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Abstract— Robot imitation is a useful and promising alterna-
tive to robot programming. Robot imitation involves two crucial
issues. The first is how a robot can imitate a human whose
physical structure and properties differ greatly from its own. The
second is how the robot can generate various motions from finite
programmable patterns (generalization). This paper describes a
novel approach to robot imitation based on its own physical
experiences. Let us consider a target task of moving an object on
a table. For imitation, we focused on an active sensing process
in which the robot acquires the relation between the object’s
motion and its own arm motion. For generalization, we applied
a recurrent neural network with parametric bias (RNNPB) model
to enable recognition/generation of imitation motions. The robot
associates the arm motion which reproduces the observed object’s
motion presented by a human operator. Experimental results
demonstrated that our method enabled the robot to imitate not
only motion it has experienced but also unknown motion, which
proved its capability for generalization.

I. INTRODUCTION

The final goal of this work was to develop a method that
enabled robots to imitate human motion. Human adults can
easily learn by watching the behavior of others, and imitate
them. Even infants can learn through imitating facial and
hand gestures. With this significant ability, human beings
can acquire new behaviors from others within an incredibly
short time. From the standpoint of robot learning, any method
that enables robots to imitate humans can significantly speed
up the learning process [1]. The learning load is crucial to
real robots because of problems with durability. It is also
almost impossible to program robots manually to make every
conceivable motion.

With advances in hardware technologies, humanoid robots
can now realize several kinds of motion: two-legged locomo-
tion, running, and rising. Some of them have tried to imitate
human motion. Nakazawa et al. developed a humanoid robot
that imitates dancing using a motion capture system [2]. In
their study, the robot imitated the trajectories for every part
of the human body. The robot’s joint angles are the almost
same as humans and under control all the time. Therefore,
the motors sometimes have to output extremely large torque
because of the differences of the body dynamics. Thus, most
conventional studies usually designed recognition process as
pattern clustering, and the motion generating process was
isolated from the recognition process.

For robot imitation, in this work, we focus on two factors.
One is “mirror neurons” in the brain and the other is infant’s
“body babbling.”

The mirror neurons were originally discovered in area F5
of the monkey premotor cortex, which discharge both when
the monkey makes a particular action and when it observes
another making a similar action [3]. The neurons suggest that
both recognition and generation processes are conducted in the
same structure in brain. This work uses the neural net model
called the Recurrent Neural Network with Parametric Bias
(RNNPB) [4] that can work as both recognition and generation
functions. The detail of the model is described in section II.

The body babbling is experiential process where infants
learn what muscle movements achieve a particular goal state
[5]. This process enables infants to acquire a mapping between
dynamic patterns of movement and a resulting body part
configuration. Based on the fact, this work introduces the
active sensing process as robot’s experiential process where
the robot acquires a mapping between their own motions and
target motions based on real experiences.

Our target task is moving an object on a table. In our
imitation architecture, recognition process is implemented not
as the clustering of generated patterns but as the prediction of
pattern generation (forward model). Based on this sense, Ogata
et al. proposed the active recognition model using humanoid
robot and RNNPB model [6]. The prediction of the object
motion while manipulating enables the robot to generate the
motion at the next moment (inverse model).

Section II describes our imitation architecture which is
based on active sensing and a RNNPB. Section III describes
detail implementation of the robot hardware and the neural
net model. Section IV describes the imitation experiments and
the obtained results. Section V discusses the prediction and
generalization capabilities of our architecture as an imitation
model. Section VI concludes this paper.

II. IMITATION METHOD BASED ON ACTIVE SENSING

A. Overview of Our Imitation Process
Here, we present an overview of our method, which enables

a robot to imitate human behaviors by using the experience
of active sensing. For simplifying the verification of the
effectiveness of the method, in this work, the imitation part, i.e.
the trajectory of the object, is given in advance. Our imitation
process consists of three phases: the learning, observation and
motion-generating phases (See Fig. 1). We can overview it as
follows.

1) Learning (Object Recognition)
The robot connects its arm motions and the object
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Fig. 1. Imitation process.

motions while it manipulates the object (active sensing).
The experience of active sensing enables the robot to
predict the object motion.

2) Observation (Motion Planning)
The robot observes a target object manipulating gener-
ated by a human teacher focusing not on the teacher’s
motion but on the object motion. The robot planned
its arm motion which can generate the similar object
motions.

3) Motion Generation (Imitation)
The robot actually generates the arm motion planned in
the previous phase.

In this process, one of the problems is how appropriate
motion is fixed from the object motion presented. There needs
to be some kind of method to connect robot motion with
object motion. The robot motion has to be generated using
only limited patterns of learnable object manipulations which
are limited due to real robots having problems with durability.

The RNNPB model has advantages in that it can acquire
self-organized behavioral primitives as the “PB values”. The
most significant feature of the model is its generalization
capabilities. By taking advantage of the RNNPB model, in
this work, the robot motion was associated with the object
motion with PB values.

B. Learning Model
This section describes the learning model used in our

method, the RNNPB model, and its learning algorithm.
1) RNNPB: The RNNPB model is the FF-model (forward-

ing forward model) proposed by Tani and Ito. The RNNPB
model works as a prediction system: its input data is current
sensory state S(t) and its output data is predicted sensory state
S(t+1) in the next step. The network configuration for the
RNNPB model is outlined in Fig. 2. This model has the same
architecture as the conventional hierarchical neural network
model except for the context layer and the PB nodes in the
input layer. Unlike the other input nodes, these PB nodes take
a constant value throughout each time sequence. The context
layer has a loop that inputs current output as input data in
the next step. An advantage of this layer is that the RNNPB
model can learn the time sequences taking advantage of past
contexts. After learning time sequences, the RNNPB model
self-organizes the PB values at which the specific properties
of each individual time sequence are encoded.

Fig. 2. RNNPB.

The RNNPB model learns with a particular learning algo-
rithm. Although the learning algorithm for the conventional
hierarchical neural network is back propagation, the RNNPB
model cannot learn with this algorithm because it does not
have a teacher signal to the context layer. Consequently, a
novel learning algorithm called the BPTT (back propagation
through time) [7] is employed.

2) Learning PB Value: The PB values are generally calcu-
lated during the learning process as follows.

δρt = kbp ·

t+l/2∑

t−l/2

δ
bp
t + knb(ρt+1 − 2ρt + ρt−1), (1)

pt = sigmoid(ρt), (2)

where kbp and knb are constants; ρt is the internal value of
the PB node at t; pt is the PB value of the PB node at t;
and l is the step length of a sequence. In (1), the first term
represents the delta error, δ

bp
t , back-propagated from the output

nodes to the PB nodes; it is integrated over a period from
t-l/2 to t+l/2 steps. Integrating delta error in multiple steps
prevents local fluctuations in output errors from significantly
affecting the temporal PB values. The second term is a low-
pass filter that inhibits frequent rapid changes in the PB values.
In (2), the current PB values are obtained from the sigmoidal
outputs of the internal values. The PB values after threshold
processing can also be utilized as quasi-symbols for human-
robot interaction [8].

In this work, the delta force of the PB values have been
calculated as follows because our goal was to acquire specific
PB values corresponding to each object manipulation.

δρt = kbp ·

T∑

0

δ
bp
t , (3)

where T is the sensory sequence length. In (3), the delta errors
are not integrated errors in the constant steps but in all the
steps.

C. Calculation in Observation and Motion Generating Phases
After the RNNPB model is organized in the BPTT and the

PB values are calculated in the learning phase, the RNNPB
model is used in the observation and motion generating phases.
This section describes how the RNNPB model is used in the
observation and motion generating phases.
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1) Method for Recognizing Manipulation: This section
describes how the manipulation presented by the teacher in the
observation phase is recognized, i.e., how the PB values in the
observation phase are obtained. The PB values are calculated
based on (2) and (3) by the organized RNNPB model without
updating the connection weights. However, there are no arm
motor data because the robot is just looking at the target, and
does not move unlike in the learning phase. The initial arm
motor values are then input to the motion input layer in step
0, and the outputs are calculated forward in the close looping
mode from step 1; the outputs in the motion output layer in
step t-1 are the input data in the motion input layer in step t

(See Fig. 3). To put this simply, the motion input layer plays
the same role as the context layer does.

2) Method for Generating Motion: This section describes
how directive motor values transferred to the robot to move its
motors in the motion generating phase are calculated (See Fig.
4). The motion output of the RNNPB model is obtained in a
forward calculation. The PB values obtained in the observation
phase and each item of real input data are input in real time
to the RNNPB in each step. The motion output signal, the
predicted directive motor value, of the RNNPB model in step
t-1 is transferred to the robot as the directive motor value in
the next step, step t.

III. MODEL AND SYSTEM

A. Humanoid Robot Robovie-IIs
Our experimental platform was a humanoid robot, Robovie-

IIs, a refined model of Robovie-II developed at ATR [9].
Robovie has three DOFs (degree of freedom) in its neck and
four DOFs in each arm. Each motor angle value is measured
with potentiometers. It also has stereoscopic CCD cameras on
its head. The potentiometers and the camera collected the data
required for the experiment.

B. Target Object
The manipulation targets are a cylinder-shaped object and

a box-shaped object. The cylinder-shaped object moves in
parallel when the robot lays its hand on the low position, and

it tumbles when the robot lays the hand on the high position.
The box-shaped object was moved by the robot hand. The top
of the object is separated into two colors, red and blue, which
enable the robot to easily detect the rotation of the object.

C. Experiment System
Fig. 5 is the system diagram. The camera tracks the target

object by controlling the neck motor keeping the centroid of
the object centered on the camera. Since the robot is required
to move in real time, the module for the moving motors has
been constituted on a PC embedded in the robot, and the
processes for translating data and calculating the directive
motor values run on an external PC. The size of the RNNPB
model differed according to experiments.

The following sensory data were collected in the experiment
for use in the RNNPB model.

a) Visual Information:
Only the left eye camera was used. The trajectory of an object
was selected from the image information by a CCD camera
with a resolution of 500

�
400 pixels. The center position

of each colored top face, the X-Y coordinates in the camera
([0-1]), was estimated by extracting the object from the color
information.

b) Motor Information:
The neck (2 DOFs: pitch and yaw axis) and the left arm were
used. Note that DOFs of used arm motors differed according
to experiments, and unused motors were fixed.

Those values were synchronized between different modali-
ties, and were normalized in [0.1-0.9]. The sensory data were
stored every 400 msec for each manipulation, and their lengths
were all twenty steps.

In the learning phase, the robot first collected the camera
data and the motor data from its own neck and arm during
active sensing. The connection weights for the RNNPB model
were updated off-line using collected data simultaneously.
In the observation phase, the robot then collected the neck
motor data and the camera data. The corresponding PB values
were calculated for the given sequence by the RNNPB model
without updating the connection weight values. Finally, in the
motion generating phase, the robot generated its motion by
inputting the PB values obtained in the observation phase into
the organized RNNPB model.
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Fig. 5. System diagram of imitation.



IV. EXPERIMENT

A. Imitation of Known Manipulation
We carried out the experiment to confirm that whether the

robot can associate its motions only with object motions.
1) Task: A target object is a cylinder-shaped object. In the

experiment, there were two kinds of manipulation, parallel
translation and tumbling (See Table I). Each manipulation has
moving directions, “Left to Right (L � R)” and “Right to
Left (R � L)”. Learning 1 in Table I is, for example, parallel
translation from the left to the right. Learning 1-4 in Table I
represent manipulation that the robot learned in the learning
phase. Observations 1-4 in the table represent the manipulation
that the robot observed in the observation phase.

2) Procedure: In the learning phase, the robot first con-
ducted motions programmed to manipulate the object as
listed in Table I, Learning 1-4, and collected sensory data.
It manipulated the object three times for each learning, and
collected twelve patterns of data. The RNNPB model was then
trained with the collected data 300,000 times, which spent
approximately forty minutes. The RNNPB model, consisted
of fifty-eight neurons: in the input layer, fifteen in the middle
layer, ten in the context layer, and two as parametric bias.

In the observation phase, the robot then observed four types
of manipulation, Observation 1-4 in Table I, presented by a
human teacher. The robot collected data twice for Observation
1-4; there was a total of eight patterns. With the collected
sensory data, the PB values were renewed 5,000 times, which
spent approximately sixty seconds.

Finally, in the motion generating phase, the robot generated
its motion.

3) Results: Fig. 6 has examples of sequences of input and
output data after the RNNPB model learned in the learning
phase. The solid lines describe RNNPB output (prediction)
and the broken lines describe input (real data). We confirmed
that RNNPB could predict the sequences accurately.

Fig. 7 shows two-dimensional PB space acquired in the
learning and observation phases, which consisted of pairs of
PB values. The PB values obtained in the learning phase
were self-organized corresponding to the categories of object
manipulations. The PB values resulting from observations
of known manipulations are plotted close to the PB values
resulting from the same manipulations being learned.

Fig. 8 shows motor values generated in the observation and
motion generating phases. Learned manipulations were repro-

TABLE I
OBJECT MANIPULATION (CYLINDER).

Moving direction Contact position
Learning 1 L � R Low

2 L � R High
3 R � L Low
4 R � L High

Observation 1 L � R Low
2 L � R High
3 R � L Low
4 R � L High
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Fig. 7. PB Space (cylinder).

duced almost accurately. Fig. 9 has examples of sequential
photographs that capture the robot generating motion.

B. Imitation of Unknown Manipulation
We carried out another experiment testing some imitation

motions involving not only the trained motions in active
sensing process but also unknown motions.

1) Task: A target object is a box-shaped object. In the
experiment, there were two kinds of manipulation, parallel
translation from the left to the right (“L � R”), and rotation to
the right (“Rrot”). Each manipulation was divided into three
levels of moving distance: short “S”, medium “M”, and long
“L” (See Table II). Due to several levels being set for each
manipulation, we expected that the robot could learn about
the gradual shift in its motor value. Learning 1-6 in Table II
represent manipulation that the robot learned in the learning
phase. Observations 1-3 in the table represent the manipulation
that the robot observed in the observation phase. Observation
3, which is “moving from the left to the right while rotating
to the right”, is manipulation unknown to the robot.

2) Procedure: In the learning phase, the robot first con-
ducted motions programmed to manipulate the object as listed
in Table II, Learning 1-6, and collected sensory data. It ma-
nipulated the object once for each learning, and collected six
patterns of data. The RNNPB model was then trained with the
collected data 200,000 times, which spent approximately ten
minutes. The RNNPB model, consisted of thirty-six neurons:
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(a) L � R (Low)

(b) L � R (High)

Fig. 9. Observation and motion generation (cylinder).

TABLE II
OBJECT MANIPULATION (BOX).

Moving direction Moving level
Learning 1 L � R S

2 L � R M
3 L � R L
4 Rrot S
5 Rrot M
6 Rrot L

Observation 1 L � R L
2 Rrot L
3∗ Rrot � L � R L � L

∗Unknown

in the input layer, fifteen in the middle layer, ten in the context
layer, and two as parametric bias.

In the observation phase, the robot then observed three ma-
nipulations, Observation 1-3 in Table II, presented by a human
teacher. The robot collected data once for each manipulation;
there was a total of three patterns. With the collected sensory
data, the PB values were renewed 5,000 times, which spent
approximately fifteen seconds.

Finally, in the motion generating phase, the robot generated
its motion.

3) Results: Fig. 10 shows PB space acquired in the learning
and observation phases. The PB values obtained in the learning
phase were self-organized corresponding to the categories of
object manipulations and moving levels. The PB values re-
sulting from observations of known manipulations are plotted
close to the PB values resulting from the same manipulations
being learned. However, PB values corresponding to the un-
known manipulation labeled as “∗” are plotted to the center
position between “L � R” and “Rrot”.

Fig. 11 plots the trajectories for the robot’s hand seen from
above the table in the learning and motion generating phases.
Fig. 12 has sequential photographs that capture the robot
observing and generating motion. The unknown manipulation
was imitated as a combination of known manipulations.
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(a) L � R (Left to Right)

(b) Rrot (Right rotation)

(c) Rrot+L � R (Right rotation + Left to Right)

Fig. 12. Observation and motion generation (box).

V. DISCUSSION

A. Prediction Capability
As we can see from Fig. 6, the RNNPB model has prediction

capabilities. The robot can predict what kind of object motion
its own motion would generate. This enables the robot to
associate motion with object motion in the observation phase.
In recognizing observed manipulation, the robot predicts the
motion and object sequence, and recognizes the PB values that
generate appropriate motion. In the motion generating phase,
the robot predicts the sequence in real time, and selects motion
for the next step with the RNNPB model.

B. Generalization Capability
The robot acquired behavioral primitives implicitly through

learning in the second experiment: moving the hand from the
left to the right for manipulation “L � R”, and extending its
arm for manipulation “Rrot”. The unknown manipulation was
recognized as a combination of the primitives. This clearly
proved the generalization capabilities the proposed method
had.

VI. CONCLUSIONS

This paper proposed a method of imitation focusing on
object motion generated while a humanoid robot was actively

sensing objects. The task was moving objects on a table,
the first step in object manipulation. The method consists of
three phases i.e., the learning, observation, and motion gener-
ating phases. The RNNPB model, which has generalization
capabilities, was used as the learning model to reduce the
learning load. By specifically taking advantage of the RNNPB
model, the robot self-organized connection between its own
arm motions and the object motions, associated a motion
with an observed object motions. A learning system that
gathered visual data and motor data during manipulations was
implemented on the humanoid robot Robovie-IIs. An experi-
ment using a cylinder-shaped object and an experiment using
a box-shaped object were conducted. The first experiment
demonstrated that the robot could associate its motions only
with the object motions. The second experiment demonstrated
that this method enabled the robot to imitate the unknown
manipulation of object as well as learned patterns.

Although the task set for the experiment was object ma-
nipulation, our method can be used for different tasks. Our
method plays a role of connecting the actor’s operation and
the target response. If the target is a part of body, it is also
possible for robots to imitate body motions.

In this work, experiments were conducted with limited and
few learning patterns. Acquiring a greater variety of motions
requires resolution of the trade-off between generalization
and differentiation of motion dynamics. Our future work will
confirm the general effectiveness of the method for a variety
of motions, and resolve the issue stated above to develop a
sophisticated method which enables robots to generate more
motion patterns.
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