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Abstract

Our goal is to develop an interactive music robot, i.e., a
robot that presents a musical expression together with hu-
mans. A music interaction requires two important functions:
synchronization with the music and musical expression, such
as singing and dancing. Many instrument-performing robots
are only capable of the latter function, they may have diffi-
culty in playing live with human performers. The synchro-
nization function is critical for the interaction. We classify
synchronization and musical expression into two levels: (1)
the rhythm level and (2) the melody level. Two issues in
achieving two-layer synchronization and musical expression
are: (1) simultaneous estimation of the rhythm structure and
the current part of the music and (2) derivation of the estima-
tion confidence to switch behavior between the rhythm level
and the melody level. This paper presents a score following
algorithm, incremental audio to score alignment, that con-
forms to the two-level synchronization design using a particle
filter. Our method estimates the score position for the melody
level and the tempo for the rhythm level. The reliability of
the score position estimation is extracted from the probabil-
ity distribution of the score position. Experiments are carried
out using polyphonic jazz songs. The results confirm that our
method switches levels in accordance with the difficulty of
the score estimation. When the tempo of the music is less
than 120 (beats per minute; bpm), the estimated score posi-
tions are accurate and reported; when the tempo is over 120
(bpm), the system tends to report only the tempo to suppress
the error in the reported score position predictions.

1 Introduction

Music robots capable of, for example, dancing, singing,
or playing an instrument with humans will play an im-
portant role in the symbiosis between robots and humans.
Even people who do not share a language can share a
friendly and joyful time through music beyond ages, regions,
and races. Music robots can be classified into two cate-
gories; entertainment-oriented robots like trumpeter robots
or dancer robots and co-player robots for natural interaction.
Although the former type has been studied extensively, our
research aims at the latter type, i.e., a robot that presents a
musical expression together with humans.
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Music robots should be co-players rather than entertainers
for human-robot symbiosis. Their music interaction requires
two important functions; synchronization with the music
and generation of musical expressions, such as singing and
dancing. Many instrument-performing robots such as those
presented in (Alford et al. 1999; Shibuya, Matsuda, and
Takahara 2007) are only capable of the latter function, they
may have difficulty in playing live with human performers.
In fact, synchronization with the music is critical for inter-
action.

We classify synchronization and musical expression into
two levels: (1) the rhythm level and (2) the melody level.
The rhythm level is used when the robot misses what part
in a song is being performed, and the melody level is used
when the robot is aware of what part is. Figure 1 illus-
trates the two-level synchronization with the music. When
we try to synchronize with the song being unaware of the
exact part, we can follow the beats imagining a correspond-
ing metronome and stomp our feet, clap our hands or scat
to the rhythm. Or, even if we do not know the song or the
lyrics to sing, we can still hum the tune. On the other hand,
when we know the song and understand which part is being
played, we can sing along or dance to a certain choreogra-
phy. Two issues arise in achieving the two-layer synchro-
nization and musical expression. First, the robot must be
able to estimate the rhythm structure and the current part of
the music. Second, the robot needs a confidence in how ac-
curately the score position is estimated, hereafter referred to
as an estimation confidence, to switch its behavior between
the rhythm level and melody level.

Since most conventional music robots have focused on
the rhythm level, their musical expressions are limited to
repetitive or random expressions such as drumming, shak-
ing their body, stepping, or scatting. A percussionist robot,
called Haile, developed by Weinberg et al. (Weinberg and
Driscoll 2006) uses MIDI signals to account for the melody
level. However, this approach limits the naturalness of the
interaction because live performances with acoustic instru-
ments and singing voices do not have corresponding MIDI
signals. If we stick to MIDI signals, we would have to de-
velop a conversion system that can take any musical audio
signal including singing voices and change them into MIDI
representations.

An incremental audio to score alignment (Dannenberg
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Figure 1: Two levels in musical interactions

and Raphael 2006), is introduced for the melody level for
the purpose of a robot singer (Otsuka et al. 2009), but
this method is no good if the robot fails to track the mu-
sical score. The important principle in designing a co-player
robot is to allow the score follower’s errors and to try to re-
cover from them to make ensemble performances more sta-
ble.

This paper presents a score following algorithm that con-
forms to the two-level model using a particle filter (Arulam-
palam et al. 2002). Our method estimates the score position
for the melody level and tempo (speed of the music) for the
rhythm level. The reliability of the score position estimation
is determined from the probability distribution of the score
position. Thus, when the estimation of the score position
is unreliable, only tempo is reported in order to prevent the
robot from performing incorrectly; when the estimation is
reliable, it reports the score position.

2 Requirements in Score Following for Music

Robots

Music robots have to not only follow the music but also pre-
dict coming musical notes. This is because a music robot
cannot present a musical expression without any delay when
it detects the current position in the score. For example,
Murata et al. (2008) reports that it takes around 200 (ms)
to generate a singing voice using singing voice synthesizer
VOCALOID (Kenmochi and Ohshita 2007). This is also
the case with humans; it takes around 200 (ms) to respond
to something one hears. Therefore, a robot for our purpose
needs the capability to predict future musical events.

2.1 State-of-the-art Score Following Systems

Most conventional score following methods are based on
either dynamic time warping (DTW) (Dixon 2005) or hid-
den Markov model (HMM) (Orio, Lemouton, and Schwarz
2003). The target of these systems are a MIDI-based au-
tomatic accompaniments. Since MIDI systems can synthe-
size audio signals without delay, they only report the current
score position without any prediction.

Figure 2: Two-level synchronization architecture

Another score following method (Cont 2008) uses a hy-
brid HMM and semi-Markov chain model to predict the du-
ration of each musical note. However, this method reports
the most likely score position whether it is reliable or not.
Our idea is that using an estimation confidence of the score
position to switch between behaviors would make the robot
more intelligent in the music interaction.

2.2 Problem Statement

The problem is specified as follows:

Input: incremental audio signal and the corresponding mu-
sical score,

Output: predicted score position, or the tempo

Assumption: the tempo is unknown; only pairs of pitch
and length (e.g., quarter note) are given as a score.

The issues are (1) simultaneous estimation of the score
position and tempo and (2) the design of the estimation con-
fidence. The assumption conflicts the idea that the tempo
information in the score can improve the performance of the
algorithm by limiting a range of possible tempo. The prob-
lem is the numerical interpretation of a qualitative tempo like
“moderato” in beat-per-minute (bpm). The tempo is not al-
ways given in a quantitative way but in a qualitative way.
Our current approach copes with the both situations by esti-
mating the tempo directly from the audio signal.

We model this simultaneous estimation as a state-space
model and obtain the solution with a particle filter. The parti-
cle filter approximates the simultaneous distribution of score
position and tempo by the density of particles with a state
transition model and an observation model. With incremen-
tal audio input, the particle filter updates the distribution and
estimates the score position and tempo. The reliability is
determined from the probability distribution. Figure 2 out-
lines our method. The particle filter outputs three types of
information: the predicted score position, tempo, and esti-
mation confidence. According to the estimation confidence,
the system reports either the score position or the tempo.
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Figure 3: Overview of the Score Following using Particle Filter

3 Score Following using Particle Filter

3.1 Overview of Particle Filter

Let Xf,t be the amplitude of the input audio signal in the
time frequency domain with frequency bin f and time t, and
let k be the score frame. The score is divided into frames
such that the length of a quarter note equals 12 frames to ac-
count for the resolution of sixteenth-note and triplets. Mu-
sical notes nk = [n1

k...nrk

k ]T are placed at frame k, and rk

is the number of musical notes. Each particle pi has score

position, beat interval, and weight: pi = (k̂i, b̂i, wi), and N
is the number of particles, i.e., 1 ≤ i ≤ N . The unit for

k̂i is beat (the quarter note position), and the unit for b̂i is
seconds per a beat. Although the actual score position k is a

discrete in steps of 1/12, the value held by the particles k̂i is
continuous.

At every ΔT time, the following procedure is carried
out: (1) observation, (2) resampling, and (3) state transi-
tion (prediction). Figure 3 illustrates these steps. The size
of each particle represents its weight. After the resampling
step, the weights of all particles are set to be equal. The state
transition corresponds to the prediction of the future score
position ΔT ahead in time. Each procedure is described in
the following subsections.

3.2 Observation Model and Weight Calculation

At time t, a spectrogram Xf,τ , t − L < τ ≤ t is used for
the weight calculation. L denotes the window length of the
spectrogram. The weight of each particle wi, 1 ≤ i ≤ N is
a product of three weights:

wi = wch
i × wsp

i × wt
i . (1)

The two weights, the chroma vector weight wch
i and spec-

trogram weight wsp
i , are measures of pitch information. The

weight wt
i is a measure of temporal information. We use

both the chroma vector similarity and the spectrogram sim-
ilarity to estimate the score position because they have a
complementary relationship. A chroma vector has 12 ele-
ments corresponding to the pitch name, C, C�, ..., B. This
is a good feature for audio-to-score matching because the
chroma vector is easily derived from both the audio signal
and the musical score. However, the elements of a chroma
vector become ambiguous when the pitch is low due to the
frequency resolution limit. The harmonic structure observed
in the spectrogram alleviates this problem because it makes
the pitch distinct in the higher frequency region.

To match the spectrogram Xf,τ , where t − L < τ ≤ t,
the audio sequence is aligned with the corresponding score

for each particle, as shown in Figure 4. Each frame of the
spectrogram at time τ is assigned to the score frame ki

τ that
is discrete at 1/12 interval using the estimated score position

k̂i and the beat interval (tempo) b̂i as:

ki
τ =

1

12
�12 × (k̂i − (t − τ)/b̂i) + 0.5�, (2)

where �x� is the floor function.
The sequence of chroma vectors c

a
τ is calculated from the

spectrum Xf,τ using 12 types of band-pass filters for each
element (Goto 2006). The value of each element in the score
chroma vector c

s
ki

τ

is 1 when the score has a corresponding

note, and 0 otherwise. The chroma weight wch
i is calculated

as:

wch
i =

1

Lfrm

t∑
τ=t−L

c
a
τ · cs

ki
τ

, (3)

where Lfrm is the number of audio frames equivalent to
L (sec). Both vectors bfca

τ and c
s
ki

τ

are normalized before

applying them to Eq. (3).
The spectrogram weight wsp

i is derived from the
Kullback-Leibler divergence with regard to the shape of
spectrum between the audio and the score.

wsp
i =

(
1 + DKL

i

)
exp

(
−DKL

i

)
, (4)

DKL
i =

1

Lfrm

t∑
τ=t−L

∑
f

Xf,τ log
Xf,τ

X̂f,k
τi

, (5)

where DKL
i in Eq. (5) is the dissimilarity between the au-

dio and score spectrograms. Before calculating Eq. (5), the

spectrum is normalized such that
∑

f Xf,τ =
∑

f X̂f,ki
τ

=

1. The positive value DKL
i is mapped to the weight wsp

i by
Eq. (5) where the range of wsp

i is between 0 and 1. For the

calculation of wsp
i , the spectrum X̂f,ki

τ
is generated from

the musical score by using the harmonic gaussian mixture
model (GMM), the first term in Eq. (6).

X̂f,ki
τ

=

r
kτi∑

r=1

G∑
g=1

h(g)N(f ; gFnr

kτi
, σ2) + C(f), (6)

C(f) = A exp (−αf) . (7)

In Eq. (6), g is the harmonic index, G is the number of har-
monics, and h(g) is the height of each harmonics. Fnr

kτi

is the fundamental frequency of note nr
kτ i and the vari-

ance σ2. The parameters are empirically set as: G = 10,
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Figure 4: Weight calculation for pitch information

h(g) = 0.2g, σ2 = 0.8. To avoid zero divides in Eq. (5),
pink noise is added to the score spectrogram (Eq. (7)). A
is a constant that makes the power of the pink noise 5%
of that of the harmonic GMM. α is determined such that
log10 (C(f + Δf)/C(f)) = −0.6, where Δf is the num-
ber of frequency bins corresponding to 1000 (Hz).

The weight wt
i is the measure of the beat interval and ob-

tained from the normalized cross correlation of the spectro-

gram through a shift by b̂i:

wt
i =

t∑
τ=t−L

∑
f

Xf,τX
f,τ−�b̂i+0.5�

√√√√
t∑

τ=t−L

∑
f

X2
f,τ

t∑
τ=t−L

∑
f

X2

f,τ−�b̂i+0.5�

,(8)

Eq. (8) is defined in case b̂i < ΔT ; otherwise, wt
i = 0.

3.3 Resampling Based on the Weights

After calculating the weight of all particles, the particles are
resampled. In this procedure, particles with a large weight
are selected many times, whereas those with a small weight
are discarded because their score position is unreliable. A
particle p is drawn independently N times from the distribu-
tion:

P (p = pi) =
wi∑N

i=1
wi

. (9)

A set of resampled particles that have the equal weight ap-
proximate the distribution of the current score position. If
the frame number of the current score position has to be es-
timated, it is derived by taking the mean value of the score
positions that densely distributed particles hold.

3.4 State Transition Model

The future score position is predicted by updating particles
with the following state transition model:

k̂i ← k̂i + ΔT/b̂i + u, (10)

b̂i ← b̂i + v, (11)

where u and v are gaussian random variables with means 0
and variances σ2

u and σ2
v . The score position ΔT ahead in

time is predicted by taking the mean value of densely dis-
tributed particles. A further prediction can be obtained by
applying Eq. (10, 11) repeatedly, or simply extrapolating
the score position with current tempo.

Figure 5: Relationship between estimation error (top) and
variance (bottom).

3.5 Initial Probability Distribution

The initial particles are set as follows: (1) draw N samples

of the beat interval b̂i value from a uniform distribution rang-
ing from 60 (bpm; beats per minute) to 180 (bpm). (2) Set

the score position of each particle to ΔT/b̂i. The bpm x
(beat/min) is converted into the corresponding beat interval
b (sec) with the equation b = 60/x.

3.6 Estimation Confidence of Score Following

The variance s2(t) of the predicted score position is used as
the estimation confidence:

s2(t) =

N∑
i=1

(
k̂i − μ

)2

/N, (12)

where k̂i comes from Eq. (10) and μ is the mean of k̂i, 1 ≤
i ≤ N . In general, the high variance means that particles
are widely distributed over the score. The relationship be-
tween the variance and the estimation error is shown in Fig-
ure 5. The estimation error is defined as Eq. (15). The
variance tends to increase faster when the cumulative error
grows larger around 35–40 (sec) in Figure 5. A rapid drop in
variance means the majority of particles converge to a cer-
tain score position. If the particles converges to a correct
score position, the variance remains stable. On the other
hand, if the particles move to the wrong score position, the
variance starts soaring again.

Switching between the melody level and rhythm level is
carried out as follows:

1. First, the system reports the score position and the tempo.

2. If Eq. (13) is satisfied, the system switches to the rhythm
level and stops reporting the score position.

3. After a drop in the variance described in Eq. (14), and
if Eq. (13) remains unsatisfied for the subsequent IΔT ,
the system switches back to the melody level and resumes
reporting the estimated score position.

s2(t) − s2(t − IΔT ) > γincI (13)

s2(t) − s2(t − IΔT ) < −γdecI (14)

These parameters are set as: I = 5, γinc = γdec = 4.
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Figure 6: Score following performance (overall result)
Top: rate of low prediction error
Bottom: mean and standard deviation of prediction errors

4 Experimental Evaluation

This section presents the results of experiments on our score
following system: (1) the prediction error the score follow-
ing and (2) the rate of successful switching between music
synchronization levels.

4.1 Experimental Setup

Our system was implemented in C++ on a MacOSX with
an Intel Core2 Duo processor. We used 20 jazz songs from
the RWC Music Database (Goto et al. 2003). Ten songs
included drum sounds; while the others did not. The sam-
pling rate was 44100 (Hz) and Fourier transform was exe-
cuted with a 2048 (pt) window length and 441 (pt) window
shift. The parameter settings are listed in Table 1.

Table 1: Parameter settings

Denotation Value

Look-ahead time ΔT 1 (sec)

Window length L 2.5 (sec)

Score position variance σ2
u 1 (beat2)

Beat duration variance σ2
v 0.2 (sec2/beat2)

4.2 Score Following Error

At ΔT intervals, our system predicts the score position k̂(t)
at t+ΔT when the current time is t. Let s(k) be the ground
truth time at beat k in the music. s(k) is defined for positive
continuous k by linear interpolation of musical event times.
The prediction error e(t) is defined as:

e(t) = t + ΔT − s(k̂(t)). (15)

Positive e(t) means the estimated score position is before
the true position. For each song, we calculated the rate of
low prediction error, where |e(t)| < 1 (sec), in a song, mean
of e(t), and standard derivation e(t).

Figure 6 shows the relationship between the tempo of the
music and the errors in the predicted score positions when
the number of particles N is 300. The comparison between

Figure 7: Score following performance (melody level)
Top: rate of low prediction error
Bottom: mean and standard deviation of prediction errors

Figure 8: Number of particles vs prediction errors

our method in red and blue plots and Antescofo (Cont 2010)
in black plots. The tempo is representative of that song. It
is also confirmed that we have similar rates of low predic-
tion error even when the 1-second error threshold is replaced
with 0.5 or 2 (sec). Blue plots are for drum-less songs, and
the red plots are for songs including drum sounds. The top
figure shows that the prediction is less erroneous when the
tempo is under 120 (bpm), where as the accuracy rate is ex-
tremely low when the tempo is over 120 (bpm). This is be-
cause the normalized cross correlation in Eq. (8) has mul-
tiple peaks when the tempo is over 120 (bpm) i.e., when
the beat interval is under ΔT/2 = 0.5 (sec). For exam-
ple, when the tempo is 150 (bpm), meaning the beat interval
is 0.4 (sec/beat), the normalized cross correlation has peaks

at b̂i = 0.4 and 0.8. When the tempo of the song is un-
der 120 (bpm), our method tends to exceed existing score
following method, Antescofo. However, when the tempo is
over 120 (bpm) and multiple candidates of the tempo exist,
the performance of our method is sometimes worse than An-
tescofo. The reason why the rate of low prediction error for
each song is overall low is because some of the songs used in
the experiment have multiple sounds of various instruments
such as an ensemble using a guitar, a piano, a saxophone a
bass, and drums. This polyphonic characteristics makes the
score following problem even more difficult.

Figure 8 shows the mean prediction time errors for various
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Figure 9: Precision and recall of rhythm level outputs

numbers of particles. Three songs were chosen for the com-
parison: low tempo of 98 (bpm), mid tempo of 112 (bpm),
and high tempo of 200 (bpm). The errors in the low-tempo
and mid-tempo songs decrease until the number of particles
reaches 500. However, such an effect of the particle number
does not occur for high tempo songs. The effect saturates
when the number of particles exceeds 500.

4.3 Evaluation of Switching Synchronization

Figure 7 shows the rate of prediction error less than 1 (sec)
and the mean and standard deviation among the score posi-
tion outputs when the system is on the melody level. The
figure confirms that erroneous score position outputs are re-
duced by our switching strategy. This switching mecha-
nism also contributes to stabilizing the score position out-
puts when the tempo is under 120 (bpm).

This section presents how accurate the switching mech-
anism is and how the melody level improves the reported
score position. The number of particles is fixed to be 300.
For each song, the precision ξp and recall ξr rates of the
rhythm level synchronization is defined as: ξp = xt/y,
ξr = xt/z, where xt is the number of rhythm level out-
puts when the error of the score position prediction e(t) is
over 1 (sec), y is the total number of rhythm level outputs,
and z is the total times at which e(t) is over 1 (sec).

Figure 9 shows the precision and recall for 20 songs. The
precision of songs over tempo 120 (bpm) is 1 in many cases
because there are huge erroneous estimations of the score
position (see Figure 6). The mean recall for the 20 songs is
0.43.

The tempo reported on the rhythm level was evaluated as
follows. The tempo was regarded as the correct bpm value
by the system matched the ground truth tempo within a 10%
margin. The rate of correctly reported rhythm-level outputs
was calculated as the number of correct tempo reports di-
vided by the total number of rhythm level outputs. The av-
erage rate of the correct tempo reports for the 20 songs was
0.46 with a standard deviation of 0.22.

These experiments show that the key to successful score
following with our method is correct estimation of the
tempo. The reason why our system fails to find correct tem-
pos over 120 (bpm) is that the normalized cross correlation
in Eq. (8) has multiple peaks. Refinement of the observa-
tion, Eq. (8), or state transition, Eq. (11), will improve both
the score following prediction and tempo estimation.

5 Discussion and Future Work

Experimental results show that the score following perfor-
mance varies with the music played. Needless to say, a mu-
sic robot hears a mixture of musical audio signals and its
own singing voice or instrumental performance. Some musi-
cal robots (Murata et al.; Mizumoto et al.; Otsuka et al.) use
self-generating sound cancellation (Takeda et al. 2008) from
a mixture of sounds. Our score following should be tested
with such a cancellation because the performance of score
following may deteriorate if such a cancellation is used.

The design of the two-level synchronization is intended to
improve existing methods reported in the literature. Some of
the existing beat tracking (Murata et al. 2008) and score fol-
lowing (Otsuka et al. 2009) methods are not robust against
temporal fluctuations in the performance. This is similar to
the case of spoken dialogue systems. Since no one projects
that a 100%-accurate ASR is forthcoming, a quick and easy
way to correct recognition errors is mandatory (Larson and
Mowatt 2003). We have developed the two-level synchro-
nization to make score following usable for co-player robots.
The next step to enrich the score following is a recov-
ery mechanism that occurs when the score position is lost.
When human musicians miss the score position, they try to
recover the error by looking for landmarks ahead such as the
beginning of a chorus part. Once landmarks are automati-
cally extracted from the musical score and are detected in
the audio signal, music robots can recover to the landmarks
by distributing enough particles at the detected landmarks.
For this recovery mechanism, automatic extraction of these
landmarks from the score and the landmark detection from
the audio should be realized.

We are currently developing ensemble robots with a hu-
man flutist. The human flutist leads the ensemble, and two
robots, a singer and thereminist, follow. The two-level syn-
chronization approach benefits this ensemble as follows:
when the score position is uncertain, the robot starts scat-
ting the beats, or faces downward and sings in a low voice;
when the robot is aware of the part of the song, it faces up
and presents a loud and confident voice. This posture-based
voice control is attained through the voice manipulation sys-
tem (Otsuka et al. 2010).

Our score following using the particle filter should also
be able to improve an instrument-playing robot. In fact,
the theremin player robot moves its arms to determine the
pitch and the volume of theremin. Therefore, the predic-
tion mechanism enables the robot to play the instrument in
synchronization with the human performance. In addition,
a multimodal ensemble system using a camera (Overholt
et al. 2009) can be naturally aggregated with our particle-
filter-based score following system. This is because the
flexible framework of the particle filter facilitates aggrega-
tion of multimodal information sources (Nickel et al. 2005).
Furthermore, alternative particle filter algorithm can im-
prove the performance of the score position estimation. Our
method generates particles based on the previous set of par-
ticles as shown in Eq. (10, 11) without using the observed
audio signal. However, the observation can be a useful cue
to estimate the score position and musical tempo. For ex-
ample, the NCC in the right-hand side of Eq. (8) provides
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the likelihood of the tempo derived from the observed audio
signal. For the efficient use of the audio signal, the design of
the proposal distribution from which particles are drawn is
important. The algorithm of a particle filter using a proposal
distribution is explained in (Thrun, Burgard, and Fox 2005;
Arulampalam et al. 2002)

6 Conclusion

This paper presented a score following system based on a
particle filter to attain the two-stage synchronization for in-
teractive music robots that presents musical expressions. A
two-level synchronization is performed at the rhythm level
and the melody level. The reliability of score following is
calculated from the density of particles and is used to switch
between levels. The experimental results demonstrated the
feasibility of the system. The future work includes develop-
ment of interactive ensemble robots, and it will be reported
in the near future.
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