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Abstract. We show that a Multiple Timescale Recurrent Neural Net-
work (MTRNN) can acquire the capabilities of recognizing and generat-
ing sentences by self-organizing a hierarchical linguistic structure. There
have been many studies aimed at finding whether a neural system such as
the brain can acquire languages without innate linguistic faculties. These
studies have found that some kinds of recurrent neural networks could
learn grammar. However, these models could not acquire the capability
of deterministically generating various sentences, which is an essential
part of language functions. In addition, the existing models require a
word set in advance to learn the grammar. Learning languages without
previous knowledge about words requires the capability of hierarchical
composition such as characters to words and words to sentences, which
is the essence of the rich expressiveness of languages. In our experiment,
we trained our model to learn language using only a sentence set with-
out any previous knowledge about words or grammar. Our experimental
results demonstrated that the model could acquire the capabilities of rec-
ognizing and deterministically generating grammatical sentences even if
they were not learned. The analysis of neural activations in our model
revealed that the MTRNN had self-organized the linguistic structure hi-
erarchically by taking advantage of differences in the time scale among
its neurons, more concretely, neurons that change the fastest represented
“characters,” those that change more slowly represented “words,” and
those that change the slowest represented “sentences.”

1 Introduction

The question of whether a neural system such as the brain can acquire a creative
command of languages without innate linguistic capabilities has been the object
of discussion for many years. Chomsky [1] claimed that there should be an innate
faculty for language in the human brain because of the “poverty of the stimulus”
argument. This argument is that the linguistic stimuli that a child can experi-
ence in reality are not enough in either quantity or quality for him or her to
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induce general rules of the language from these. Linguists who support nativism
emphasize the fact that children can learn to recognize and generate diverse new
grammatical sentences using only limited linguistic stimuli, which include virtu-
ally no evidence of what is ungrammatical. However, the recent progress made
in analyzing dynamical systems and chaos [2] has revealed that diverse complex
patterns can emerge from a few input patterns. Thus, the controversy between
nativists and experientialists about language acquisition is not over.

Many studies have aimed at revealing whether neural systems can acquire lan-
guages using neural network models [2,3,4,5,6,7,8]. Pollac [2] showed the phase
transition of non-linear dynamical systems can lead to generative capacity of lan-
guage using his higher-order-recurrent neural network, but his model required
both positive and negative examples of language to learn the rules. Elman [3,4,5]
proposed the Simple Recurrent Network (SRN) and showed that it could self-
organize grammar using only a sentence set. However, this model could not
deterministically generate sentences, but could predict the possibilities of the
next word from those that had been input up to that step. Sugita and Tani [9]
and Ogata et al. [10] used an RNN model with Parametric Bias (RNNPB) [11]
for language learning. These models could learn multiple sequences and deter-
ministically generate them by changing the parametric bias. However, they dealt
with simple sentences composed of two or three words, because the models had
difficulty learning long complex sequences. Thus, the question as to whether a
neural system can acquire generative capacity from a sentence set still remains
unanswered. This question is crucial to the problem of language acquisition be-
cause generative capacity is an essential part of human language functions.

Existing RNN models for language acquisition such as SRN and RNNPB re-
quire a predetermined word set to learn the grammar [3,4,5,6]. Learning languages
without such previous knowledge requires the capability to hierarchically compose
characters into words, and words into sentences. This capability is essential for
dealing with the diversity of expressions in language. Thus, it is also important to
find whether a neural system can acquire such hierarchical structures.

We discovered that a Multiple Timescale Recurrent Neural Network (MTRNN)
[12] can acquire the capabilities of recognizing and generating sentences even if
they are not learned through the self-organization of the linguistic hierarchical
structure. We trained an MTRNN using only a sentence set without any previous
knowledge about the lexicon or grammar.

2 Language Learning Model

Our language learning model is based on an MTRNN, an extended RNN model
proposed by Yamashita and Tani [12]. An MTRNN deals with sequences by cal-
culating the next state S(t + 1) from the current state S(t) and the contextual
information stored in their neurons. The model is composed of several neuron
groups, each with an associated time constant. If the neurons have a larger time
constant, their states change more slowly. The time scale difference causes the
information to be hierarchically coded. An MTRNN can deterministically gener-
ate sequences depending on the initial states of certain context nodes. Moreover,
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given a sequence, the model can calculate the initial states from which it gen-
erates the target sequence. Therefore, this model can be used as the recognizer
and generator of the sequences. The initial state space is self-organized based on
the dynamical structure among the training sequences. Thus, the model deals
with even unknown sequences by generalizing the training sequences.

Figure 1 shows an overview of our language learning model that has three
neuron groups, which are input-output (IO), Fast Context (Cf), and Slow Con-
text (Cs) groups, in increasing order of time constant (τ). The IO has 30 nodes
and each of them corresponds to one of the characters from the 26 letters in the
alphabet (‘a’ to ‘z’) and four other symbols (space, period, comma, and question
mark). Cf has 40 nodes and Cs has 11. We choose six neurons from Cs to be
used as the Controlling Slow Context (Csc), whose initial states determine the
sequence. In our model, a sentence is represented as a sequence of IO activations
corresponding to the characters. The model learns to predict the next IO acti-
vation from the activations up to that point. Therefore, we only need to use a
set of sentences to train our model. Figure 2 shows an example of the training
sequence for this model.

The activation value of the i-th neuron at step t (yt,i) is calculated as follows.
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xt,j = yt−1,j · · · (t ≥ 1) (3)

IIO, ICf , ICs, ICsc : neuron index set of each group (ICsc ⊂ ICs)
Iall : IIO ∪ ICf ∪ ICs

ut,i : internal state of i-th neuron at step t

bi : bias of i-th neuron
Csc0,i : initial state that controls MTRNN

τi : time constant of i-th neuron
wij : connection weight from j-th neuron to i-th neuron

wij = 0 · · · (i ∈ IIO ∧ j ∈ ICs) ∨ (i ∈ ICs ∧ j ∈ IIO)
xj,t : input from j-th neuron at step t

The connection weights (wij), biases (bi), and initial states (Ccs0,i) are updated
using the Back Propagation Through Time (BPTT) algorithm [13] as follows.



Recognition and Generation of Sentences 45

w
(n+1)
ij = w

(n)
ij −η

∂E

∂wij
= w

(n)
ij − η

τi

∑

t

xt,j
∂E

∂ut,i
(4)

b
(n+1)
i = b

(n)
i −β

∂E

∂bi
= b

(n)
i −β

∑

t

∂E

∂ut,i
(5)

Ccs
(n+1)
0,i = Ccs

(n)
0,i −α

∂E

∂Ccs0,i
= Ccs

(n)
0,i −α

∂E

∂u0,i
· · · (i ∈ ICsc) (6)

E =
∑

t

∑

i∈IIO

y∗
t,i · log

(y∗
t,i

yt,i

)
(7)

∂E

∂ut,i
=

⎧
⎪⎪⎨

⎪⎪⎩

yt,i − y∗
t,i + (1 − 1

τi
)

∂E

∂ut+1,i
· · · (i ∈ IIO)

yt,i(1 − yt,i)
∑

k∈Iall

wki

τk

∂E

∂ut+1,k
+ (1 − 1

τi
)

∂E

∂ut+1,i
· · · (otherwise)

(8)

n : number of iterations in updating process
E : prediction error

y∗
t,i : value of current training sequence for i-th neuron at step t

η, β, α : learning rate constant

When using the BPTT algorithm, the input values (xt,j) of IO are calculated
along with the feedback from the training sequence using the following equation
instead of (3).

xt,j = (1 − r) × yt−1,j + r × y∗
t−1,j · · · (t ≥ 1 ∧ j ∈ IIO) (9)

r : feedback rate (0 ≤ r ≤ 1)

The initial Csc states determine the MTRNN’s behavior. Thus, we define a set
of initial states (Csc0) as follows.

Csc0 = {(i, Ccs0,i)|i ∈ ICsc} (10)

Csc0 is independently prepared for each training sequence while the network
weights (connection weights and biases) are shared by all the sequences. The
initial state space is self-organized based on the dynamical structure among the
training sequences through a process where the network weights and Csc0 are
simultaneously updated.

To recognize a sequence, the Csc0 representing the target sequence is calcu-
lated using the BPTT with fixed network weights from (6). In this recognition
phase, the input values of IO are calculated by using (9) if the value of the target
sequence is given, otherwise they are calculated by using (3). Thus, the MTRNN
can recognize sequences even if only partial information is given.

A sequence is generated by recursively executing a forward calculation ((1),
(2), and (3)) using a Csc0 that represents the target sequence.
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Fig. 1. Overview of Language Learning MTRNN: a(t) is activation value of neuron
corresponding to ‘a’. The others (b(t), ..., z(t), ...) are defined in the same way. The
sentences are represented by successive activations of IO neurons.
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Fig. 2. Example of training sequence: “punch the small ball”

3 Language Learning Experiment

We trained the MTRNN to learn language using only a sentence set, without
any previous knowledge about the words or grammar, but only the character set
with each character corresponding to one of the IO neurons. This experiment
was aimed at finding whether the MTRNN could learn to recognize and generate
sentences even if they were not included in the training sentences. If the model
could acquire the necessary capabilities, the linguistic structure would have been
self-organized by MTRNN from the sentence set.

In this experiment, we used a very small language set to make it possible to
analyze the linguistic structure self-organized in the MTRNN. Our language set
contained 17 words in seven categories (Table 1) and a regular grammar that
consisted of nine rules (Table 2). (It was designed for robot tasks.)

3.1 Experimental Procedure

1. Derive 100 different sentences from the regular grammar.
2. Train the MTRNN using the first 80 sentences.
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Table 1. Lexicon

Category Nonterminal symbol Words

Verb (intransitive) V I jump, run, walk

Verb (transitive) V T kick, punch, touch

Noun N ball, box

Article ART a, the

Adverb ADV quickly, slowly

Adjective (size) ADJ S big, small

Adjective (color) ADJ C blue, red, yellow

Table 2. Grammar

S → V I

S → V I ADV

S → V T NP

S → V T NP ADV

NP → ART N

NP → ART ADJ N

ADJ → ADJ S

ADJ → ADJ C

ADJ → ADJ S ADJ C

3. Test the trained MTRNN’s capabilities using both the 80 sentences and the
remaining 20 sentences. The testing procedure was involved three steps.
(i) Recognition: Calculate Csc0 from a sentence.
(ii) Generation : Generate a sentence from the Ccs0 gained in (i).
(iii) Comparison: Compare the original and generated sentence.

4. Test the MTRNN using another 20 sentences that are ungrammatical as a
control experiment.

The calculation of Csc0 by the BPTT from (6) sometimes falls to a local mini-
mum in the recognition phase. Therefore, we calculate it 20 times while changing
the initial value in the updating process (Ccs

(0)
0,i ), and choose the result with the

lowest error E (cf. (7)).

3.2 Results

We found that our model could correctly generate 98 of 100 grammatical sen-
tences. To correctly generate a sentence, a stable trajectory representing the
sentence should be formed in the dynamical system of the MTRNN and its Csc0

should be properly embedded into the initial state space. We have listed the
sentences that the model failed to generate in Table 3.

We also found that the generated sentences did not match the originals for all
of the 20 ungrammatical sentences in the control experiment. This is because the
recognition error (E (cf. (7)) in the recognition phase) did not adequately de-
crease. Indeed, the average recognition error for the 20 ungrammatical sentences
was about 22 times that of the 20 unknown grammatical sentences.

These results revealed that our model self-organized the linguistic structure
using only the sentence set.

Table 3. Failed sentences

Sentence number Original sentence Generated sentence

082 (not learned) “kick a big yellow box.” “kick a sillylllow box.”

100 (not learned) “jump quickly.” “jump slowloxl”
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4 Analysis

We claim that our model hierarchically self-organized a linguistic structure, more
precisely that IO neuron activation represents the “characters,” Cf represents
the “words,” and Cs represents the “sentences.” We illustrate the basis of this
argument in this section by analyzing our model.

We analyzed the neural activation patterns when the MTRNN generated sen-
tences to reveal the linguistic structures self-organized in the MTRNN. We used
principle component analysis (PCA) in our analysis. We have given some exam-
ples of the transitions of Cf neural activation in Fig. 3, and those of Cs in Fig.
4. The three activation patterns in these figures correspond to the sentences,
“walk slowly.,” “punch the yellow box slowly.,” and “kick a small yellow ball..”
We have summarized the results of the analysis for each neuron group below.

IO : Each IO neuron corresponds to a character. Thus, their activation patterns
obviously represent the sequences of the “characters.”

: initial activation : lexical segment : transition segment (head margin,  space or period)
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Fig. 3. Transitions of Cf activation : dimensions are reduced from 40 to 3 by PCA
(the total contribution rate is 86%). The same words are represented as the same
trajectories, and the words in the same categories are represented in similar ways.
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Fig. 4. Transitions of Cs activation : dimensions are reduced from 11 to 3 by PCA
(the total contribution rate is 95%). In different sentences, even the same words are
represented in different ways.
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Fig. 5. Cf activation in first step of each word: words are clustered based on their
categories
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Fig. 6. Initial state of Cs (Csc0): dimensions are reduced from 6 to 2 by PCA (total
contribution rate is 90%). The sentences are clustered based on their grammatical
structure. (a) The value of PCA1 seems to be negatively correlated with the number
of words in sentences, i.e., the complexity of sentences. (b) There seems to be a PCA2
threshold that separates whether a sentence has an adverb or not. (c) Focusing on the
number of words in an objectival phrase, there seems to be an axis correlated with it.

Cf : We claim that Cf activation represents the “words” including their gram-
matical information. Our claim is based on the following facts, which are
found in Fig. 3.

1. The correspondence between characters and activations disappeared.
This can easily be confirmed since the activation patterns are different
even if the characters are the same.

2. The same words are represented by the same trajectories (e.g., “yellow”
in the center and to the right of the figure).

3. The words in the same category are represented in a similar way (e.g.,
“punch” in the center of the figure and “kick” to the right of the figure).
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4. The first and the last steps of the words are clustered by their gram-
matical roles, and the grammatical associativity between categories is
represented by their closeness (e.g., an intransitive verb (“walk”) ends
near the start of adverbs, but transitive verbs (“punch” and “kick”) end
near the start of articles).

We also have shown the Cf activations in the first step of each word in all
the sentences in Fig. 5. This clearly illustrates that words are clustered by
their grammatical roles.

Cs : We claim that the Cs activation represents the “sentences.” These are two
main bases for our claim.
1. The correspondence between words and activations disappeared. Even

the same words in different sentences are represented in different ways
in Fig. 4 (e.g., “yellow” in the center and to the right of the figure).

2. The initial states of Cs (Csc0) are clustered mainly by the grammatical
structure of the sentences (Fig. 6). The grammatical structure is featured
by both the existence of an adverb and the complexity of the objectival
phrase. The complexity of the objectival phrase increases in the following
order.
(i) sentence with a intransitive verb (e.g., “walk.”)
(ii) sentence with a transitive verb and no adjectives (e.g., “kick a box.”)
(iii) sentence with a transitive verb and an adjective

(e.g., “kick a red box.”)
(iv) sentence with a transitive verb and two adjectives

(e.g., “kick a big red box.”)

5 Conclusion

We reported on language learning achieved by using an MTRNN. We trained
the model to learn language using only a sentence set without any previous
knowledge about the words or grammar, but only about the character set. As a
result of our experiment, we found that the model could acquire capabilities of
recognizing and generating sentences even if they were not learned. Therefore,
we found that our model could self-organize linguistic structures by generalizing
a sentence set. To discover this structure, we analyzed the neural activation
patterns in each neuron group. As a result of the analysis, we found that our
model hierarchically self-organized language taking advantage of the difference
in time scales among neuron groups. More precisely, the IO neurons represented
the “characters,” the Cf neurons represented the “words,” and the Cs neurons
represented the “sentences.” The alternative view was that the network weights
of IO coded the sequence of characters for each word, and those of the Cf coded
the grammars as the associativity between words, and those of the Cs coded the
separate sentences themselves. The model recognizes and generates sentences
through the interaction between these three levels.

We proved in an experiment that a neural system such as a MTRNN can
self-organize the hierarchical structure of language (e.g., characters → words →
sentences) by generalizing a sentence set, and it can recognize and generate new
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sentences using the structure. This implies that the requirements for language
acquisition are not innate faculties of a language, but appropriate architectures
of a neural system (e.g., differences in the time scale). Of course, this is not direct
evidence for experientialism in language acquisition, but important knowledge
supporting that theory.

In future work, we intend to deal with language acquisition from the viewpoint
of the interaction between linguistic cognition and other types of cognition (this
viewpoint is that of cognitive linguists). Specifically, we are going to connect the
language MTRNN with another MTRNN for the sensori-motor flow of a robot.
We expect the robot to acquire language grounded on its sensori-motor cognition
using the dynamical interaction between the two MTRNNs.
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