
 

 

 

  

Abstract— In normal human communication, people face 

the speaker when listening and usually pay attention to the 
speaker’ face. Therefore, in robot audition, the recognition of 

the front talker is critical for smooth interactions. This paper 
presents an enhanced speech detection method for a humanoid 
robot that can separate and recognize speech signals 

originating from the front even in noisy home environments. 
The robot audition system consists of a new type of voice 

activity detection (VAD) based on the complex spectrum circle 
centroid (CSCC) method and a maximum signal-to-noise 

(Max-SNR) beamformer. This VAD based on CSCC can 
classify speech signals that are retrieved at the frontal region of 
two microphones embedded on the robot. The system works in 

real-time without needing training filter coefficients given in 
advance even in a noisy environment (SNR > 0 dB).  It can cope 

with speech noise generated from televisions and audio devices 
that does not originate from the center. Experiments using a 
humanoid robot, SIG2, with two microphones showed that our 

system enhanced extracted target speech signals more than 12 
dB (SNR) and the success rate of automatic speech recognition 

for Japanese words was increased about 17 points. 

I. INTRODUCTION 

Up to a few years ago, most robot applications were 

related to industries and manufacturing, and most robots in 

general use were industrial robots. Today, robots work in 

almost all fields of service, ranging from housekeeping to 

high technology space exploration, and robot technology has 

had a significant impact on daily life. Recently, service 

provided by humanoid robots has received an increasing 

amount of attention. But, although humanoid robots are 

increasingly expected to possess perceptual capabilities 

similar to those of humans due to an increasing demand for 

symbiotic interaction between humans and robots, the ability 

of robots in this respect is still very lacking. Since we expect 

intelligent robots to participate widely in the society of the 

near future, effective interaction between them and humans 

will be essential. To facilitate natural human-robot 

interaction, robots should firstly be able to localize voices 

and faces in social and home environments so that they can 

find and track their communication partner, this is important 

because people usually look directly at robots while 
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addressing them. Therefore, localization and tracking 

systems for voices and faces have been extensively studied 

and developed [1-3]. Regarding, the human-robot 

interaction for speech, robots have to be able to separate the 

voices of participants in a conversation or an actual meeting 

where sources are sometimes active but silent. In practice, 

humanoid robots will often be confronted with sparse 

dialogue in noisy home environments. 

In this paper, we consider the detection and separation of 

speech signals for the purpose of improving speech 

recognition or spotting keywords from the point of view of 

humanoid robots with two microphones. To realize this, 

voice activity detection (VAD) and sound source separation 

are essential for robots to communicate with people in real 

environments. Therefore, we developed a system which has 

some primary capabilities: 

1) Our VAD can accurately classify a target speech 

originating from the front in real time even in noisy 

environments (SNR > 0 dB). 

2) It can cope with vocal noise generated by television 
sets or audio devices in home environments. 

3) The two microphones of our system can enhance 

detected target speech even when interference noise 

occurs or varies. 

First, using two microphones, we developed a method that 

can accurately classify speech signals originating from the 

front even in noisy home environments. This was realized by 

comparing the spectral energy of observed signals with that 

of target signals separated by the complex spectrum circle 

centroid (CSCC) [9] method. Although our VAD based on 

the CSCC method can only classify frontal target signals, 

this system may be suitable for communicating with a 

person because people usually face the communication 

target while talking. The allowable range of target signals for 

our VAD is about ±8°, where 0° denotes a position directly 

in front of the two microphones. The sampling rate is 16 kHz, 

and the distance between the two microphones is 0.15 m. 

This separation distance is important because the target 

signals can be obtained as long as no delay of arrival (DOA) 

occurs between the two microphones. 

Second, robots need also to recognize speech and/or 

keywords for communication with a person. However, since 

there are various sources of background noise in real home 

environments, such as music, TV audio, and unrelated 

dialogue, robots have to be able to separate and recognize 

detected target speech. Therefore, we used a max-SNR 

beamformer [10,11] to reduce noise because it does not need 
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information on the target location while most widely used 

beamformers [11,12] need that. It is also an effective means 

to separate the target speech when the target and noise 

signals are sometimes both active, as is sometimes the case 

in sparse dialogue. Since our system with two microphones 

can enhance the target speech detected by our VAD, it 

improves robot speech recognition. All of the above 

methods run on a PC equipped with a Celeron 2.4 GHz CPU 

and 512 RAM. 

The rest of this paper is organized as follows. Section II 

describes the VAD system based on the CSCC method and 

sound classification using the Gaussian Mixture Model 

(GMM). Section III describes the max-SNR beamformer. 

Section IV, looks at the experiments, we did on the 

recognition of specific keywords after the detection and 

separation of their intervals in the presence of noise using 

the VAD system and max-SNR beamformer. Section V 

concludes the paper.  

II. VOICE ACTIVITY DETECTION BASED ON CSCC 

Although various VAD algorithms have been applied for 

applications such as speech recognition, speech 

enhancement, and speech coding [4-8], conventional VAD 

algorithms work poorly in extremely noisy environments 

and are unreliable in the presence of non-stationary or broad 

band speech-like noise [4-6]. Therefore, multi-channel 

algorithms have been introduced to improve VAD 

performance by exploiting spatial selectivity [7,8]. 

Specifically, Le Bouquin et al. assumed that the spatial 

correlation between disturbing noises was weak for all 

frequencies of interest while speech signals were highly 

correlated [7]. However, this technique based on a coherence 

function usually has difficulty coping with vocal noise 

generated by television sets or audio devices. Although 

Hoffman et al. recently estimated the target-to-jammer ratio 

(TJR) using the generalized sidelobe canceller (GSC) as a 

measure for VAD [8],� this requires relatively many 

microphones and training of adaptive filter coefficients to 

accurately estimate TJR. 

To overcome these problems, we applied a complex 

spectrum circle centroid (CSCC) method to our VAD. The 

CSCC method uses geometric information regarding the 

target signal that should be received from in front of the 

microphones and the observed signal obtained by the 

microphones in a complex spectrum plane. It typically 

requires at least three microphones disposed in a straight line. 

However, since this form of a microphone array is difficult 

to install in systems of various shapes, such as robots, we 

developed a way to enable the CSCC method to estimate 

target signals using only two microphones. This method can 

reduce noise in real time without training beforehand while 

still enabling achieve high performance. In addition, to use 

the CSCC method, we need two sound directions for noise 

and target signals. Thus, using two microphones, we 

developed a method based on probability to estimate the 

number and localization of sound sources. We do not 

describe this method here, but a full description is available 

elsewhere [3]. 

A. Complex Spectrum Circle Centroid (CSCC) 

As shown in Figure 4, if the signals propagate as a plane 

wave, the spectrums of the signals observed using a 
two-channel microphone are given as 

( ) ( ) ( )1
M S Nω ω ω= +                               (1) 

( ) ( ) ( )2

j
M S N e

ωτω ω ω −= +                       (2) 

where M1(ω) and M2(ω) are the spectrums of the observed 
signals, and S(ω) and N(ω) denote the respective spectrums 

of the target signals and the noise signals. The value τ 
denotes the time delay between the two microphones with 

respect to the noise signal. As shown in Figure 1, S(ω) is 

located at an equal distance from M1(ω) and M2(ω), and the 

distance is N(ω). Subtracting Equation (2) from Equation 

(1) gives the value of N(ω) as 
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Fig. 1. Estimating target signal spectrum using two channels. 

 

Figure 1 outlines the process used to estimate S(ω) using 

two microphones. First, we draw a perpendicular bisector 

toward a straight line connecting M1(ω) and M2(ω) in a 

complex spectrum plane. Next, we draw a circle with the 

radius of N(ω) shown in Equation (3) and its center at M1(ω). 

The coordinates of each spectrum in Figure 1 are defined as 

1) The spectrum of the observed signal: 

( ) ( ) ( ) ( )1 1 1 2 2 2
, ,  ,

x y x y
M M M M M Mω ω= =             (4) 

2) The candidate for the target signal spectrum: 
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3) The midpoint: 
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where subscript x and y correspond to the coordinates of the 

real and imaginary parts respectively. 

The perpendicular bisector and the circle are given as 
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The spectrum of the target signal, S(ω), is located at the 

intersection of the perpendicular bisector and the circle. 

Hence, S1(ω) and S2(ω) are obtained  by solving the 

simultaneous formulae between Equation (7) and Equation 

(8). Actually, the CSCC method needs at least three 

microphones to accurately estimate the target signal. 

However, since we used only two microphones, we must 
choose the most appropriate spectrum from the two 

candidates for the target signal. Here, we chose the 

candidate whose spectrum power was smaller, since we 

considered that the power of the estimated clean signal 

would be smaller than that of the observed noisy signal. In 

the case shown in Figure 1, S1(ω) was chosen as the target 

signal spectrum. 

B. Sound Source Classification by GMM 

The Gaussian Mixture Model (GMM) is a powerful 

statistical method widely used for speech classification [5]. 

Here, we applied the 0 to 12th coefficients (a total of 13 

values) and the ∆1 to ∆12th coefficients (a total of 12 values) 

of Mel Frequency Cepstral Coefficients (MFCCs) to the 

GMM defined by Equation (9) and the weights as denoted 

by Equation (10). 

( ) ( ) ( )
25

1~25 1~25

1

mixture L L L

L

P X P X w Lθ θ
=

=∑           (9) 

           ( ) ( )
25

1

1,    0 1
L

w L w L
=

= ≤ ≤∑                    (10) 

where P is the component density function, L is the number 

of MFCC parameters, X is the value of the MFCC data of the 

0 to 12th and the ∆1 to ∆12th coefficients, and θ is the 

parameter vector concerning each MFCC value. Moreover, 

to classify speech signals robustly, we designed two GMM 

models for speech and noise derived as 

( )( ) ( )( )log logs s s n n nf P X P Xθ θ= −         (11) 

where Ps is the GMM related to speech, and Xs is the MFCC 

data set at the t-th frame belonging to the speech parameter, 

θs. On the other hand, Pn is the GMM related to noise and Xn 

is the MFCC data set at the t-th frame belonging to the noise 

parameter, θn. If the final value, f, denoted as Equation (11), 

is higher than the value of the threshold to discriminate the 

speech signal from the GMM, signals in the t-th frame will 

be regarded as speech signals.  

 ( ) ( ) ( )

( ) ( )

If  then 1 

                               else 0 

f t threshold f t speech

f t noise

> =

=
   (12) 

We used 30 speech samples (from 15 males and 15 

females) as speech parameters to train the GMM parameters, 

and 77 noise samples generated in home environments, such 

as the sounds of a door opening or shutting and those of 

electrical home appliances (e.g., a vacuum cleaner, a hair 

drier, and a washing machine) for the noise parameters. To 

verify the quality of the GMM parameter training, we 

classified the sound sources using speech and noise data for 

training. We obtained a success rate for speech classification 

of 95.5% and a success rate for noise classification of 72.8%. 

C. Design of Voice Activity Detection 

To classify the speech signals of a communication partner 

who is directly in front of a robot, we classified the signals 

after CSCC had reduced the noise signals which arrived 

from directions other than directly ahead of the robot. Since 

the two microphones were installed in the robot’s head, 

rather than in a free space, CSCC had to take into account the 

effect of diffraction by the robot head’s cover. We assumed 

that there was no diffraction effect for the center direction 

because speech signals arrived at the two channels at the 

same time without delay. To make allowance for errors 

generated from diffraction of noise signals arriving from the 

side directions, we considered the frame energy greater than 

the thresholds we experimentally determined as shown in 

Equation (15). In particular, to classify the interval of target 

signals using CSCC, we first had to obtain the various types 

of frame energies in the frequency domain. The frame 

energies in the frequency domain of all types are defined as 

1) The spectral frame energies observed from 

microphones 1 and 2: 

( )1 1

0

1 N

m
E M

N ω

ω
=

= ∑ ,    ( )2 2

0

1 N

m
E M

N ω

ω
=

= ∑   (13) 

2) The spectral frame energies of the target and the 

average frame energy between Em1 and Em2: 

( )target target

0

1 N

E S
N ω

ω
=

= ∑ ,    1 2

2

m m
ave

E E
E

+
=   (14) 

where ω is the frequency value of FFT, N is the order of FFT, 

and Starget(ω) is the target signal spectrum separated by 

CSCC. Here, M1(ω) is the signal spectrum observed from 

microphone 1,  and M2(ω) is the signal spectrum observed 

from microphone 2. 

Next, we can detect the interval of target signals coming 

from the front as follows. First, if we assume the robot 

knows the direction of noise signals coming from the side, 

the frame energy of the separated target signals will be less 

than that of the observed signals as defined in Equation (15). 

Second, from the definition of Equation (16), we can 

determine that noise signals are not coming from the side, 

and that there are target signals coming from the front if the 

difference of frame energy between both microphones is 

almost the same.  

target/aveE E threshold>       (15) 

 ( )1 2/ /
Low m ave m ave High

thr E E E E thr< − <    (16) 

Here, if equations (15) and (16) are not satisfied, even 

where the t-th frame includes speech signals, f(t)=1, the 

robot will change the value of f(t) into 0. This is because 

speech or noise signals in the t-th frame were generated from 

the side. We can then detect the period of the target speech 

by using 
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where f(i) is the i-th speech frame classified by equation (12). 

Finally, if some speech frames exist within the interval of 

designated frames from the na-th frame to the nb-frame, we 

can determine that the i-th frame is within the interval of the 

target speech. 

III. ENHANCED TARGET SPEECH 

To separate target speech signals after VAD is used to 

detect signals, including noise, we applied a max-SNR 

beamformer [10,11] to a humanoid robot called SIG2. Two 

methods are commonly used for sound source separation 

(SSS). One is geometric source separation (GSS) and one of 

its well-known methods is as an adaptive beamformer [12]. 

This requires many microphones and prior information on 
the target location. The other method is blind source 

separation (BSS), which is widely used in independent 

component analysis (ICA) [13]. ICA is normally unsuitable 

for environments where the number of sound sources 

dynamically changes because in principle the required 

number of microphones is equal to the number of sound 

sources. In addition, to achieve high performance, ICA 

usually requires a large quantity of sampling data and 

assumes that most of the data includes mixing with noise. In 

contrast, the max-SNR beamformer can effectively reduce 

noise even if there are only a few microphones and where 
speech and/or noise signals sometimes occur, but training of 

the max-SNR beamformer weights (refer to Equation 28) is 

required beforehand. 

A. Maximum SNR Beamformer 

We took a time-frequency domain approach. Suppose that 

speech sources are convolutedly mixed and observed at 

microphones with a short-time Fourier transform (STFT): 

( ) ( ) ( ) ( )
1

, , ,
N

j jk k j

k

x f h f s f n fτ τ τ
=

= +∑     (18) 

where hjk(f) is the frequency response from source k to 

sensor j, sk(f,τ) and nj(f,τ) are the STFTs of a source sk and 

noise nj, respectively. }}/)1{(,,)/1(,0{ ss fTTfTf −∈ ⋯
 is a 

frequency (fs is the sampling frequency) and τ (=1, … , K) is 

a time-frame index. The vectors are X=[x1, ... , xM]
T
 , 

hk=[h1k, ... , hMk]
T
 and n=[n1, ... , nM]

T
.  

The max-SNR beamformer maximizes the ratio between 

the output powers for the target-active and the target-silent 

periods. When such a beamformer Wk(f) is obtained for 

source k, the k-th output signal can be obtained by 

( ) ( ) ( ), ,H

k ky f W f X fτ τ=      (19) 

Let P={1, . .. , K} be the whole period of K observations 

X(f,1),...,X(f,K) at each frequency, PP k

T ⊂ be the 

target-active period when the target source sk is active, and 

PP k

I ⊂   be the target-silent period when the target sk is 

NOT active but interference and noise may be active. In this 

paper, we assume PPP
k

I

k

T
=∪ . 

The design criterion for the beamformer Wk(f) is to 

maximize the ratio λ(f) of the output power between the 

target-only period k

T
P  and the interference-and-noise-only 

period k

I
P : 
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where )( fR
k

T
 and )( fR

k

I
are the correlation matrices of 

observations 
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where |P| denotes the number of elements of the set |P|. 

By differentiating λ(f) with Wk(f) and setting it to 0, we 

have 

)()()()()( fWfRffWfR k

k

Ik

k

T λ=     (23) 

Obtaining the maximum λ(f) corresponds to calculating 

the largest eigenvalue of the generalized eigenvalue problem 

(23), and the corresponding eigenvector e(f) gives the 

solution for the max-SNR beamformer 

)()( fefW k =          (24) 

Equation (23) is simplified to an eigenvalue problem by 

multiplying both sides by 1)]([ −
fR

k

T
. 

The max-SNR beamformer does not have any constraint 

for its gain, so the beamformer gain provided by equation 

(24) has scaling ambiguity. This characteristic should be 

compensated for if the MaxSNR beamformer is applied to 

wide-band signals such as speech. Inspired by the 

deflation-based blind source separation algorithm [14], we 

propose compensating Wk(f) so that the output yk(f,τ) 
becomes as close as observations: 

),()()(),()(),( τττ fXfWfafYfafX H

kk =≅  (25) 

That is, we calculate a(f), which minimizes the following 

cost function: 

}),()(),({))((
2

ττες fYfafXfa k−=   (26) 

This is a linear least-mean-squares estimation problem [10]. 

Therefore, an optimal a(f) can be obtained by setting the 

differentiation 
)(

))((

fa

fa

∂

∂ς  to zero: 
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where RX(f)=ε{X(f,τ)XH
(f,τ)} is the observation correlation 

matrix. The scale compensated beamformer is given by a 

selecting the J-th component aJ, 

)()( fWafW kJk ←       (28) 

B. Evaluation of the max-SNR beamformer 

An evaluated an experimental system for target speech 
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separation on a humanoid robot called SIG2, equipped with 

four omni-directional microphones on the left, front, right 

and back side of its head (Figure 2, right side). Experiments 

were done using two (Mic. #1,3), three (Mic. #1,2,3), or four 

(Mic. #1,2,3,4) channels. Three speakers were prepared as 

sound sources and, located as shown in the left part of Figure 

2 (one in front with, side speakers set at ±30°, ±60° and ±90°, 

all at a distance of 1.5 m). The test set included 200 different 

phonetically balanced isolated Japanese words for each of 

the three speakers and 200 Japanese words were 

simultaneously emitted by the three speakers (each word 

spoken once). At that time, each speaker emitted a different 

word. To obtain the weight of the max-SNR beamformer 

(refer to equation 28), we used five words beforehand taken 

from among the 200 words emitted by each speaker. 

 
Fig. 2. Experiment condition and SIG2 with four microphones. 

 

Figure 3 shows original mixing speech signals and three 

signals separated by the max-SNR beamformer with four 

microphones and the speakers 90° apart at a distance of 1.5 

m. Table I shows the average SNR of the original mixing 

words and the separated words. These results show that more 

microphone channels and larger angles between the sources 

produce better separation results. 

 
Fig. 3. Original and separated signals with four microphones and 90° 

separation. 

 
TABLE I 

SNR RESULTS OF SPEECH SEPARATION AT SIG2 

SNR [dB] 
Mics θ Before 

MSNRBF 
After 

MSNRBF 
Improvement 

±30° 10.8965 23.5050 12.6085 

±60° 14.7353 29.8516 15.1163 2 Ch. 

±90° 15.8177 27.9715 12.1538 

±30° 11.6157 28.4096 16.7939 

±60° 15.2691 23.3600 8.0909 3 Ch. 

±90° 19.1238 49.3091 30.1853 

±30° 12.5819 35.8380 23.2561 

±60° 14.2327 51.7311 37.4984 4 Ch. 

±90° 20.4983 57.6360 37.1377 

IV. TARGET SPEECH RECOGNITION FOR ROBOTS 

A. System overview 

 
Fig. 4. System overview for recognizing target signals. 

 

Figure 4 shows an overview of the structure of our system 

based on the CSCC and max-SNR beamformer methods and 

the SIG2 robot. This human-like auditory system has two 

omni-directional microphones, one at each of the left and 

right ear positions. First, to use the CSCC method, after 

finding the direction of noise signals, the robot is able to 

determine whether target signals exist and whether the 

target signals are voice or something different through 

CSCC and GMM, respectively, as discussed in Section II. 

The max-SNR beamformer can then separate target signals 

classified by VAD as discussed in Section III. In this section, 

after direct application of our VAD and max-SNR 
beamformer to the SIG2 auditory system, we discuss the 

results of VAD and the recognition of enhanced target 

signals. 

B. Experiments and results for VAD 

We used two metrics to evaluate our VAD in noisy 

environments. These were the speech hit rate (SHR) and 
non-speech hit rate (NSHR), defined as 

S

Sref

N
SHR

N
= ,    N

Nref

N
NSHR

N
=            (29) 
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where NS and NRref are the numbers of all speech samples 

correctly detected and real speech in the whole database, 

and NN and NNref are the numbers of all non-speech samples 

correctly detected and real non-speech in the whole 

database. 

We conducted experiments under the following 

conditions. The distance between two microphones was 

0.15 m. The sampling rate was 16 kHz and 1024-point FFT 

was applied to the windowed data with 512-sample overlap. 

As shown in Figure 5, the target signals and noise signals 

were 1.5 m from two microphones. The target signals were 

in front of the microphones, and the noise signals were 30°, 

60°, or 90° to the side. Two loud sounds were 

simultaneously emitted from two speakers for 30 s. We used 

10 speech samples (from five men and five women) for 

target signals, and three noise samples (vacuum cleaner, 

television news, and contemporary pop music including 

vocals). The words of a numeral one to a numeral ten in 
Japanese were randomly recorded for each target signal data 

for 30 s. The SNR values were -5, 0, 5, or 10 dB. 

 
Fig. 5. Experiment conditions and SIG2 with two microphones. 

 

Figure 6 shows the performance results for our VAD 

algorithm compared to G.729 Annex B VAD [6], which the 

International Telecommunication Union (ITU-T) adopted. 

The standard G.729B VAD makes a voice activity decision 

every 10 ms, and its parameters are the full band energy, the 

low band energy, the zero-crossing rate and the spectral 

measure.�Here, since G.729B is a one-channel-based VAD, 

we obtained performance results for the G.729B VAD after 

averaging the results obtained by the left and right 

microphones. 

For the vacuum cleaner noise in Figure 6, the SHR of our 

VAD was similar to that of G.729B VAD and the NSHR of 

our VAD was better than that of G.729B VAD. The G.729B 

VAD performed especially poorly with regard to non-speech 

detection accuracy (NSHR) with vocal noise (music and TV 

news) while speech detection accuracy (SHR) was good 

(higher than 90%). This was because the G.729B VAD 

regarded noises containing vocal signals as speech signals. 

On the other hand, for noise containing vocal signals, the 

SHR of our VAD was better than about 85% for all SNRs, 

and the NSHR of our VAD was considerably better than that 

of the G.729B VAD. The NSHR was above 80%, except for 

at -5 and 0 dB SNR for music noise and at 30° for -5 and 0 

dB SNR for TV news noise. Our system can thus be used at 

SNRs higher than 0 dB regardless of the kinds of noise 

signal. 

 
Fig. 6. Results of VAD based on CSCC. 

C. Experiments and results for recognizing target signals 

The environment was set to be as similar to a typical room 

as possible. As shown in Figure 5, the target speaker stood in 

front of a humanoid robot while another speaker producing 

the noise was placed on the right at a 30°, 60° or 90° angle. 

All sound sources were at a distance of 1.5 m. The noise 

included classic music and the sound of a vacuum cleaner. 

The music was played throughout the experiment and the 

vacuum cleaner noise was produced occasionally. The 

interval during which speech was emitted from the center 

speaker sometimes overlapped the interference speech 

emitted from the side speaker; i.e., sparse dialogue. The 

SNR between target signals and interference signals was set 

to 5 dB and we obtained the weights for the max-SNR 

beamformer using five words and noise for about 10 s 

beforehand. Finally, to verify the speech recognition 

performance of the center speaker, we used target speech 

containing 50 words. These words were recognized by a 

speech recognition system and Table II shows those results. 

Here, in the case of recognizing words before separating the 

target speech, we averaged the results obtained by the left 

and right microphones. 

We evaluated our VAD after we manually listened to all 

detected target speech. The result graph after VAD is shown 

in Figure 7 (D). The max-SNR beamformer was then used to 

separate the detected target signals. Since only two 

microphones were used, so that the auditory system would 

closely resemble human hearing, interference signals were 

not perfectly removed but we confirmed that the 
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performance was improved. For example, while a larger gap 

between speech signals and noise usually enables better 

performance, the improvement at 90° in Table II was less 

than at 30° or 60°. This was because noise emitted by the 

speaker at 90° directly entered the left microphone; i.e., the 

noise magnitude was much larger than that of speech signals 

at the left microphone and using only a pair of microphones 

was insufficient to remove that noise. These results are 

shown in Table II and the result graph after noise was 

reduced is shown in Figure 7 (E).   

 
TABLE II 

TARGET SPEECH RECOGNITION RESULTS 

Recognition of Target Speech 
Mics. θ 

Succes

s rate of 

VAD 
Before max SNR 

beamformer 

After max SNR 

beamformer 

Improv

ement 

30° 96 % 55 % 72 % 17 % 

60° 100 % 50 % 64 % 14 % 2 Ch. 

90° 100 % 38 % 44 % 6 % 

 

 
Fig. 7.Target Speech Detection and Separation with two microphones at 90° 

V. CONCLUSION 

Our VAD system enables humanoid robots with two 

microphones to accurately detect the intervals of speech 

words or keywords generated in front of them even in noisy 

home environments, as was confirmed experimentally. In 

addition, the max-SNR beamformer helped improve the 

speech recognition performance for detected target signals. 

In the next step, to avoid the need for manual calculation, we 

are considering ways in which robots can automatically 

calculate the weights of the max-SNR beamformer after they 

have classified the intervals of target and interference signals. 

We are also considering the use of additional microphones, 

though only when separating target signals in order to reduce 

the execution time.  
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