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ABSTRACT

This paper proposes a dereverberation method for musical audio sig-
nals. Existing dereverberation methods are designed for speech sig-
nals and are not necessarily effective for suppressing long and dense
reverberation in musical audio signals because: 1) an all-pole model
and a non-parametric model, which are used to represent source
spectra, do not match musical tones, and 2) the conventional inverse-
filter-based dereverberation is not effective for suppressing long and
dense reverberation. To overcome the two problems, an appropriate
dereverberation approach for musical audio signals is established.
The first problem is resolved by using a harmonic Gaussian mix-
ture model (GMM) to accurately model the harmonic structure of
a source spectrum. The second problem is resolved by perform-
ing dereverberation with a Wiener filter based on both an estimated
inverse filter and an estimated source spectrum model. Experimen-
tal results reveal the effectiveness of the proposed dereverberation
method using these two solutions.

Index Terms— dereverberation, music signal processing, har-
monic GMM, Wiener filter

1. INTRODUCTION

Many musical recordings contain various types of audio effects such
as reverberation, delay, and phase shift. Although these audio effects
do enhance the perceptual quality of music, they may degrade the
automatic analysis of musical audio signals such as melody extrac-
tion [1] and chord detection [2]. Therefore, techniques for canceling
or controlling such audio effects should be helpful in achieving au-
tomatic music analyzers [3] and active music-listening systems [4].

This paper focuses on reverberation among such audio effects.
Canceling the effect of reverberation, which is called dereverbera-
tion, is an active area of research in speech processing [5, 6], and nu-
merous speech dereverberation methods have been proposed. How-
ever, few reports have thus far been published on music dereverber-
ation. We began by applying the existing speech dereverberation
method described by Yoshioka et al. [6] to investigate how effective
this method was in music dereverberation. A preliminary experiment
revealed two problems.

1. Reverberation is not cancelled out very well. The reason
for this is twofold. First, the all-pole model used to repre-
sent source spectra does not match musical tones. Second,
whereas many existing speech dereverberation methods in-
cluding the considered one are based on blind inverse filtering
of room impulse responses, inverse filtering may not achieve

accurate dereverberation. This is because the impulse re-
sponses of reverberation contained in musical recordings may
be extremely long and dense compared to those contained in
speech signals and because exact finite-length inverse filters
may not exist especially in monaural recordings.

2. The dereverberated signals of struck string instruments some-
times sound like staccato tones. This may be due to difficulty
in distinguishing the effect of string vibration from reverber-
ation.

We have considered problem 1 in this paper, and propose a novel
dereverberation method suitable for musical audio signals. To ad-
dress problem 1, two novel ideas are introduced, each of which
is aimed at resolving the above-noted two causes of the problem.
The first is that a harmonic structure model proposed by Kameoka
et al. [7], called the harmonic Gaussian mixture model (harmonic
GMM), is used to represent the source spectra. The second is that
dereverberation is done by using a Wiener filter that is derived from
both of the harmonic structure model and the inverse filter of a room
impulse response, which enables to effectively suppress reverbera-
tion.

The remainder of this paper is organized as follows: The exist-
ing dereverberation method described in [6] is reviewed in Section
2. Section 3 explains the proposed dereverberation method based on
harmonic GMM and Wiener filtering. Section 4 presents the evalua-
tion results and Section 5 concludes the paper.

2. REVIEW OF EXISTING DEREVERBERATION
METHOD

This section reviews the speech dereverberation method described
by Yoshioka et al. [6].

2.1. Problem Statement

First, let us define the task of dereverberation considered in this pa-
per. Let s(t) denote an anechoic signal of speech or music, which
we refer to as a source signal. We assume that the source signal is
unobservable and that only its reverberated version, denoted by y(t),
is available. Dereverberation refers to the process of estimating the
source signal, s(t), by using the reverberant signal, y(t). The ob-
served signal is assumed to be monaural.

2.2. Existing Method

The method of [6] works in the STFT domain. Thus, we now denote
the STFT coefficients of s(t) and y(t) as sn,l and yn,l, where n and l
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correspond to the time frame and frequency bin indices, respectively.
A statistical model for generating the source signal, sn,l, and a rever-
beration model that transforms sn,l to the reverberated signal, yn,l,
are introduced. The method first estimates the parameters of these
models by maximum likelihood (ML) estimation. Subsequently, the
estimated reverberation model is used to estimate sn,l from yn,l.

The source and reverberation models are defined as follows:

1. Source signal sn,l independently follows a complex Gaussian
distribution in each time frame and frequency bin with mean
0 and variance λn,l:

sn,l ∼ NC(sn,l; 0, λn,l). (1)

Note that λn,l corresponds to the short-time power spectral
density (psd) of the time-domain source signal at time frame
n.

2. The reverberant signal is generated by an auto regressive
(AR) system of order K, excited by the source signal as

yn,l =

KX
k=1

g∗k,lyn−k,l + sn,l, (2)

where g∗k,l is the k-th AR coefficient at frequency bin l and
superscript ∗ stands for complex conjugate. The source sig-
nal, sn,l, can be recovered by sn,l = yn,l−

PK
k=1 g∗k,lyn−k,l,

and hence [1,−g1,l, · · · ,−gk,l]
T may be considered as an in-

verse filter at frequency l.

In [6], λn,l is modeled by an all-pole model as

λn,l =
νn˛̨̨

1−PP
p=1 ζp,ne−j 2πl

L
p
˛̨̨2 , (3)

where ζp,n and νn correspond to the p-th linear predictor coefficients
and prediction residuals at time frame n. Note that λn,l may be
represented by using a non-parametric (NP) model as [8]

Based on these assumptions, the probability density function of
the whole observed signal, Y = {yn,l}0≤n≤N−1,0≤l≤L−1, is ex-
pressed as

p(Y; θ) =

L−1Y
l=0

N−1Y
n=0

NC(yn,l;

KX
k=1

g∗k,lyn−k,l, λn,l), (4)

where θ = {νn, ζp,n, gk,l} is the set of model parameters. N and L
correspond to the number of time frames and frequency bins. Then,
the negative log likelihood of θ can be written as

L(θ) =

L−1X
l=0

N−1X
n=0

 
log λn,l +

|yn,l −
PK

k=1 g∗k,lyn−k,l|2
λn,l

!
. (5)

The θ values are estimated by minimizing L(θ) alternately with re-
spect to {νn, ζp,n} and {gk,l}. Note that the minimization of L(θ)
with respect to {νn, ζp,n} is equivalent to minimizing the Itakura-
Saito (IS) divergence between the model psd, λn,l, and the source

power spectrum estimate given by |yn,l −
PK

k=1 g∗k,lyn−k,l|2.

After convergence, the dereverberated signal, ŝn,l, is calculated

as ŝn,l = yn,l −
PK

k=1 ĝ∗k,lyn−k,l, where ĝk,l is the estimate of AR
coefficient gk,l. It should be noted that in [6, 8] the estimated source

psd, λ̂n,l, is not used to calculate ŝn,l.

2.3. Limitation of Existing Method

In a severe reverberation situation, Eq. (2) does not accurately rep-
resent an actual reverberation process. Hence, the estimated source
signal, ŝn,l, calculated by inverse filtering as above, contains a sig-
nificant residual reverberation component due to such a modeling er-
ror. Thus, we need to develop a more robust dereverberation scheme
against the modeling error.

In addition, the all-pole modeling of source psd λn,l may not
be effective for music signals because this model does not repre-
sent the harmonic structures appropriately. Thus, we should use an-
other source model suitable for music signals. Although the non-
parametric source model [8] can express any power spectra, this
model also does not work well in music dereverberation because of
its excessive flexibility.

3. DEREVERBERATION METHOD USING HARMONIC
GMM SOURCE MODEL AND WIENER FILTERING

3.1. Dereverberation Using Wiener Filter

In order to effectively suppress reverberation, the proposed method
uses a Wiener filter instead of the inverse filter to perform derever-
beration. The proposed method calculates a dereverberated signal,
s̃n,l, as follows:

s̃n,l = Wn,lyn,l. (6)

Wn,l is the Wiener gain defined as

Wn,l =
κn,l

κn,l + γ|r̂n,l|2 and (7)

κn,l = αλ̂n,l + (1− α)|ŝn,l|2, (8)

where r̂n,l =
PK

k=1 ĝ∗k,lyn−k,l, and γ (> 0) and α (0 ≤ α ≤ 1) are
prescribed constants. γ is used to control the amount of reverbera-
tion to be suppressed. The motivation for the design of the Wiener
filter given by Eqs. (7) and (8) as well as the role of α is as follows.
A Wiener filter is generally determined by the power spectra of the
source and reverberation signals. These power spectra may be esti-
mated on the basis of the inverse filter coefficient estimate, ĝk,l; actu-
ally, |ŝn,l|2 and |r̂n,l|2, which are calculated by using {ĝk,l}, can be

used as such estimates. However, λ̂n,l also provides a good estimate
of the source power spectrum as long as an appropriate source model
is used. Whereas |ŝn,l|2 is based on the reverberation model given by

Eq. (2), λ̂n,l is based on an assumed model for λn,l and is expected
to be insensitive to the reverberation modeling error. Therefore, by
combining these two source spectrum estimates as in Eq. (8), we can
obtain a Wiener filter that is robust against the reverberation model-
ing error while taking into account the reverberation process given
by Eq. (2) at the same time.

3.2. Harmonic GMM Source Model

In order for the above Wiener filter to work effectively, it is essen-
tial for λn,l to accurately represent the source spectrum. With this
motivation, the harmonic GMM [7] is used to model the source psd
λn,l because this model directly expresses the harmonic structures
and therefore is more suitable for musical audio signals than the AP
model.

The harmonic GMM describes a power spectrum of a musical
tone by using a GMM where the means of each Gaussian component
appear at the harmonic frequencies of the tone. If we assume J
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musical tones, each of which has M harmonics, are present at each
time frame, the psd of the m-th harmonics of j-th tone is given by

Hn,l(j, m) =
vn(j, m)√

2πσ2
exp

»
− (f(l)−mμn(j))2

2σ2

–
, (9)

where vn(j, m) is the relative weight of m-th peak, μn(j) is the
fundamental frequency (F0), and σ2 is the spectral spread of each
harmonic component. f(l) means a scaling function that maps the
index of frequency bins to Hertz. Therefore, the source psd, λn,l, is
given by

λn,l =

JX
j=1

 
zn(j)

MX
m=1

Hn,l(j, m)

!
+ Residual, (10)

where zn(j) corresponds to the intensity of the j-th tone.
The residual component in Eq. (10) represents a noise floor and

inharmonic components and is also modeled with a GMM that has I
Gaussians with fixed means μ(I)(i) and fixed large variance σ(I)2:

Residual = z(I)
n

IX
i=1

In,l(i), (11)

In,l(i) =
v
(I)
n (i)√
2πσ(I)2

exp

"
− (f(l)− μ(I)(i))

2

2σ(I)2

#
. (12)

Here, two restraint conditions are given:

∀n :

JX
j=1

zn(j) + z(I)
n =

L−1X
l=0

|sn,l|2, (13)

∀j, n :

MX
m=1

vn(j, m) = 1, and ∀n :

IX
i=1

v(I)
n (i) = 1. (14)

The residual component is not used in the original paper [7],
which considers F0 estimation, and is newly introduced in this pa-
per. Without this component, spectral valleys between harmonic
peaks become extremely deep, which makes estimation of inverse
filter coefficient gk,l unstable. The residual component is aimed at
preventing such instability.

3.3. Estimation of Parameters

Estimation of the harmonic GMM parameters is done by minimiz-
ing the Kullback-Leibler (KL) divergence between the source psd,
λn,l, and a power spectrum of the deconvolved signal s̄n,l = yn,l −PK

k=1 g∗k,lyn−k,l:

minimize

N−1X
n=0

L−1X
l=0

|s̄n,l|2 log
|s̄n,l|2
λn,l

. (15)

Although estimation of source psd parameters is originally formu-
lated as IS-divergence minimization as noted earlier, the harmonic
GMM parameters are hard to be analytically optimized according to
the IS divergence. Instead, KL-divergence, which often appears in
the ML estimation of GMM, yields a simple optimization algorithm.
IS-divergence and KL-divergence are not equal but share several im-
portant properties such as non-negativity and convexity because: 1)
KL-divergence is equivalent to I-divergence where the constraint in
Eq. (13) is satisfied, and 2) IS-divergence and I-divergence are in the
same group called β-divergence [9]. The definition and relation of
these divergences are given in Table 1.

Table 1. Definition of β-divergence.

β ∈ R\{0, 1} 1
β(β−1)

`
xβ + (β − 1)yβ − βxyβ−1

´

β = 0 x
y
− log x

y
− 1 IS-divergence

β = 1 x log x
y

+ (y − x) I-divergence

β = 2 1
2
(x − y)2 Euclid distance

The source model is then estimated by iteratively updating the

model parameters {zn(j), vn(j, m), σ2, μn(j), z
(I)
n , v

(I)
n (i)} based

on the expectation-maximization (EM) algorithm. The E-step esti-
mates power spectra of individual harmonic components based on
the current parameter estimates. For example, the m-th harmonic
component of the j-th tone is estimated as

H̄n,l(j, m) =
zn(j)Hn,l(j, m)|s̄n,l|2

JX
j=1

zn(j)

MX
m=1

Hn,l(j, m) + z(I)
n

IX
i=1

In,l(i)

. (16)

The M-step updates all the parameters based on the E-step results.
For example, the F0 of the j-th tone is updated as

μn(j) =

MX
m=1

L−1X
l=0

mf(l)H̄n,l(j, m)

MX
m=1

L−1X
l=0

m2H̄n,l(j, m)

. (17)

The initial values of μn(j) are estimated using PreFEst(-core)
[10] in order to mitigate the problem of local optimum.

4. EXPERIMENTAL EVALUATION

We conducted experiments to evaluate the effectiveness of the pro-
posed method by using both simulated data and real music record-
ings. The simulation results are reported and discussed in Sections
4.1 and 4.2; the results for real music recordings are presented in
Section 4.3.

4.1. Experimental Condition

Nine unaccompanied monophonic musical pieces synthesized with
a MIDI tone generator were used as the sources. The musical per-
formances included three violin, three flute, and three cello pieces.
Then, the source signals were reverberated by being convolved with
two impulse responses, both of which were for musical effect and
whose reverberation times RT60 were longer than one second. The
dereverberation performance was measured by using the log spectral
distance improvement (LSDI), which is defined as

LSDI = LSD(Y,S)− LSD(Ŝ,S), and (18)

LSD(η, ξ) ≡
vuutN−1X

n=0

L−1X
l=0

(20 log10

˛̨̨
˛ηn,l

ξn,l

˛̨̨
˛)2
ffi

NL, (19)

where S = {sn,l}0≤n≤N−1,0≤l≤L−1 is the true source signal and

Ŝ = {ŝn,l}0≤n≤N−1,0≤l≤L−1 is the dereverberated signal. The
other experimental conditions are listed in Table 2.

We used the harmonic GMM, NP, and AP models for the source
model, to evaluate the advantages of the harmonic GMM source
model over the other two. In this simulation, dereverberation was
performed by inverse filtering instead of Wiener filtering. This is be-
cause Wiener-filtered results sometimes have deep spectral valleys
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Table 2. Experimental conditions.

STFT Sampling rate 44.1 kHz
analysis STFT window 1024 pt Gaussian

STFT shift 256

Parameters J : Assumed number of musical tones 3
P : Order of AP model 32
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Fig. 1. Experimental results classified in each instrument and each source
model.

in a region where the power of the observed signal is low, which
degrades the LSDI score, even when the filtered signals are percep-
tually less reverberant. The effectiveness of Wiener filtering assessed
through visual inspection is discussed in Section 4.3.

4.2. Results and Discussion

Fig. 1 shows the LSDI of the three methods for each instrument.
The harmonic GMM source model yielded the largest improvement
for all instruments, which means the reverberation filter, gk,l, can
be estimated more accurately by using it. This result indicates the
harmonic GMM source model is more effective within the context
of musical audio-signal modeling than existing source models.

The cello’s LSDIs are negative in all source models. We think
there are two reasons for this; the first is that the reverberation
model given by Eq. (2) may overfit to suppress the power of the
low-frequency band, and the second is that STFT is unsuitable for
analysis of low-frequency signals.

4.3. Example for Real Performance Audio Signal

Fig. 2 shows some dereverberation results using audio signals
from real performances on commercial CDs. In these exam-
ples, α and γ are respectively set to 0.7 and 2, which were
the best-performing values for α ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and
γ ∈ {1.0, 1.5, 2.0, 2.5, 3.0}. It can be seen that each musical note
appears clearly in the spectrograms obtained with the proposed
method, which means that the reverberation component has been
effectively removed. In fact, the signals dereverberated by Wiener
filtering sounded less reverberant than the signals dereverberated by
inverse filtering. All the above results demonstrate the effectiveness
of using the harmonic source model and a Wiener filter and the
potential of the proposed method.

5. CONCLUSION

This paper has presented a new signal dereverberation method for
musical audio signals that are affected by long and dense reverber-
ation. The proposed method uses a harmonic GMM model for ac-
curate estimation of harmonic structures of the source signal, and
effectively dereverberates by using a Wiener filter based on both an

Fig. 2. Spectrograms of reverberant and dereverberated signals of real flute
(left) and violin (right) performances. The top panels are of reverberant sig-
nals and the middle and bottom panels are of signals dereverberated with the
existing and proposed methods.

estimated inverse filter and an estimated source model. Our experi-
mental results revealed that the proposed method could perform mu-
sic dereverberation more accurately than the existing speech dere-
verberation method.

Future work will include the improvement of dereverberation for
low-frequency signals and struck string instrument signals, and the
establishment of criteria for separately evaluating the dereverbera-
tion and signal distortion. Extension of our method to multi-channel
processing, in particular, stereo input, is also important.
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