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1. Introduction

Understanding the underlying intentions of a music per-
former is crucial to enable a machine such as an automated
accompaniment system to interact intelligently with a musi-
cian. Particularly, understanding the symbol associated with
a tone the player generates allows a machine to create re-
sponse that is in concordance with the symbol. We define
playing technique as a symbol such as the expression mark-
ing that reflects the intention of a human performer in a per-
ceivable change in timbre.

We believe that it is crucial to understand that some play-
ing techniques are inherently ambiguous, and to associate
with an input signal the degree of ambiguity along with the
estimated class labels. For example, if the class of dynam-
ics are described by “soft” and “loud,” it is irrelevant to ask
whether a “moderate” sound is “soft” or “loud” - it only
makes sense to say that it either belongs to both or to nei-
ther.

We shall express ambiguity by modeling a set of playing
techniques as a posterior distribution, and using statistics ob-
tained from the distribution to determine the ambiguity. We
shall group playing techniques that acts on a same, contin-
uous quality into one set that in turn generates a posterior
distribution as shwon in Figure 1. Particularly, we hypoth-
esize that ambiguous sounds are the main cause of misclas-
sification, and such sounds creates a distribution with a high
variance.

Existing research in detecting the playing technique in-
volved discretization of techniques involving a continuous
factor and converting it into a problem of classification. For
example, the position of the bow on a violin was discretized
by recording two points and choosing one of the two posi-
tions [1]. Other research exclusively dealt with playing tech-
niques of discrete quality such as whether a bass guitar string
was slapped or not [2]. Both approaches did not associate
any posterior probability with the output label, and thus suf-
fered when recognizing notes that even humans have trouble
distinguishing [1]. Another approach involved extraction of
“perceptual” features that were used to control another mu-
sical instrument [3]. This approach did not attempt to sym-
bolize timbre into playing techniques.

In this paper, we modeled a set of playing techniques that
acts on a same continuous factor (position of the bow on a
violin) as a posterior distribution given the input signal using
a hybrid of Gaussian Mixtures (GMM) and Relevance Vec-
tor Machine (RVM). We then rejected data whose variance
exceeds a threshold given some input signal, and evaluated
the performance of playing technique classification using the
following:

e The recognition accuracy after ambiguous frames are

rejected

e Ratio of the number of rejected frames to the total num-

ber of frames
Receiver Operating Characteristics was evaluated but is
omitted for lack of space. We found that the recognition
rate increases dramatically by rejecting ambiguous frames,
thus hinting our hypothesis that ambiguous sound is the main
cause of misclassification.
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Figure 1: Family of Playing Techniques as Likelihoods

2. Method

Likelihood distributions within a family were generated
by training a hybrid of clustering algorithm and multi-class
relevance vector machine (RVM) classifier.

2.1 Data Acquisition and Feature Selection

Features as summarized in Table 1 were chosen based on
existing research in instrument identification [6] and percep-
tual synthesis [3]. In addition, we also included the “Median
Spectral Roll-off,” which estimates the distribution of power
in the frequency domain of non-harmonic components. It
was determined by applying a median filter along the fre-
quency axis with the width set to twice the width of the main
lobe of the windowing function. Frames whose signal power
were less than -60dB were discarded. Furthermore, a param-
eter vector consisting of the fundamental frequency and the
negative exponent of the time after onset was associated with
each feature vector. Next, the training data was normalized
to have a unit variance with zero mean. Outliers, or vectors
whose Euclidean norm is greater than 25 (= 50), were re-
moved. This process was iterated until no further data was
removed.

Table 1: Preliminary Features Used. F; denotes the fre-
quency of the k-th overtone, and N ranges from 1 to 19.

Feature Dimension
Fj-to-Fy Power Ratio 12
Spectral Spread about F 13
Spectral Kurtosis about Fy, 13
Spectral Flatness 1
Spectral Centroid 1
Spectral Spread 1
Signal Power 1
MFCC 14
AMFCC 14
A’MFCC 14
Spectral Roll-off with threshold = 4N % 19
of total power
Median Spectral Roll-off with threshold 19
=4N% of total
Zero-Cross Rate

[ Total [

2.2 Supervised Training of the Playing Styles

A hybrid of Gaussian mixture and multiclass relevance
vector machine (RVM) classifier was used for generating the
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training distribution. RVM was chosen because it could pro-
vide probabilistic interpretation to the output, it could sup-
port highly non-linear decision boundary, and it tends to
produce few relevance vectors (akin to the support vector
in SVM) [4]. These were all important characteristics since
the shape of the decision boundary is not well-known and a
quick response was desired for our application.

Training time for a RVM with number of classes and train-
ing vectors used in our application was too impractical and
therefore, we generated a mixture of 512 Gaussians based on
the parameter vector described previously. Training data was
associated to four Gaussians with the greatest likelihood. A
RVM using Gaussian kernel of width 8 and 2 was trained
for each Gaussian in the mixture. No bias was incorporated
because that caused “ambiguous” sound to be classified into
one with the greatest bias term.

Let v, be the parameter vector, 8 the playing technique,
v, the feature vector, ¢ the k-th Gaussian of the mixture
of K = 512 Gaussians, each with associated weight, mean
and covariance matrix, wy, Uy and ;. That is, P(vp|@y) ~
N(vp; ik, i) and P(¢) = wy. The parameter vector v, and
the likelihood 8 are conditionally independent given the k-
th cluster, ¢ because the calculation of the likelihood at the
k-th RVM depends only on the feature vector v,. Also, it
is assumed that v, and v, are independent. Since cluster is
assigned by the parameter vector, ¢ is only dependent on
vp. Then, the posterior is estimated by the following:

kMax
P(6|Vx»"p) ~ Z Wk(Vp)Ok(evVA')N(‘7P|Uk>Zk)Z

k=1
where kpo = 4, summation index k sorted such that
P(vp|k) > P(vp|@rs1), ok the output of the RVM associated
with the k-th cluster and Z a normalization constant; uniform
priors P(8) and P(¢y) were assumed.
3. Experiments

Samples of the violin were obtained from the RWC Music
Database (RWC-MDB-1-2001 No. 15) [5]. Playing styles
“VNPO (Ponticelli),” “VNNOM (Normal)” and “VNTA
(Tasto)* were used as samples for describing the family of
playing techniques sul tasto (S.T.), ordinaire (Ord.) and sul
ponticelli (S.P.), which describes position of the bow on the
string in a bowed instrument, where S.P. indicates playing
closer to the bridge than the usual, Ord. normally, and S.T.
farther from the bridge. Each playing style consists of a
64-note chromatic scale starting at G2, the lowest possible
sound generated on a violin.

After extracting the features, 5-fold Cross-Validation was
performed by using every fifth frame as the validation and all
other for the training. To generate a mapping from playing
technique to real number that is consistent with the meaning
of the playing techniques, S.T. was mapped to -1, Ord. to
0, and S.P. to 1. To determine the effectiveness of rejecting
“unconfident” samples, different data rejection criteria were
imposed. Namely, if the variance of the distribution 6 was
above some threshold 7, the data was rejected as being too
ambiguous. The recognition rates with different rejection
criteria were then compared against 5-Nearest Neighbor (5-
NN).

4. Results and Discussion

Figure 2 shows the recognition rate and the percentage
of data rejected as the rejection criterion is varied. Average
performance of the 5-NN yields a recognition accuracy of
S.T.=87%, Ord.=93% and S.P.=96%. Our method exceeds
the baseline given the rejection criterion 62 >t =0.25, which
discards 93.4% of Ord., 98.2% of S.P., and 81.8% of S.T.,

but recognizes the respective playing techniques at 93.8%,
99.8%, and 100.0%. While the ratio of analyzed frames to
the number of total frames is drastically lowered, we have
shown that imposing stringent criterion increases the recog-
nition rate. This result also suggests that ambiguous sounds
are the primary cause of misclassification in playing tech-
nique recognition. Noting that the recognition without a cri-
terion performs considerably poorly than the baseline, the
result hints that a better set of features and hyperparameters
could increase the lower bound, and the rejection criterion
may be relaxed in order to attain similar performance (thus
increasing the effective rate of analysis).
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Figure 2: Recognition Rate and Data Rejection Rate as a Function
of Rejection Criteria. Light horizonatal line in the bottom figure
shows the recognition result from 5-NN.

5. Conclusion and Future Work

In this paper, we treated a class of playing techniques as a
probability distribution to exploit statistics that could detect
data that might decrease recognition accuracy. We found that
rejecting data whose distribution has a large variance could
bring the recognition accuracy substantially at the cost of re-
duced rate of recognition. Though only one type of playing
technique was tested due to time constraints, it is of inter-
est to test our method on multiple instruments and various
playing techniques. Furthermore, we would like to adapt
the trained machine for other instruments or performers with
minimal retraining process.
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