
SPEAKER VERIFICATION
BY INTEGRATING DYNAMIC AND STATIC FEATURES

USING SUBSPACE METHOD

M.Nishida and Y.Ariki

Department of Electronics and Informatics
Ryukoku University, Seta, Otsu-shi, Shiga, 520-2194, Japan

nishida@arikilab.elec.ryukoku.ac.jp

ABSTRACT
In speaker recognition, it is a problem that variation of speech features is
caused by sentences and time difference. Speech data includes a phonetic
information and a speaker information. If they are separated each other,
robust speaker verification will be realized by using only the speaker
information. However, it is difficult to separate the speaker information
from the phonetic information included in speech data at present. From
this viewpoint, we propose a speaker verification method using a subspace
method based on principal component analysis in order to extract only the
speaker information included in speech data. We also propose dynamic
and static features of each speaker presented in the speaker eigenspace
as well as their integration for robust normalization of speech feature
variations. We carried out comparative experiments between the proposed
method and conventional GMM to show an effectiveness of our proposed
method. As a result, integrated dynamic and static features in speaker
eigenspace were shown to be effective for speaker verification.

1. INTRODUCTION
In speaker recognition, it is a problem that speech feature varies depend-
ing on sentences and time difference. There have been many studies
to suppress the speech feature variations. Typical studies are a feature
normalization method and a likelihood normalization method. In the fea-
ture normalization method, CMN(Cepstrum Mean Normalization) [1][2]
is well known to be effective. In the likelihood normalization method,
a likelihood ratio [3] and a posteriori probability [4] are proposed to be
effective.

Speech data includes both of phonetic information and speaker informa-
tion. If they are separated each other, robust speaker verification will be
realized by using only the speaker information. However, it is difficult to
separate the phonetic information from the speaker information included
in speech data at present.

In speaker verification, a GMM(Gaussian Mixture Model) [5] has been
conventionally used and is statistically constructed from features of speech
data. The GMM is a statistical method and is not a method based on sepa-
ration of the speaker information from the phonetic information included
in speech data.

We have already proposed a speaker identification method using a sub-
space method [6] based on PCA(Principal Component Analysis) in order
to extract only the speaker information included in speech data [7][8]. In
this study, we propose a speaker verification method using the subspace
method based on PCA. We call an individual speaker subspace construct-
ed by PCA as "speaker eigenspace", because it can be present the speaker
information.

Further more, in this study, we propose dynamic features and static fea-
tures of each speaker presented in the speaker eigenspace as well as their
integration for robust speaker verification. The static feature is an aver-
aged speech vector computed for one speech sentence. On the other hand,
the dynamic feature is the residual vector between input feature vector and

the static feature. Both features are effective to verify the speakers.

In this paper, the results are shown through comparative experiments
of the proposed method, a method based on projection distance to the
speaker eigenspace and conventional GMM to show an effectiveness of
our proposed method.

2. SPEAKER VERIFICATION IN
SPEAKER EIGENSPACE

2.1. Speaker Eigenspace Construction

We observe a sequence of training speech data
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of a speaker � in an � -dimensional observation space. The speech data
is a sequence of spectral feature vectors

���������	�
 obtained by short time
spectral analysis. We compute a mean vector � ����� and a covariance matrix� ����� from the training speech data. By eigenvalue decomposition, the
covariance matrix

� ����� is decomposed as
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Figure 1: Speaker eigenspace

As shown in Fig.1, eigenvectors
�*) �����# 
 are orthonormal bases and con-

struct an eigenspace(speaker eigenspace) which represents the speech data
of speaker � . Therefore, Φ ����� can be considered to represent the speaker
information.



The eigenvectors .*/10�2�34�5 for the large eigenvalues up to 6 numbers con-
struct a 6 -dimensional speaker eigenspace.

2.2. Verification in Speaker Eigenspace

In verification, we compute a mean distance between input feature vectors.�798 5 and a speaker eigenspace of a claimed speaker : by computing a
projection distance shown in Eq.(2).
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Here N is a total number of frames of input speech data.

Fig.2 shows an example of the projection distance in the 3 -dimensional
observation space. The projection distance of speaker : , computed by
Eq.(2), is defined by subtracting a square norm of the projection vec-
tor(shown by a dotted line in Fig.2) to the speaker : eigenspace(space
constructed by / 1 0�>�3 and / 2 0 >�3 ) from a square norm of a residual vector
between input feature vector 798 and a mean vector H 0�>�3 of the training
speech data of the speaker : .
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Figure 2: Projection distance

In this study, projection distance
;=< 0�>�3 of speaker : is normalized by

the minimum projection distance to other speaker eigenspaces except the
claimed speaker as shown in Eq.(3) for robust speaker verification.
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This idea comes from the normalization by likelihood ratio commonly
used in the speaker verification in the probabilistic domain.

If the normalized distance is smaller than some threshold, the speaker is
accepted as the true person.

3. INTEGRATION OF SPEAKER
DYNAMIC AND STATIC FEATURES

3.1. Speaker Dynamic and Static Features

In this study, we define speaker dynamic features and static features in the
speaker eigenspace in order to normalize the speech feature variations and

propose a speaker verification method by integrating these two features.
At first, we describe the speaker dynamic features and static features.

CMN computes a mean vector for a section of input speech data and
subtracts the mean vector from the feature vector at each time. "Speaker
dynamic feature" is defined as a residual vectorproducedby subtractingthe
mean vector of the input speech from the feature vector at each frame. The
feature vectors we employed are cepstral coefficients so that the speaker
dynamic feature can be computed by CMN of the input feature vectors.
The speaker dynamic feature represents a dynamic speaker information
and the distance between the speaker dynamic feature of the input speech
and the speaker eigenspace is called "dynamic feature distance".

On the other hand, "speaker static feature" is defined as the mean vector
itself of the input speech. The speaker static feature represents a static
speaker information of input speech and varies time by time even the same
sentence is spoken. Therefore a residual vector between the speaker static
feature of the input speech and a mean vector of the training speech data
can be regarded to present the time difference. The length of the residual
vector is called "static feature distance". Fig.3 shows the speaker dynamic
features and static features.
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Figure 3: Speaker dynamic and static features

In Fig.3, 7 8 denotes an input feature vector, ¯7 denotes a mean vector for
a section of input speech and H denotes a mean vector of speaker training
data. The residual vector 7 8 G ¯7 between the input feature vector and the
mean vector for a section of input speech denotes the speaker dynamic
feature. The mean vector ¯7 for a section of input speech denotes the
speaker static feature. A distance E ¯7RGSHME 2 between the static feature and
the mean vector of speaker training data denotes a speaker static feature
distance.

Eq.(4) shows the speaker dynamic feature distance
<UTWV�XDY�Z*[F\*] 4 > and

Eq.(5) shows the speaker static feature distance
<UTWV�X 2 8 \ 8 4 > .
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Here
@

is a total number of frames of input speech. Eq.(4) denotes
the distance of dynamic features to speaker eigenspace after suppressing a
variation of time difference. Eq.(5) denotes a distance between the speaker
static feature and a mean vector of respective speaker training data.

If the dynamic feature distance is only employed, the time difference
presented by the speaker static feature is suppressed. Therefore, it is
possible to obtain the speaker verification robustness by integrating the
dynamic and static feature distance.



3.2. Integration of Speaker Dynamic and Stat-
ic Features

Next, we describe a speaker verification method by integrating speaker
dynamic features and static features.

A log function draws a gradual curve if the argument value is large so
that it can control a variation by the log function. Therefore, it becomes
possible to determine a stable threshold by incorporating log distance.

Eq.(6) shows an integrated distance _U`Da�bWcedgfih�j�k�lmfih�n by weighted linear
sum of a dynamic feature log distance and a static feature log distance.

_U`Da�bWcedgfih�j�k�lmfih�npo
log _U`Wa�bDnrq*d+lmstc�uwvyx log _U`Da�bWz f,l*ficeu (6)

Since a variance { 2 z f,lmfic�u of the static feature log distance log _U`Wa�bWz f,lmfic�u
is large in comparison with a variance { 2 n�q*dFlms|ceu of the dynamic feature
log distance log _U`Wa�bDn�q*d+lmstc�u , an integrated distance _U`Wa�bWcedgf,h�jrk�lmf,h�n of
the dynamic and static features is mainly influenced by the static feature
distance which represents the time difference. To solve this problem, the
weight x is determined by Eq.(7) to balance both of them.

xNo { 2 n�q*dFlms|ceu{ 2 z f,lmf,ceu (7)

In this way, the weight x in Eq.(6) integrates the dynamic speaker infor-
mation and the static speaker information, and also suppresses the time
difference included in the static feature distance.

Eq.(8) shows a normalization method for the integrated distance of the
dynamic feature distance and the static feature distance.

ˆ_U`Wa�b�} u�~c�dFfih�j�k�lmfih�n
o�_U`Wa�b } u�~c�dFfih�j�k�lmfih�nF� minc'�� u _U`Wa�b } c�~cedgfih'jrk�lmfih'n (8)

In this normalization method, the integrated distance _U`Wa�b } u�~c�dFfih�j�k�l*fih�n to

the claimed speaker eigenspace is divided by a minimum distance to other
speaker eigenspaces except the claimed speaker.

4. SPEAKER VERIFICATION
EXPERIMENTS

4.1. Comparative Experiments with Speaker
Eigenspace

In the experiment, sentences were uttered by 15 speakers(10 males and 5
females) at three time sessions over ten months. The analytical condition
of speech data is shown in Table 1. The speech data was sampled at 12kHz
and was parameterized using 16 LPC cepstrum. The analysis window size
was 20ms with 5ms overlap.

The 15 speakers are divided into two; One is a true speaker(customer) and
the other is 14 impostors for each speaker. Therefore, the total numbers
of customers and impostors were 15 and 14 respectively. 10 sentences
uttered at first time session were used for training. Each 15 sentences
uttered at second and third time sessions were used for evaluation.

A weight x in Eq.(6) for the integrated distance of dynamic and static
features was determined as x = 0.06 by computing according to Eq.(7)
using the training data.

We carriedout comparativeexperimentsbetween the proposed method and
the projection distance to the speaker eigenspace to show an effectiveness
of our proposed method.

Table 1: Analytical condition

Sampling frequency 12kHz
Frame length 20ms
Frame period 5ms
Window type Hamming window
Features LPC Cepstrum(16 orders)

In each method, verification results for the test data uttered at second and
third time sessions are shown in Fig.4 and Table 2.

Fig.4 shows an EER(Equal Error Rate) as a function of speaker eigenspace
dimension changing from 1 to 16. In Fig.4, “PCA” denotes a result for
the projection distance to the speaker eigenspace, “PCA+CMN” denotes a
result when we carried out CMN for the test data in the projection distance
to speaker eigenspace(only the dynamic feature) and “Dynamic and static”
denotes a result by the integration of dynamic and static features.

0 162 4 6 8 10 12 14
Dimension of eigenspace

0

2

0.5

1

1.5

A
ve

ra
ge

d 
er

ro
r 

ra
te

(%
)

PCA
PCA+CMN
Dynamic and static

Figure 4: Comparative result in speaker eigenspace (1)

As a result shown in Fig.4, CMN was effective as the normalization
of the speech feature variations. The integration of dynamic and static
features was effective. As a result of experiments, the optimal dimension
of the speaker eigenspace was 5 and in this case, we could construct the
speaker eigenspace which represents the best speaker information. If the
dimension increases, the eigenspaces of speakers begin to overlap and
verification performance decreases.

Table 2: Comparative result in speaker eigenspace (2)

EER(%)
PCA (5 dimension) 1.17
PCA (5 dimension) + CMN 0.41
Dynamic and static
(5 dimension, x =0.06) 0.29

Table 2 shows the EER when the verification performance was the best.
As a result from Table 2, the EER was 1.17% by the projection distance



to the speaker eigenspace and the EER was 0.41% by the CMN for the
test data, so that the EER was reduced by 65% by the CMN. On the other
hand, the EER was 0.29% by integrating dynamic and static features in the
speaker eigenspace, so that the EER was reduced by 75% by the proposed
method.

As a result from Table 2, the integration method of dynamic and static
features in the speaker eigenspace was shown to be robust for the speech
feature variations.

4.2. Comparative Experiments with GMM

For the same experimental data under the same analytical condition shown
in section4.1., the speaker verification experiments were carried out using
GMM with 64 mixture densities and diagonal covariance matrices. In the
experiments, we used a Sun Ultra30 (CPU:248MHz,Memory:128MB).

Comparative experiments were carried out between the integration method
of dynamic and static features in speaker eigenspace and conventional
GMM to show an effectivenessof our proposed method. We carried out the
experiments by two methods; with or without CMN for both training and
test data. The experimental result is shown in Table 3. The normalization
was carried out based on the likelihood ratio shown in Eq.(9).

log ˆ�p����� �-�r�
� log

�U����� �-�r�%�
max�'�� � log

�U�,��� � � � (9)

In this normalization method, a maximum log likelihood of the other
speakers except the claimed speaker is subtracted from a log likelihood
log

�U�,��� � � �
of the claimed speaker � .

Table 3: Comparative result of GMM

EER(%)
GMM (64md) 0.68
GMM (64md) + CMN 0.34
Dynamic and static
(5 dimension, � =0.06) 0.29

The EER by GMM(64 mixture densities) without CMN and the EER with
the CMN for both training and test data are shown in Table 3. As a result
from Table 3, the GMM showed 0.68% EER when the CMN was not
carried out for both training and test data. The GMM showed 0.34% EER
when the CMN was carried out for both training and test data so that the
EER was reduced by 50% by the CMN. The proposed method showed
0.29% EER which is less than the conventional GMM.

4.3. Processing time

We investigated the processing time and template size for the integration
method of dynamic and static features in speaker eigenspace(5dimension),
comparing with GMM(1.0). The training time is a time required for
training a customer by 10 sentences(4 sec at average for a sentence). The
verification time is a time required for verifying a sentence. The template
size is a required memory size for a model of a customer.

As a result from Table 4, the training time of the integration method of
dynamic and static features in speaker eigenspace was 0.0056 compared
with GMM(1.0) and the verification time was 0.25 in terms of ratio.
The template size was 0.03 compared with GMM(1.0) in terms of ratio.
Therefore, the computation time and memory of the proposed method are
extremely less than that of GMM. In the integration method of dynamic
and static features in speaker eigenspace, the exact training time was about
1.5sec and the verification time was about 0.1sec(the template size was

Table 4: Processing time and template size

training verification template
time time size

GMM (64md) 1.0 1.0 1.0
Dynamic and static
(5 dimension) 0.0056 0.25 0.03

about 1.0KB) so that real time processing is feasible by the proposed
method.

5. CONCLUSION
In this study, we proposed a speakerverificationmethod using the subspace
method and constructed the speaker eigenspace based on PCA in order to
extract only the speaker information included in speech data. Moreover,
we proposed dynamic and static features of each speaker presented in the
speaker eigenspace as well as their integration for robust normalization of
speech feature variations.

As a result of the speaker verificationexperiments, the EER was reducedby
75% by the proposed method compared with the projection distance to the
speaker eigenspace. The verification performance of the proposed method
was almost same as the conventionally used GMM. The computation time
and memory of the proposed method are extremely less than GMM so
that real time processing is feasible by the proposed method. From these
results, the integration method of dynamic and static features in speaker
eigenspace which we proposed in this study was shown to be robust
for speech feature variations and was shown to be effective for speaker
verification.

Future works will be the improvement of a verification performance by
constructing a discriminant function based on correlation to the other
classes.
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