speaker identi�cation, a sequence of input feature vec-
tor fxtg is projected to the speaker space of each cus-

tomer c by Eq.(7) and a log likelihood log P (x̂tj�
(c)) is

computed by GMM of each customer c. An identi�ca-
tion result is obtained as customer s with maximum log
likelihood computed by Eq.(2).

In speaker veri�cation, a sequence of input feature vec-
tor fxtg is projected to the speaker space of a claimed

speaker s by Eq.(7) and a log likelihood log P (x̂tj�
(s)) is

computed by GMM of the claimed speaker s. The log
likelihood is normalized based on likelihood ratio shown
in Eq.(3). If the normalized log likelihood is larger than
a threshold, the speaker is accepted as the true speaker.

4. Speaker Recognition Experiments

4.1. Experimental Condition

In the experiment, sentences were uttered by 30 speak-
ers(20 males and 10 females) at two time sessions over ten
months. The duration of the speech data is 4 sec at av-
erage. The speech data was sampled at 16kHz, the anal-
ysis window size was 20ms with 5ms overlap and was pa-
rameterized into 21 cepstral coe�cients obtained by 24-
channel mel-frequency spaced �lter-bank analysis. In this
study, we carried out speaker recognition experiments
by three methods: The �rst method is a conventional
method based on GMM in an observation space with 21
dimensional MFCC parameters. The second method is a
conventional method based on GMM in a subspace ob-
tained by LDA from the observation space with 21 dimen-
sional MFCC parameters. The third method is the pro-
posed method(SSGMM) based on GMM in the speaker
space obtained from an observation space with 24 chan-
nel log �lter-bank amplitudes.

In speaker identi�cation experiment, 30 speakers are cus-
tomers. Five sentences uttered at �rst time session were
used for training. Therefore the duration of the training
data is 20sec at average. Each 15 sentences uttered at
second time session were used for evaluation. In speaker
veri�cation experiment, the 30 speakers are divided into
two: 15 speakers are true speakers (customers) and the
other 15 speakers are impostors for each customer. Five
sentences uttered at �rst time session were used for train-
ing. The duration of the training data is 20sec at aver-
age. Each 15 sentences uttered at second time session
were used for evaluation.

4.2. Experimental Results

We carried out comparative experiments among the pro-
posed method(SSGMM), a conventional method based
on GMM in an observation space and in a subspace ob-
tained by LDA to show an e�ectiveness of our proposed
method.

Experimental results of speaker identi�cation are
shown in Table 1. The results were evaluated by
IER(Identi�cation Error Rate). Experimental results of
speaker veri�cation are shown in Table 2. The results
were evaluated by EER(Equal Error Rate).

In Table 1, \GMM" denotes the IER by a conventional
method based on normal GMM in an observation space(
21 dimensional MFCC parameters). \LDA" denotes the
IER by a conventional method based on GMM in a sub-
space obtained by LDA(21 dimensional space) from the
observation space(21 dimensional MFCC parameters).
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\SS" denotes the IER by the proposed method(SSGMM)
based on GMM in the speaker space(4-24 dimensional
space) obtained from an observation space(24 channel log
�lter-bank amplitudes).

Table 1: Speaker identi�cation result(%)

mixture GMM LDA SS

number (21dim) (4-24dim)

2 18.44 16.67 6.44

4 12.00 11.33 5.11

8 9.56 8.22 6.44

64 8.89 6.00 7.78

As a result from Table 1, the IER was 5.11% by SS-
GMM(4 mixtures). The IER was reduced by 57% by
SSGMM(4 mixtures) compared with the conventional
method based on GMM(4 mixtures). The IER was re-
duced by 55% by SSGMM(4 mixtures) compared with
the conventional method based on GMM(4 mixtures)
in a subspace obtained by LDA. Furthermore, the IER
was reduced by 43% by SSGMM(4 mixtures) compared
with the conventional method based on GMM(64 mix-
tures). The IER was reduced by 15% by SSGMM(4
mixtures) compared with the conventional method based
on GMM(64 mixtures) in a subspace obtained by LDA.
Therefore, we can reduce the mixture components by
1/16 by the proposed method, still reducing the IER by
more than 15%.

In Table 2, \GMM" denotes the EER by a conven-
tional method based on normal GMM in an observa-
tion space(21 dimensional MFCC parameters). \LDA"
denotes the EER by a conventional method based on
GMM in a subspace obtained by LDA(21 dimensional
space) from the observation space(21 dimensional MFCC
parameters). \SS" denotes the EER by the proposed
method(SSGMM) based on GMM in the speaker space(4-
24 dimensional space) obtained from an observation
space(24 channel log �lter-bank amplitudes).

Table 2: Speaker veri�cation result(%)

mixture GMM LDA SS

number (14dim) (4-24dim)

2 3.96 4.52 2.44

4 2.98 3.91 1.79

8 2.28 3.07 1.88

64 2.00 2.68 1.70

As a result from Table 2, the EER was 1.79% by SS-
GMM(4 mixtures). The EER was reduced by 40% by
SSGMM(4 mixtures) compared with the conventional
method based on GMM(4 mixtures). The EER was not
reduced by GMM in a subspace obtained by LDA com-
pared with the speaker identi�cation. Furthermore, the
EER was reduced by 11% by SSGMM(4 mixtures) com-
pared with the conventional method based on GMM(64
mixtures). Therefore, we can reduce the mixture compo-
nents by 1/16 by the proposed method.

As a result from Table 1 and Table 2, high identi�cation
and veri�cation performance were obtained by the pro-
posed method(SSGMM), so that the proposed speaker
space was proven to be a space where the speaker infor-
mation is well presented by suppressing the phonetic in-
formation, under the assumption that a space with large

within-speaker variance is the phonetic space and a space
with small within-speaker variance is the speaker space.
Further, it was shown that a robust speaker model can
be constructed by a few training data with 20sec at av-
erage and a few model parameters(4 mixture GMM). As
a result, the training, identi�cation and veri�cation can
be performed in a real time.

5. Conclusion

In this study, we proposed the speaker identi�cation
and speaker veri�cation method using the speaker model
trained by GMM in each speaker space, after projecting
the training data to the speaker space and suppressing
the phonetic information, under the assumption that a
space with large within-speaker variance is the phonetic
space and a space with small within-speaker variance is
the speaker space.
As a result of the speaker identi�cation and speaker ver-
i�cation experiments, the IER was reduced by 43% by
SSGMM(4 mixtures) compared with the conventional
method based on GMM(64 mixtures). The EER was
reduced by 11% by SSGMM(4 mixtures) compared with
the conventional method based on GMM(64 mixtures).
Therefore, a robust speaker model can be constructed by
a few training data and a few model parameters, and
real time training, identi�cation and veri�cation can be
performed by the proposed method.
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