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Automatic Speech Recognition Improved by Two-Layered Audio-Visual
Integration For Robot Audition

Takami Yoshida, Kazuhiro Nakadai, and Hiroshi G. Okuno.

Abstract— The robustness and high performance of ASR is
required for robot audition, because people usually speak to
each other to communicate. This paper presents two-layered
audio-visual integration to make automatic speech recognition
(ASR) more robust against speaker’s distance and interfering
talkers or environmental noises. It consists of Audio-Visual
Voice Activity Detection (AV-VAD) and Audio-Visual Speech
Recognition (AVSR). The AV-VAD layer integrates several AV
features based on a Bayesian network to robustly detect voice
activity, or speaker’s utterance duration. This is because the
performance of VAD strongly affects that of ASR. The AVSR
layer integrates the reliability estimation of acoustic features
and that of visual features by using a missing-feature theory
method. The reliability of audio features is more weighted in a
clean acoustic environment, while that of visual features is more
weighted in a noisy environment. This AVSR layer integration
can cope with dynamically-changing environments in acoustics
or vision. The proposed AV integrated ASR is implemented
on HARK, our open-sourced robot audition software, with
an 8ch microphone array. Empirical results show that our
system improves 9.9 and 16.7 points of ASR results with/without
microphone array processing, respectively, and also improves
robustness against several auditory/visual noise conditions.

I. INTRODUCTION

In a daily environment where service/home robots are
expected to communicate with humans, the robots have
difficulty in automatic speech recognition (ASR) due to
various kinds of noises such as other speech sources, en-
vironmental noises, room reverberations, and robots’ own
noises. In addition, properties of the noises are not always
known in a daily environment. Therefore, a robot should
cope with the input speech signals with an extremely low
signal-to-noise ratio (SNR) by using less prior information
on the environment. To realize such a robot, there are two
approaches. One is sound source separation to improve SNR
of the input speech. The other is the use of another modality,
that is, audio-visual (AV) integration.

For sound source separation, we can find several studies,
especially, in the field of “Robot Audition” proposed in [1],
which aims at building listening capability for a robot by
using its own microphones. Some of them reported highly-
noise-robust speech recognition such as three simultaneous
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speeches [2]. However, in a daily environment where acous-
tic conditions such as power, frequencies and locations of
noise and speech sources dynamically change, the perfor-
mance of sound source separation sometimes deteriorates,
and thus ASR does not always show such high performance.
For AV integration for ASR, many studies have been reported
as Audio-Visual Speech Recognition (AVSR) [3], [4], [5].
However, they assumed that the high resolution images of
the lips are always able to be available. Thus, their methods
have difficulties in applying them to robot applications.

To solve the difficulties, we reported AVSR for robots
by introducing two psychologically-inspired methods [6].
One is missing feature theory (MFT) which improves
noise-robustness by using only reliable acoustic and vi-
sual features by masking unreliable ones out. The other
is coarse phoneme recognition which also improves noise-
robustness by phoneme groups consisting of perceptually-
close phonemes instead of using phonemes as units of
recognition. The AVSR system showed high noise-robustness
to improve speech recognition even when either audio or
visual information is missing and/or contaminated by noises.
However, the system has three issues as follows:

1) The system assumed that voice activity is given.

2) A single audio channel input was still used, while we
have reported microphone array techniques to improve
ASR performance drastically.

3) Only a closed test was performed for evaluation, that is,
a test dataset for evaluation was included in a training
dataset for an acoustic model in ASR.

For the first issue, we propose Audio-Visual Voice Activity
Detection (AV-VAD). Actually, the performance of VAD
strongly affects that of ASR. We consider that VAD also im-
proves with AV integration such as integration of audio-based
activity detection and lip movement detection. We, then,
integrate AV-VAD with our AVSR system, that is, a two-
layered AV integration framework is used to improve speech
recognition. For the second issue, we introduce HARK!
[7]. HARK is open-sourced software for robot audition
we released last year, and it provides a user-customizable
total robot audition system including multi-channel sound
acquisition, sound localization, separation and ASR. Thus,
we integrate our AVSR with microphone-array-based sound
source separation in HARK. For the last issue, we performed
a word-open test to evaluate our system fairer.

'HARK stands for Honda Research Institute Japan Audition for Robots
with Kyoto University, which has a meaning of “listen” in old English. It
is available at http://winnie.kuis.kyoto-u.ac.jp/HARK/.
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The rest of this paper is organized as follows: Section II
discusses issues in audio and visual voice activity detection
(AV-VAD), and Section III shows an approach for AV-
VAD. Section IV describes our automatic speech recognition
system for robots using two-layered AV integration, that is,
AV-VAD and AVSR. Section V shows evaluation in terms of
VAD and ASR performance. The last section concludes this
paper.

II. ISSUES IN AUDIO AND VISUAL VOICE ACTIVITY
DETECTION FOR ROBOTS

This section discusses issues in voice activity detection
(Audio VAD) and lip activity detection (Visual VAD) for
robots and their integration (AV-VAD), because VAD is an
essential function for AVSR.

A. Audio VAD

VAD detects the start and the end points of an utterance.
When the duration of the utterance is estimated shorter than
the actual one, that is, the start point is detected with some
delay and/or the end point is detected earlier, the beginning
and the last part of the utterance is missing, and thus ASR
fails. Also, an ASR system requires some silent signal parts
(300-500 ms) before and after the utterance signal. When
the silent parts are too long, it also affects the ASR system
badly. Therefore, VAD is crucial for ASR, and thus, a lot of
VAD methods have been reported so far. They are mainly
classified into three approaches as follows:

A-1: The use of acoustic features,

A-2: The use of the characteristics of human voices,

A-3: The use of intermediate speech recognition results using

ASR.

Common acoustic features for A-1 are energy and zero-
crossing rate (ZCR), but energy has difficulty in coping
with an individual difference and a dynamic change in voice
volume. ZCR is robust for such a difference/change because
it is a kind of frequency-based feature. On the other hand,
it is easily affected by noise, especially, when the noise has
power in speech frequency ranges. Therefore, a combination
of energy and ZCR is commonly used in conventional ASR
systems. However, it is still prone to noise because it does
not have any prior knowledge on speech signals.

For A-2, Kurtosis or Gaussian Mixture Model (GMM)
is used. This shows high performance in VAD when it is
performed in an expected environment, that is, an acoustic
environment for a VAD test is identical to that for GMM
training. However, when the acoustic environment changes
beyond the coverage of the model, VAD easily deteriorates.
In addition, to achieve noise robust VAD based on these
methods, a large number of training data is required.

A-3 uses the ASR system for VAD, and thus, this is
called decoder-based VAD. An ASR system basically has
two stages for recognition. At the first stage, the ASR system
computes log-likelihood of silence for an input signal at
every frame. By using the computed log-likelihood, VAD
is performed by thresholding 4,44 defined by

Tdvad = log(p(wol|)) (D

where x is audio input, and wy shows the hypothesis that x
is silence.

Actually, this mechanism is already implemented on open-
sourced speech recognition software called “Julius” [8]. It is
reported that this approach shows quite high performance in
real environments. Although this approach sounds like the
chicken-or-egg dilemma, this result shows that integration
of VAD and ASR is effective.

Thus, each method has unique characteristics, and none of
them are suitable for all-purpose use. A-1 is still commonly-
used, A-3 has the best performance.

B. Visual VAD

Visual VAD means lip activity detection (LAD) in visual
speech recognition (VSR) which corresponds to audio VAD
in ASR. The issues in visual VAD for integration with audio
VAD and AVSR are as follows:

B-1: The limitation of frame rate,
B-2: The robust visual feature.

The first issue is derived from the hardware limitation
of conventional cameras. The frame rate of a conventional
camera is 30 Hz, while that of acoustic feature extraction
in ASR is usually 100 Hz. Thus, when we integrate audio
and visual features, a high speed camera having a 100 Hz
capturing capability or a synchronization technique like
interpolation is necessary.

For the second issue, a lot of work has been studied in
the AVSR community so far. A PCA-based visual feature
[9], and a visual feature based on width and length of the
lips[10] were reported. However, these features are not robust
enough for VAD and AVSR because visual conditions change
dynamically. Especially, the change in a facial size is hard
to be coped with, since the facial size is directly related to
facial image resolution. Thus, an appropriate visual feature
should be explored further.

C. Audio-Visual VAD

AV integration is promising to improve the robustness of
VAD, and thus, audio and visual VAD should be integrated
to improve AVSR performance in the real world. In this
case, we have two main issues. One is AV synchronization
as described above. The other is the difference between
audio and visual VAD. The ground truth of visual VAD is
not always the same as that of audio VAD, because extra
lip motions are observed before and after an utterance to
open/close the lips. AV-VAD which integrates audio and
visual VAD should take their differences into account. To
avoid this problem, Murai et al. proposed two-stage AV-VAD
[11]. First, they extract lip activity based on a visual feature
of inter-frame energy. Then, they extract voice activity by
using speech signal power from the extracted lip activity.
However, in this case, when either the first or the second
stage fails, the performance of the total system deteriorates.

In robotics, AV-VAD and AVSR have not been studied well
although VAD is essential to cope with noisy speech. Asano
et al. used AV integration for speech recognition, but their
AV integration was limited to sound source localization [12].
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Fig. 1. Visual feature extraction

Nakadai et al. also reported that AV integration in the level
of speaker localization and identification indirectly improved
ASR in our robot audition system [13]. However, in their
cases, VAD was just based on signal power for a speaker
direction which is estimated in AV sound source localization,
that is, they indirectly used AV integration for VAD.

III. APPROACHES FOR AV-VAD

This section describes an approach for AV-VAD in our
two-layered AV integration.

A. Audio VAD

For audio VAD, three approaches are described in the
previous section, and the A-3 approach has the best per-
formance. Thus, we used decoder-based VAD as one of A-3
approaches.

B. Visual VAD

We use a visual feature based on width and length of
the lips, because this feature is applicable to extract viseme
feature in the second layer of AV integration, i.e., AVSR.

To extract the visual feature, we, first, use Facial Feature
Tracking SDK which is included in MindReader?. Using this
SDK, we detect face and facial components like the lips.
Because the lips are detected with its left, right, top, and
bottom points, we easily compute the height and the width
of the lips, and normalize them by using a face size estimated
in face detection shown in Fig. 1a).

After that, we apply temporal smoothing for the consecu-
tive five-frame height and width information by using a 3rd-
order polynomial fitting function as shown in Fig. 1b). The
motion of the lips is relatively slow, and the visual feature
does not contain high frequency components. Such high
frequency components are regarded as noise. This is why
temporal smoothing is performed to remove the noise effect.
Let the feature values at time frame ¢; be z;,. When S, ()
is the 3rd-order polynomial function for a section [t;, t;+1],
the cubic spline interpolation using this function is defined
by

Si(t)=a; +bi(t —t;) + ci(t — ;)% + di(t — 1;)3, (2)
(tz):pu
Sz/+1< Z+1) ( z+1)
Yo (tivn) =87 (tiv),
S"(t1)=8"(tn) = 0.

Zhttp://mindreader.devjavu.com/wiki
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Fig. 2. AV-VAD based on a Bayesian network

Thus, we can get four coefficients such as a; — d; for
height and another four for width. In total, eight coefficients
are obtained as a visual feature vector.

For the frame rate problem mentioned in Section II-B,
we propose to perform up-sampling for the extracted eight
coefficients so that they can easily synchronize with audio
features. As a method of up-sampling, we used another
cubic spline interpolation based on a 3rd-order polynomial
function.

C. Audio-Visual VAD

AV-VAD integrates audio and visual features using a
Bayesian network shown in Fig. 2, because the Bayesian
network provides a framework that integrates multiple fea-
tures with some ambiguities by maximizing the likelihood of
the total integrated system. Actually, we used the following
features as the inputs of the Bayesian network:

e The score of log-likelihood for silence calculated by

Julius (mdvad):
o Eight coefficients regarding the height and the width of
the lips (z:p),
o The belief of face detection which is estimated using
Facial Feature Tracking SDK (2 f4ce).
Since these features have errors more or less, the Bayesian
network is an appropriate framework for AV integration in
VAD.

The Bayesian network is based on the Bayes theory

defined by

p(z|w;) P(w;)
p(x)
where z corresponds to each feature such as 2qyqd, T1ip, OF
Z face- A hypothesis w; shows that wy or w; corresponds to
a silence or a speech hypothesis, respectively. A conditional
probability, p(z|w;), is obtained using a 4-mixture GMM
which is trained with a training dataset in advance. The
probability density function p(x) and probability P(w;) are

also pre-trained with the training dataset.
A joint probability, P(w;|Zdvad, ZTiip; T face), is thus cal-
culated by

Plwjlz) = J7=0,1 3)

P<wj |'Td”Uad7 Llip, xface) =

P(wj|Tavad) P(wjlwiip) P(wj|T face)- “4)
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By thresholding P(wj|%dvad; Tiip, L face), AV-VAD de-
cides voice activity.

IV. AUTOMATIC SPEECH RECOGNITION SYSTEM WITH
TwO-LAYERED AV INTEGRATION

Fig. 3 shows our automatic speech recognition system for
robots with two-layered AV integration, that is, AV-VAD and
AVSR. It consists of four implementation blocks as follows;

« Facial Feature Tracking SDK based implementation for
visual feature extraction,

o HARK-based implementation for microphone array pro-
cessing to improve SNR and acoustic feature extraction,

o The first layer AV integration for AV-VAD,

o The second layer AV integration for AVSR.

Four modules in Facial Feature Tracking SDK based imple-
mentation block were already described in Section III-B, and
the first layer AV integration for AV-VAD was also explained
in Section III-C. Thus, the remaining two blocks are mainly
described in this section.

A. HARK-based implementation block

This block consists of four modules, that is, sound source
localization, sound source separation, audio VAD feature
extraction, and MSLS feature extraction. Their implemen-
tation is based on HARK mentioned in Section I. The
audio VAD feature extraction module was already explained
in Section III-A, and thus, the other three modules are
described. We used an 8 ch circular microphone array which
is embedded around the top of our robots head.

For sound source localization, we used MUItiple Slgnal
Classification (MUSIC) [14]. This module estimates sound
source directions from a multi-channel audio signal input
captured with the microphone array.

For sound source separation, we used Geometric Sound
Separation (GSS) [15]. GSS is a kind of hybrid algorithm of
Blind Source Separation (BSS) and beamforming. GSS has
high separation performance originating from BSS, and also
relaxes BSS’s limitations such as permutation and scaling
problems by introducing ‘“geometric constraints” obtained
from the locations of microphones and sound sources ob-
tained from sound source localization.

An Automatic Speech Recognition System with Two-Layered AV Integration for Robots

For an acoustic feature for ASR systems, Mel Frequency
Cepstrum Coefficient (MFCC) is commonly used. However,
sound source separation produces spectral distortion in the-
separated sound, and such distortion spreads over all coef-
ficients in the case of MFCC. Since Mel Scale Logarithmic
Spectrum (MSLS) [16] is an acoustic feature in a frequency
domain, and thus, the distortion concentrates only on specific
frequency bands. Therefore MSLS is suitable for ASR with
microphone array processing. We used a 27-dimensional
MSLS feature vector consisting of 13-dim MSLS, 13-dim
AMSLS, and Alog power.

B. The second layer AV integration block

This block performs AVSR. We simply introduced our
reported AVSR for robots [6] as mentioned in Section I,
because this AVSR system showed high noise-robustness to
improve speech recognition even when either audio or visual
information is missing and/or contaminated by noises. This
kind of high performance is derived from missing feature
theory (MFT) which drastically improves noise-robustness
by using only reliable acoustic and visual features by mask-
ing unreliable ones out. In this paper, this masking function
is used to control audio and visual stream weights which
are decided to be optimal manually in advance. For ASR
implementation, MFT-based Julius [17] was used.

V. EVALUATION
We performed two experiments for evaluation as follows:

Ex.1: VAD performance for acoustic noises,
Ex.2: ASR performance for acoustic noises and face size
changes.

In each experiment, we used a Japanese word AV dataset.
This dataset contains 10 male speech data and 266 words for
each male. Audio data is sampled at 16 kHz and 16 bits, and
visual data is 8 bit monochrome and 640x480 pixels in size
recorded at 100 Hz using BASLER A602fc. For training an
AV-VAD model, we used 216 clean AV data by 5 males in
this AV dataset. For AVSR acoustic model training, we used
216 clean AV data by 10 males in this AV dataset.

The audio data is converted to 8ch data so that each
utterance comes from 0 degrees by convoluting a transfer
function of the 8 ch robot-embedded microphone array. After
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that, we added a music signal from 60° as a noise source.
The SNR changed from 20dB to -5dB at 5dB increments.
Also, we generated visual data whose resolutions are 1/2, 1/3,
1/4, 1/5, and 1/6 compared with the original one by using
a down-sampling technique. For the test dataset, another 50
AV data which are not included in the training dataset are
selected from the synthesized 8 ch AV data.

In Ex.1, four kinds of VAD conditions were examined, that
is, audio VAD/audio-visual VAD with/without microphone
array processing. For ground truth, the result of visual VAD
is used when the resolution of face images is high enough.

In Ex.2, performance of ASR, VSR and AVSR was
compared through isolated word recognition.

Fig.4 shows VAD results in various conditions using ROC
curves. Audio VAD got worse when SNR was low. Our
microphone array processing improved VAD performance

The effect of AV integration in ASR

because it improves SNR. Audio-Visual VAD drastically
improved VAD performance. This shows the effectiveness of
AV integration in the VAD layer. In addition, the combination
of Audio-Visual VAD and microphone array processing, that
is, our proposed method improves VAD performance more.
This indicates that information integration is a key idea to
improve robustness and performance when we cope with
real-world data.

Fig.5 shows speech recognition results. The performance
of AVSR was better than that of ASR or VSR. Although
word-open tests were performed, the word correct rates
reached around 70% with our proposed method. The effect
of AV integration was 16.7 points when we used a single
channel audio input. When we used microphone array pro-
cessing, it improved ASR performance, but the effect of AV
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integration was still 9.8 points.

Fig.6 shows the robustness for face size changes in ASR
performance. Even when face resolution was 1/6 compared
with the original resolution, AV integration sometimes im-
proved ASR performance, especially in lower SNR cases.
When face resolution and SNR were low, the performance
dropped. In this case, a robot should detect that the current
situation is not good for recognition, and should take another
action such as approaching the target speech source.

VI. CONCLUSION

We proposed a two-layered AV integration framework
which consists of Audio-Visual Voice Activity Detection
(AV-VAD) based on a Bayesian network and Audio-Visual
Speech Recognition (AVSR) using a missing feature theory
to improve performance and robustness of automatic speech
recognition (ASR). We implemented an ASR system with the
proposed two-layered AV integration framework on HARK,
which is our open-sourced robot audition software. Thus, the
AV integrated ASR system was integrated with microphone
array processing such as sound source localization and sep-
aration included in HARK to improve SNR of input speech
signals. The total ASR system was evaluated through word-
open tests. We showed that 1) our proposed AV integration
framework is effective, that is, a combination of AV-VAD
and AVSR showed high robustness for input speech noises
and facial size changes, 2) microphone array processing im-
proved ASR performance by improving SNR of input speech
signals, and 3) a combination of two-layered AV integration
and microphone array processing further improved noise-
robustness and ASR performance.

We still have a lot of future work. In this paper, we evalu-
ate robustness for acoustical noises and face size changes, but
other dynamic changes such as reverberation, illumination,
and facial orientation exist in a daily environment where
robots are expected to work. To cope with such dynamic
changes is a challenging topic. Another challenge is to
exploit the effect of robot motions actively. Since robots are

able to move, they should make use of motions to recognize
speech better.
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