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Abstract— This paper proposes a computational model for
phoneme acquisition by infants. Human infants perceive speech
sounds not as discrete phoneme sequences but as continuous
acoustic signals. One of critical problems in phoneme acqui-
sition is the design for segmenting these continuous speech
sounds. The key idea to solve this problem is that articulatory
mechanisms such as the vocal tract help human beings to
perceive speech sound units corresponding to phonemes. That
is, the ability to distinguish phonemes is learned by recognizing
unstable points in the dynamics of continuous sound with
articulatory movement. We have developed a vocal imitation
system embodying the relationship between articulatory move-
ments and sounds produced by the movements. To segment
acoustic signal with articulatory movement, we apply the
segmenting method to our system by Recurrent Neural Network
with Parametric Bias (RNNPB). This method determines the
multiple segmentation boundaries in a temporal sequence using
the prediction error of the RNNPB model, and the PB values
obtained by the method can be encoded as kind of phonemes.
Our system was implemented by using a physical vocal tract
model, called the Maeda model. Experimental results demon-
strated that our system can self-organize the same phonemes
in different continuous sounds. This suggests that our model
reflects the process of phoneme acquisition.

I. INTRODUCTION
Our goal is to clarify how to acquire the ability to

distinguish phonemes in the early period of human infants.
Human infants can acquire spoken language through vocal
imitation of their parents. Despite their immature bodies, they
can imitate their parents’ speech sounds by generating those
sounds repeatedly by trial and error. This ability is closely
related to the cognitive development of language.

Many researchers took notice of the relationship between
articulatory movements and sounds produced by the move-
ments. They have designed simulations and robots that dupli-
cate the developmental process of infants’ vowel acquisition
through vocal imitation [1], [2], [3]. These studies were
based on the idea that articulatory mechanisms such as
the vocal tract enable us to acquire phonemes, i.e. speech
sound in the form of phonemes is characterized by motor
articulatory information. This idea has been advocated as
the motor theory of speech perception [4], and recent neuro-
science studies seem to show the idea to be an active process
involving motor cognition [5], [6].

Segmenting acoustic signals with articulatory movements
is essential for phoneme acquisition; the reason is that human
infants do not know the given phonetic distinction inherently.
The human development studies described above assume
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that acoustic signals consist of discrete phoneme sequences
in advance, and they search for vocal tract shapes corre-
sponding to phonemes. However, articulatory movements
for the same phoneme dynamically change according to the
context of continuous speech (e.g. coarticulation). This effect
derives from a physical constraint that articulatory move-
ments should be continuous in sound generation. We assume
that human infants regard phoneme sequences as continuous
acoustic signals. As they grow, infants will acquire the ability
to discover phoneme units in a continuous speech sound by
prosody, rhythm, stress and whether they can imitate the
sound or not.

We use Recurrent Neural Network with Parametric Bias
(RNNPB) [7] to segment a continuous temporal sequence
consisting of acoustic signal with articulatory movement.
From the view point of considering sounds as temporal
sequences, we have already developed a vocal imitation
system [8], which used the RNNPB model and a physical
vocal tract model, called the Maeda model, to simulate the
physical constraints. We, furthermore, apply to our system
the segmenting method by RNNPB [9]. This method can
segment several kinds of sequences into primitive sections
using the prediction error of the RNNPB model and encode
the segmented sections as a set of parameters, called PB
values. It is assumed that the method enables to encode the
position of phoneme transition as the segmented sections.

Section II gives an overview of our imitation process,
and it describes the vocal tract model and the RNN model.
Section III describes our imitation model and the system.
Section IV gives the results of experiments with our sys-
tem. Section V discusses the adequacy of our system as a
phoneme acquisition model, and Section VI concludes the
paper.

II. VOCAL IMITATION PROCESS AND MODEL

A. Overview of Our Imitation Process
In this section, we present an overview of our system for

imitating speech sounds. As illustrated in Fig. 1, our imita-
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Fig. 1. Imitation process.
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tion process consists of three phases: learning, recognition,
and generation.

1) Learning (Babbling)
The vowel imitation system makes articulatory move-
ments to produce sounds, and it makes a connection
between an articulatory movement and the sound pro-
duced by the movement. This phase corresponds to
babbling in infants.

2) Recognition (Hearing parents’ speech sounds)
In this phase, we put a speech sound into the system.
The system recognizes the sounds with an articulation
producing the same dynamics as the heard sound.

3) Generation (Vocally imitating heard sounds)
Finally, the system uses the articulatory movement to
imitate a speech sound.

The learning phase uses the RNNPB method of seg-
menting temporal sequences. Our imitation model can self-
organize so as to connect an articulatory movement with the
corresponding sound dynamics. Additionally, in the recog-
nition and generation phases, the connection is available for
our model to imitate speech sounds.

B. Physical Vocal Tract Model
A speech production model simulating the human vocal

tract system incorporates the physical constraints of the
vocal tract mechanism and the acoustic constraints of speech
production. The parameters of the vocal tract with physical
constraints are better for continuous speech synthesis than
acoustic parameters such as the sound spectrum. This is
because the temporal change of the vocal tract parameters
is continuous and smooth, while that of the acoustic param-
eters is complex, and it is difficult to interpolate the latter
parameters between phonemes.

We used the vocal tract model proposed by Maeda [10].
This model has seven parameters determining the vocal
tract shape, and they were derived by principal components
analysis of cineradiographic and labiofilm data from French
speakers. Table I lists the seven shape parameters. Although
there are other speech production models, such as PARCOR
[11] and STRAIGHT [12], we think that the Maeda model,
with its physical constraints based on anatomical findings,
is the most appropriate, because of our aim to simulate
the development process of infant’s speech. This model for
generating acoustic signals is a very simplified articulatory
model, and the sound units corresponding to phonemes are
expressed in these articulatory terms.

TABLE I
PARAMETERS OF THE MAEDA MODEL.

Parameter number Parameter name
1 Jaw position (JP)
2 Tongue dorsal position (TDP)
3 Tongue dorsal shape (TDS)
4 Tongue tip position (TTP)
5 Lip opening (LO)
6 Lip protrusion (LPR)
7 Larynx position (LP)

Each Maeda parameter takes on a real value between -
3 and 3 and may be regarded as a coefficient weighting
an eigenvector. The sum of these weighted eigenvectors
is a vector of points in the midsagittal plane that defines
the outline of the vocal tract shape. The resulting vocal
tract shape is transformed into an area function, which is
then processed to obtain the acoustic output and spectral
properties of the vocal tract during speech.

C. Learning Algorithm
This subsection describes the method to learn and segment

temporal sequence dynamics. We apply the RNNPB model,
which was first proposed by Tani [7] as the forwarding
forward model. It generates complex movement sequences,
which are encoded as the limit-cycling dynamics and/or the
fixed-point dynamics of the RNN.

1) RNNPB model: The RNNPB model has the same
architecture as the conventional Jordan-type RNN model
[13], except for the PB nodes in the input layer. Unlike
the other input nodes, these PB nodes take a constant value
throughout each temporal sequence and are used to imple-
ment a mapping between fixed-length values and temporal
sequences. Figure 2 shows the network configuration of the
RNNPB model.
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Fig. 2. RNNPB model.

Unlike the Jordan-type RNN model, the RNNPB self-
organizes the values in the PB nodes that encode the se-
quence during the learning process. The common structural
properties of the training data sequences are acquired as
connection weights by using the back propagation through
time (BPTT) algorithm [14], as in a conventional RNN.
Meanwhile, the specific properties of each individual tempo-
ral sequence are simultaneously encoded as PB values. As a
result, the RNNPB model self-organizes a mapping between
the PB values and the temporal sequences.

2) Segmenting Temporal Sequence Data: Our segmenting
method determines the segmentation boundaries using the
prediction error of the RNNPB model. Systems using this
approach usually consist of dynamic recognizers that predict
the target sequences. The dynamic sequence is articulated
based on the predictability of the recognizer. The method we
used to segment acoustic signals with articulatory movements
uses the prediction error of RNNPB model and the number
of segmentations. Its description is as follows: Consider the

1713



PB PB

Move the
b ou n d a r y  to
the a r ea  w ith
l a r g er  er r or

time

time

time

timeboundary boundary

E r r o r :  L a r g e E r r o r :  S m a l l

)(: tD
)(: tP
)(: tD
)(: tP

D D

Fig. 3. Segmenting multiple dynamics.

problem of segmenting a dynamic sequence, D(t), whose
length is T into N sections, which are represented as S0,
S1, . . ., SN−1. The boundary step between Si−1 and Si is
represented by t = si, that is, Si is defined as [si,si+1]. The
segmenting process consists of five steps.
Step 1: Initialization

The given sequence is divided into N sections. Each
section has the same length. The boundary step si (i =
0, · · · , N) is set as follows.

si←− i ·T/N (1)

Step 2: RNNPB training
The connection weights and PB values of the RNNPB
model are updated with the given sequence, while the
PB values are kept constant in each section, Si.

Step 3: Calculate prediction errors
In each Si, the prediction errors of the RNNPB model,
P(t), are calculated, and the average error of the section
Ei (i = 0, · · · , N−1) is obtained as follows.

Ei←−
1

si+1− si
·∑

t∈Si

||D(t)−P(t)|| (2)

Step 4: Update the length of each section
The boundary step si (i = 1, · · · , N−1) is updated by
using the following rules:

si←−

{

si−ds i f Ei−1 ≥ Ei
si +ds i f Ei−1 ≤ Ei,

(3)

where ds is a parameter used to update the section
length.

Step 5: Repeat Steps 2 to 4 until the whole error is less than
the threshold.

If a sequence is generated by using simple dynamics, the
prediction error of the RNNPB will be small, even when the
PB values are fixed. However, if a sequence is generated by
using multiple dynamics, the prediction error at the boundary
between dynamics will increase as shown in Fig. 3. The
algorithm can decrease the error by modifying the position
of each boundary.

3) Learning of PB Vectors: The learning algorithm for
the PB vectors is a variant of the BPTT algorithm. The step
length of ith section Si in a sequence is denoted by si+1− si.
For each of the articulatory and sound parameters outputs,
the back-propagated errors with respect to the PB nodes are
accumulated and used to update the PB values. The update
equations for the kth unit of the parametric bias at the section
Si in the sequence are as follows:

δρi,k = ε ·
si+1

∑
t=si

δi,k(t), (4)

pi,k = sigmoid(ρi,k +δρi,k), (5)

where ε is a coefficient. In Eq. 4, the δ force for updating
the internal values of the PB ρi,k is obtained from the sum
of the delta errors δi,k. The delta error δi,k is backpropagated
from the output nodes to the PB nodes: it is integrated over
the period from si to si+1 steps. Then, the current PB values
pi,k are obtained from the sigmoidal outputs of the updated
internal values.

D. Calculation in Recognition and Generation Phases
After the RNNPB model is organized in the learning

phase, it is used in the recognition and generation phases.
The recognition phase corresponds to how infants recog-

nize sounds presented by parents, i.e. to how the PB values
are obtained. The PB values of each section are calculated
from Eq. 4 and 5 by using the organized RNNPB without
updating the connection weights. However, there is no vocal
tract data because the system is only hearing sounds without
articulating them, unlike in the learning phase. The initial
vocal tract values are input to vocal tract units of the input
layer in step 0, and the outputs are calculated forward in the
closed-loop mode from step 1. More generally, the outputs
in the motion output layer in step t−1 are the input data in
the motion input layer in step t.

The generation phase corresponds to what articulation
values are calculated. The motion output of the RNNPB
model is obtained in a forward calculation. The PB values
obtained in the recognition phase are input to the RNNPB
in each step.

III. VOCAL IMITATION SYSTEM
A. Experimental System

Our experimental system is illustrated Fig. 4. This system
was used to verify the relation between vocal imitation and
the phoneme acquisition process. To simplify the system, we
purposely used a simple vocal tract model and target vowel
sound segmentation.

In the learning phase, we first use a cubic interpolation
method to produce sequences of vocal tract parameters for
the Maeda model as articulatory movements. Second, the
sequences are put into the Maeda model to produce the cor-
responding sounds, which are then transformed into temporal
sound parameters. Finally, the RNNPB learns each the sound
and the vocal tract parameters, which are normalized and
synchronized. In this phase, the parameter ds was set at 0.1.
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Fig. 4. Diagram of the experimental system.

The size of the RNNPB model and the time interval of the
sequence data differed according to the experiment.

In the recognition phase, speech sound data is put into
the system. The corresponding PB values are calculated for
the given sequence by the organized RNNPB in order to
associate the articulatory movement with the sound data.

In the generation phase, the system generates imitation
sounds by inputting the PB values obtained in the recognition
phase into the organized RNNPB.

B. Sound Parameters
To convert a speech waveform into feature parameters,

we use the Mel-Frequency Cepstrum Coefficient (MFCC).
Filters spaced linearly at low frequencies and logarithmi-
cally at high frequencies capture the phonetically important
characteristics of speech.

In the experiments, the speech signals were single channel
with a sampling frequency 10 kHz. They were analyzed
using a Hamming window with a 25-ms frame length and a
10-ms frame shift, forming five-dimensional MFCC feature
vectors. The number of mel filterbanks was 24. In addition,
a Cepstrum Mean Subtraction was applied to reduce linear
channel effects.

C. Vocal Tract Parameter
We applied the Maeda model with the first six parameters

listed in Table I. The reason for choosing only these six
parameters is that when the Maeda model produces vowel
sounds, the seventh parameter LP has a steady value. In the
generation phase, it is possible for the vocal tract parameters
produced by the RNNPB to temporally fluctuate without
human physical constraints. This occurs if the system does
not easily associate the articulatory movements of an un-
experienced sound. Therefore, to help prevent extraordinary
articulation, we temporally smoothed the vocal tract param-
eters produced by the RNNPB. Concretely, the vocal tract
parameters in each step were calculated by averaging those
of the adjacent steps.
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Fig. 5. Input data and obtained PB values in the learning phase.

IV. EXPERIMENTS

A. Model Verification by Segmenting Three-Vowel Data

We verified the capability of the segmenting method based
on an experiment altering the number of segmentations N
from three to eight. We assumed that our system did not
know the number of phonemes in the input data. The orga-
nization of RNNPB for each N is as follows: 11 input/output
nodes, 40 hidden nodes, 25 context nodes, and 2 PB nodes.
The learning data consisted of the following five patterns
of three-vowel data: /aiu/, /iue/, /ueo/, /eoa/, and /oae/
(1380 ms, 30 ms/step), produced by the Maeda model.

Figure 5(a) shows the learning data /ueo/. Figure 5(b),
5(c) shows the sequence of PB values for the leaning data
/ueo/ obtained by organized RNNPB. The vertical dotted
line represents the boundary step si segmented by RNNPB
in the learning phase. Figure 5(b) shows PB values of /ueo/
for N = 3, and Fig. 5(c) shows those for N = 8. The boundary
steps, representing the steps just before the transitions in the
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input sequence, in Fig. 5(b) were s1 = 13 and s2 = 27. Those
in Fig. 5(c) were s1 = 5, s2 = 13, s3 = 15, s4 = 24, s5 = 27,
s6 = 29 and s7 = 44 dividing the input sequence /ueo/ into
flat and transition segments. We confirmed that as the size
of N increases, the boundary steps become more stable in
the learning phase. Similar results were also acquired for the
other input data.

Figure 6 shows the PB space for N = 8. In Fig. 6, the
PB values represent the phonemes of a set of three-vowel
data aligned according to the length of the three longest
sections of an input sequence. The PB space has a tendency
to classify the PB values according to PB2 in the following
three categories: /a/ and /o/, /u/ and /e/, and /i/. A
comparable result had not been acquired for other sizes of
N.

B. Segmentation for Phoneme Acquisition
Next, we carried out an experiment to verify phoneme

acquisition using our imitation model in the learning phase.
The organization of RNNPB is as follows: 11 input/output
nodes, 50 hidden nodes, 10 context nodes, and 2 PB nodes.
In this experiment, the parameter ds was set to 0.1. RNNPB
learned the MFCC and vocal tract parameters of ten patterns
of three-vowel data: /aiu/, /aoe/, /iue/, /iao/, /ueo/,
/uia/, /eoa/, /eui/, /oai/, and /oeu/ (1380 ms and 30
ms/step), produced by the Maeda model.

Figure 7 shows the PB space after learning. In Fig. 7,
the PB values represent the phonemes of a set of three-
vowel data aligned according to the length of the three
longest sections of a learning sequence. The PB values for
the same vowel, including the learning data, were mapped
with sufficient dispersion.

Figure 8 shows the transition of the PB values for the input
data /eui/ and /uia/ in the learning phase. In Fig. 8, the PB
values of section S2 for input data /uia/ were close to those
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Fig. 7. The PB space in the learning phase.
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the PB space.

of the sections S5,6,7 for input data /eui/. When comparing
Fig. 7 and 8, we confirmed that the category of the phoneme
/i/ in Fig. 7 corresponded to the transitions of the PB values
in Fig. 8.

V. DISCUSSION

A. Segmentation ability by RNNPB
In the experiment IV-A, the number of segmentation

boundaries was set arbitrarily for given continuous sounds
including unknown number of phoneme. As a result of
learning phase where the positions of the segmentation
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boundaries self-organized, the almost boundaries tended to
gather to the transition phases of the phonemes given in an
input sequence (see Fig. 5(c)). Several sections are defined by
these boundaries, and it was confirmed that length of some
sections of phoneme parts are significantly longer than that
of transition parts between phonemes. It is also confirmed
that the obtained PB values of the sections corresponds to
given phonemes.

HMM is one of the representative methods to segment
sounds into phonemes. However, the phoneme categories
should be given in advance, and a large amount of learning
data is required. Our method determines the segmentation
boundaries using the prediction error of the RNNPB model.
This enables our method to obtain the position of phoneme
transitions and the phoneme categories, without the informa-
tion of the numbers and categories of phoneme in the input
acoustic signals. Furthermore, it needs only a small amount
of learning data to organize phoneme system in PB space.

B. Context dependency for each sound
Our system could encode the same phonemes in acoustic

signals as the near PB values in the PB space. In this sense,
each phoneme category is defined independently from the
other phonemes. However, in Fig. 7, it is confirmed that each
phoneme category /i/, /u/ and /e/ formed a plot but a small
cluster consisted of multiple plots. In Fig. 8, the transitions of
PB values pass through different points in the same phoneme
categories. This means that the PB values representing the
same phoneme are changed by the adjacent phonemes in
a given phoneme sequences. It is assumed that this repre-
sents coarticulation designed in general speech recognition
systems. In this sense, each phoneme is determined context
dependently on the other phonemes.

Tani et al. showed that the internal symbolic process, being
embedded in the dynamical attractor in a mobile robot system
[15]. In his experiment, the robot acquired the attractors rep-
resenting the observed objects as the activities in RNN nodes.
These attractors were also represented by complex clusters,
and the positions of the active points were fluctuated by
the context, i.e. trajectory of the mobile robot. This bilateral
characteristic, that is context dependency or independency, is
one of the interesting and essential properties in dynamical
systems representation.

It is confirmed that Fig. 7 of the obtained PB space
corresponds to the map of ”vowel triangle” shown in [16].
Concretely, PB1 and PB2 corresponds to 1st and 2nd for-
mant frequency respectively. Our model uses Maeda model
of which vocal tract parameters include the property of
PARCOR [11]. The property could extract formant peak
frequency in a sound and contribute to organize the relation
between PB values and formant frequencies.

VI. CONCLUSIONS
This paper proposed a phoneme acquisition system focus-

ing on segmentation of the dynamic sequences of acous-
tic signals with the articulatory movements generated by
the Maeda model. Concretely, our model uses a RNNPB

model trained with several acoustic sequences and articula-
tory movements including unknown numbers and kinds of
phonemes. The experimental results demonstrated that our
system with RNNPB model automatically found the segmen-
tation boundary of the phonemes and found phonemes were
encoded as the PB values.

Our future work includes to imitate speech sounds us-
ing automatically extracted PB values corresponding to
phonemes from speech sounds through simulating mother
and child interaction. The acoustic babbling should be intro-
duced into our model as the exploring and learning phase
of corresponding between generated acoustic signal and
articulatory movements.
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