
 

 

 

  

Abstract— We propose a way to evaluate various sound 

localization systems for moving sounds under the same 

conditions. To construct a database for moving sounds, we 

developed a moving sound creation tool using the API library 

developed by the ARINIS Company. We developed a 

two-channel-based sound source localization system 

integrated with a cross-power spectrum phase (CSP) analysis 

and EM algorithm. The CSP of sound signals obtained with 

only two microphones is used to localize the sound source 

without having to use prior information such as impulse 

response data. The EM algorithm helps the system cope with 

several moving sound sources and reduce localization error. 

We evaluated our sound localization method using artificial 

moving sounds and confirmed that it can well localize moving 

sounds slower than 1.125 rad/sec. Finally, we solve the 

problem of distinguishing whether sounds are coming from 

the front or back by rotating a robot’s head equipped with 

only two microphones. Our system was applied to a humanoid 

robot called SIG2, and we confirmed its ability to localize 

sounds over the entire azimuth range. 

I. INTRODUCTION 

Recently, sound source localization has been applied to 

robots as a way of improving human-robot interactions [1-3]. 

Also, some sound source separation methods such as 

beamformer [4,5] need the location of target and noise 

signals in order to separate target signals for speech 

recognition. In fact, many methods of sound source 

localization for humanoid robots have been developed, and 

their performance has generally improved over time. 

However, the following three items should still be developed 

or improved: 

1) Robots should be able to localize moving sound sources 

as well as fixed sound sources. Also, since robots should be 

able to move and rotate their bodies and heads in order to 

track someone, a sound source localization method should 

be able to localize moving sounds while coping with the 

effects created by moving microphones. 

2) To design and evaluate sound localization systems to 

cope robustly with moving sounds, we first need database for 

various moving sounds. Thus, as a conventional way to 

create database for moving sounds, we have recorded sound 

signals and their positions while manually moving the 

speaker. Therefore, it is difficult to create moving sounds 
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which have accurate track information and to repeatedly 

create the same database with the same condition in order to 

compare a developed system with other ones for sound 

localization regardless of a kind of methods. 

3) Robots need to improve their cognition abilities (active 

perception) concerning changing location of sounds while 

they are in motion. For example, robots should be able to 

distinguish whether sound signals are coming from the front 

or back if they rotate or move only two microphones placed 

in the robot’s head or body. 

In this study, we accordingly improved the sound source 

localization system for humanoid robots by implementing 

three principal techniques: 

1. Our two-channel-based system can reliably localize 

two moving sounds without prior information. 

2. To evaluate our system, we proposed the new way to 

construct a database for moving sounds. 

3. Robots implementing our system can localize sounds 

over the entire azimuth range by rotating their head 

or body with two microphones. 

In detail, first, we already developed two channel based 

sound source localization system [12]. This one used 

cross-power spectrum phase (CSP) analysis [6] of sound 

signals obtained by only two microphones to localize the 

sound source without impulse response data. We also 

applied an expectation-maximization (EM) algorithm [7] to 

localizing several sound sources and reducing localization 

errors. In this paper, we quantitatively evaluated this system 

for moving sounds with various velocities. Then, after 

evaluating the developed system using created database for 

moving sounds, we determined the best frame number for 

training the EM algorithm of our system to cope with 

moving sounds. 

Second, to evaluate our sound source localization system 

for moving sounds, we developed the moving sound creation 

tool by using the API library called SoundLocus of Arinis’s 

technology (http://www.arns.com/english/index.html). The 

conventional ways to evaluate moving sounds required a 

database to be made by recording moving speakers. This 

way is a hard way to construct a good database with accurate 

information about sound tracks. Moreover, since it is very 

difficult to construct the same database repeatedly, it is 

difficult to evaluate various sound source localization 

systems under the same conditions. In contrast, since our 

moving sound creation tool can create moving sounds 

including azimuth and distance information according to 
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the created frame or time, it can be used to evaluate various 

sound localization systems under the same condition. 

Finally, in spite of using only two microphones, a robot 

implementing our system can distinguish between sounds 

from the front and sounds from the back by simply rotating 

its head at least 10 degrees. We evaluated our system’s 

ability to localize moving sounds created by developed 

moving sound creation tool. The results helped us to 

determine the rotation speed and rotation angle of the 

robot’s head in order to localize sounds over the entire 

azimuth range. 

The rest of this paper is organized as follows. Section II 

describes the sound source localization that we developed. 

Section III describes the new way to evaluate sound 

localization systems for moving sounds and the results of 

evaluating our system. Section IV describes two-channel 

sound localization over entire azimuth range for humanoid 

robots. Section V concludes this paper. 

II. SOUND SOURCE LOCALIZATION 

For sound source localization, the latest systems for robots 

mostly use one of three methods: head-related transfer 

function (HRTF) [1,8,9], multiple signal classification 

(MUSIC) [2,10], and CSP [6]. Although HRTF and MUSIC 

typically need impulse response data and an array of 

microphones in order to localize several sound sources, CSP 

does not need impulse response data and can accurately 

determine the direction of a sound using only two 

microphones. Using CSP with two microphones can locate 

only one sound source each frame even if several sound 

sources are present. This is because CSP obtains the sound 

localization information from the spatial correlation 

between two signals. Besides, CSP is usually unreliable in 

noisy environments. To overcome these weaknesses, we 

developed a new method based on probability for estimating 

the number and location of sound sources. First, the CSP 

results for three frames (shifting every half frame) are 

collected. Then, an EM algorithm [7] is used to estimate the 

distribution of the data. In this way, our method can localize 

several sound sources using the distribution of CSP results 

and can reduce the error in sound source localization. 

A. Cross-power spectrum phase analysis 

The direction of a sound source can be obtained by 

estimating the Time Delay Of Arrival (TDOA) between two 

microphones [3]. When there is a single sound source, the 

TDOA can be estimated by finding the maximum value of 

the cross-power spectrum phase (CSP) coefficients [6] 

derived by 
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where k and n are the sampled number for the delay of 

arrival between two microphones, si(n) and sj(n) are signals 

entering into microphones i and j, respectively. FFT (or 

IFFT) is the fast Fourier transform (or inverse FFT), * is the 

complex conjugate, and τ is the estimated TDOA. The sound 

source direction is derived by 
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where θ is the sound direction, v is the sound propagation 

speed, Fs is the sampling frequency, and dmax is the distance 

with the maximum delay between two microphones. The 

sampling frequency of our system was 16 kHz. CSP has to 

consider the diffraction of sounds if microphones are not 

located in a free space. Therefore, we estimated TDOA for 

our CSP method after assuming that the shape of the robot’s 

head is a circle. Figure 1 shows the parameters used in 

equation (3). Here, we assume that waves of sounds received 

at a pair of microphones become plane waves. 

 
Fig. 1. Localization of multiple sound sources. 

B. Localization of multiple sound sources by EM 

Figure 2 (A) shows sound source localization events 

extracted by CSP according to time or frame lapses. Events 

that lasted 192 ms are used to train the EM algorithm to 

estimate the number and localization of sound sources.  

 
Fig. 2. Localization of multiple sound sources. 
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The interval for the EM algorithm was experimentally 

determined as shown in the upper part of Figure 6. Figure 2 

(B) shows the training process for the EM algorithm to 

estimate the distribution of sound source localization events. 

The EM training results in Figure 2 (C) indicate refined 

localizations by iterating processes (A) and (B). The interval 

for EM training is shifted every 32 ms. 

Here, we explain the process of applying EM algorithm. 

Figure 3 describes the process in Figure 2 (B) in detail. In 

(A) of figure 3, as the first step of EM training, sound source 

localization events were gathered for 192 ms. Next, 

Gaussian components defined by using equation (4) for 

training the EM algorithm were uniformly arranged on 

whole angles.  
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where µk is the mean, σ2
k is the variance, θk is a parameter 

vector, m is the number of data, and k is the number of 

mixture components. At that time, in (A) of Figure 3, the µ 

and σ parameters in Gaussian components are the respective 

center and radius values of each component. Then, the 

sound localization events are applied to the arranged 

Gaussian components to find the parameter vector, θk, 

describing each component density, P(Xm|θk), through 

iterations of the E and M steps. This EM step is described as 

follows: 

1) E-step: The expectation step essentially computes the 

expected values of the indicators, P(θk|Xm), where each 

sound source localization event Xm is generated by 

component k. Given N is the number of mixture components, 

the current parameter estimates θk and weight wk, using 

Bayes’ Rule derived as 
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2) M-step: At the maximization step, we can compute the 

cluster parameters that maximize the likelihood of the data 

assuming that the current data distribution is correct. As a 

result, we can obtain the recomputed mean using Equation 

(6), the recomputed variance using Equation (7), and the 

recomputed mixture proportions (weight) using Equation 

(8). The total number of data is indicated by M. 
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After the E and M steps are iterated an adequate number 

of times, the estimated mean, variance, and weight based on 

the current data distribution can be obtained. 

Then, in (B) of Figure 3, the weight and mean of Gaussian 

components are reallocated based on the density and 

distribution of the histogram data. Finally, in (C) of Figure 3, 

if the components overlap, each weight value of overlapping 

Gaussian components will be added. After that, if the weight 

value is higher than a threshold value, the system can 

determine the localization of the sound source by computing 

the average mean of the overlapping Gaussian components. 

In contrast, components with small weights are regarded as 

noise and will be removed. 

 
Fig. 3. Process of EM algorithm for estimating sound sources. 

C. Experiments and Results 

 
Fig. 4. Localization errors for CSP only and CSP+EM method. 

 

To evaluate the EM algorithm, we experimentally 

compared the CSP method together with the EM algorithm 

with the CSP only. We recorded five commands, “sig”, 

“ohayogozaimasu”, “konnichiwa”, “konbanwa”, and 

“oyasuminasai” trans. the name of our robot, “good 

morning”, “good afternoon”, “good evening”, and “good 
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night”.  They were produced at every 10° from -90° to 90°, at 

a distance of 1.5 m from the head of the robot, and at a 

magnitude of 85 dB. Since the robot was at the center of a 

square room whose side was 5 m where background noise 

was about 55 dB (A), the reverberation effect was neglected. 

We calculated the average CSP results of all frames within 

the interval of five commands for each measurement point. 

As shown in Figure 4, the average errors with the CSP 

method and the EM algorithm were less than those with the 

CSP only method for every angle where the average error 

indicates the average of difference values between the 

original point angle and the observed localization angle. 

III. EVALUATION USING MOVING SOUND CREATION TOOL 

A. SoundLocus Tool 

We developed the moving sound creation tool by using the 

API library called SoundLocus Lite from Arnis’s technology. 

We assumed that the validity of this tool was confirmed 

because theses and patents of Arnis’s technology were 

already presented in its website (http://www.arns.com/ 

english/index.html). This tool can convert an audio data of a 

wav file form into a stereo wav file according to the track of 

desired as shown in Figure 5. Therefore, by designating the 

velocity and track of moving sounds beforehand, we could 

freely make moving sounds of stereo wave file form. Since 

this tool based on head-related transfer function (HRTF) is 

to create moving sounds for a headphone set, this one does 

not consider reverberation and ambient noise. Nevertheless, 

that is effective to evaluate a proposed sound localization 

method and compare it with other methods under the same 

condition, i.e., it is unnecessary to consider the error of a 

track for moving sounds and to reflect dynamically changed 

resonance and background noses in real environments 

whenever doing experiments. 

To evaluate our method for single moving sounds, we 

created eight moving speech signals, which were rotated 

from 0 °  to 359°  at 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 

1.25 rad/sec at about 2.0 m from the center position with 

SIG2. The length of each created moving sound was 30 sec. 

We performed sound localization using these sounds, as 

shown in (A) of Figure 5. Also, to make certain of the effect 

of propagation in the air, we have tried to evaluate our sound 

localization system using created moving sounds emitted by 

a pair of speakers, as shown in (B) of Figure 5. We used two 

omni-directional microphones installed at the left and right 

ear position of the humanoid robot SIG2 (refer to Figure 9) 

and used two fixed speakers at 0.5 m from the left and right 

sides of the microphones. To evaluate our method for two 

moving sounds, we mixed two moving sounds. One rotated 

at 2 m from the center at 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 

1, 1.125 rad/sec and the other one rotated at 1 m at the half 

the angular velocity lagging 90°  behind the other one. The 

middle part of Figure 6 shows the track of moving sounds 

and the results of localizing two moving. 

 
Fig. 5. Creating moving sound sources and experimental conditions. 

B. Evaluation 

The top part of Figure 6 shows the average error and 

success rate of localizing single moving sounds according to 

the number of frames for training the EM algorithm. The 

success rate is the total percentage when the difference 

between the original location of the created moving sound 

source and the estimated sound localization was within 30° . 

All dotted lines in Figure 6 indicate the results of localizing 

sounds as observed from speakers shown in (B) of Figure 5. 

Here, in 6 frames for EM, the average error was the least and 

the success rate was the best. Therefore, we could 

experimentally determine that the appropriate interval for 

our system was 192 ms (6 frames) as shown in Figure 2. 

Moreover, we learned that our system can cope with moving 

sounds slower than 1.125 rad/s. Since one of purposes of this 

study help robots to localize the voices of walking people, we 

confirmed that our system can cope with moving speech at 

the average walking speed, 1.0 m/s (1.0 rad/sec at 1 m), of 

healthy adults. The middle left part of Figure 6 shows that 

our system localized sounds moving at 1.125 rad/sec for 30 

seconds at 2 m. The middle right part of Figure 6 shows that 

our system localized two sounds moving at 1.125 rad/sec 

and at 0.563 rad/sec for 30 seconds. The bottom part of 

Figure 6 shows the average error and success rate of 

localizing two moving sounds when the number of frames 

for training the EM algorithm was 6 (192 ms). The two 

sound sources rotated at different angular velocities. One 

(source 1) rotated twice as fast as the other one (source 2).  

The average error and success rate was better for the slower 

one than for the faster one. The overlapped line, in the graph 

of success rate of localizing two moving sounds, indicated 

the percentage of accurate sound localization where two 

sound sources occurred at the same time. Here, two sound 

sources have some silent intervals severally because we used 

the sources recorded from common dialogues. In case of 

when two moving sounds were emitted from two speakers as 

shown in the bottom part of Figure 6, the performances were 

not good because two sounds interfered with each other in 

the air space. 
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Fig. 6. Results of evaluating our system for moving sounds. 

IV. SOUND LOCALIZATION FOR HUMANOID ROBOTS 

The target application of our sound source localization 

method is robots, and it is natural that robots move and 

rotate their bodies and heads in order to track someone. 

Therefore, even though the orientation of the microphones 

in the robot’s head or body will constantly change, the sound 

source localization method must be able to cope with the 

effects created by the moving microphones. Moreover, if 

moving robots can track sound sources, they may be able to 

distinguish whether sound signals are coming from their 

front or back with only two microphones. This is because the 

TDOAs and powers obtained for equivalent sound signals 

coming from the front and back are the same, as shown in 

(A) of Figure 7. 

We can overcome this problem by rotating the robot’s 

head while the sound signals are being generated. For 

example, as shown in (B) of Figure 7, if sound signals are 

coming from the front, the robot can determine their 

direction by reducing the angle of the sound localization 

while turning its head. As shown in (C), if sound signals are 

coming from the back, the angle of sound localization will 

be increased by turning the robot’s head. Given this 

difference, our method can localize the actual source after 

the robot’s head has turned more than 10 degrees. 

 

 
Fig. 7. Sound source localization by rotating a robot’s head. 

A. Voice Activity Detection using GMM 

To localize sounds over the entire azimuth range with two 

microphones, after the robot first classified speech signals, it 

has to rotate two microphones during the periods of speech 

signals. Therefore, we developed a voice activity detection 

(VAD) based on Gaussian mixture model (GMM). GMM is 

a powerful statistical method widely used for speech 

classification [11]. Here, we applied the 0 to 12th 

coefficients (total 13 values) and the ∆1 to ∆12th 

coefficients (total 12 values) of Mel Frequency Cepstral 

Coefficients (MFCCs) to GMM defined by Equation (9) and 

the weight as denoted by Equation (10). 
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where P is the component density function, L is the number 

of MFCC parameters, X is the value of the MFCC data of the 

0 to 12th and the ∆1 to ∆12th coefficients, and θ is the 

parameter vector concerning each MFCC value. Moreover, 
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to classify speech signals robustly, we designed two GMM 

models for speech and noise derived as 

( )( ) ( )( )log logs s s n n nf P X P Xθ θ= −         (11) 

where Ps is the GMM related to speech, and Xs is the MFCC 

data set at the t-th frame belonging to the speech parameters, 

θs. On the other hand, Pn is the GMM related to noise and Xn 

is the MFCC data set at the t-th frame belonging to the noise 

parameters, θn. Finally, if the final value, f, denoted as 

Equation (11), is higher than the value of the threshold to 

discriminate the speech signal from GMM, signals at the 

t-th frame will be regarded as speech signals.  

( ) ( ) ( )

( ) ( )

IF    THEN  1 

                                ELSE  0 

f t thresold f t speech

f t noise

> =

=
   (12) 

We used 30 speech data (15 males and 15 females) for the 

speech parameters to train the GMM parameters, and 77 

noise data generated in home environments such as the 

sounds of a door opening or shutting and those of electrical 

home appliances (e.g., a vacuum cleaner, a hair drier, and a 

washing machine) for the noise parameters. To verify the 

performance of GMM parameter training, we classified the 

sound sources using speech and noise data for training. As a 

result, we obtained a success rate for speech classification of 

95.5% and a success rate for noise classification of 72.8%. 

B. System overview 

 
Fig. 8. System overview of localizing sounds for whole azimuth. 

In spite of using only two microphones, our system can 

distinguish between sounds from the front and sounds from 

the back by simply rotating its head at least 10 degrees. The 

reason that it can distinguish front from back sources by 

rotating 10 degrees is that the error margin for a single 

moving sound is about 10 degrees, as shown in Figure 6. 

Figure 8 shows the process to localize sounds over the entire 

azimuth range for a humanoid robot performing the 

following steps: 

1) The robot detects speech signals classified by Gaussian 

mixture model (GMM). Our voice activity detection (VAD) 

requires at least 200 ms in order to discriminate between 

speech signals and noises. The robot can then detect the 

period of these signals by using 

( ) threshold
b

a

i n

i i n

f i
+

= −

≥∑       (13) 

where f(i) is the i-th speech frame classified by equation (12). 

If some speech frames exist within the interval of designated 

frames from the na-th frame to the nb-th frame, we can 

decide that the i-th frame is within the interval of the target 

speech. 

2) Before turning its head 10 degrees in the direction of 

the detected signals, the robot calculates the average of the 

sound localization events by using 

( ) ( )
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θ θ
=

=
−
∑      (14) 

where θ(i) is the estimated sound localization event of the 

i-th frame and θbefore is the average angle between the n1-th 

frame and the n2-th frame. 

3) After turning its head 10 degrees, the robot obtains the 

average of the sound localization events between the n3-th 

frame and the n4-th frame for 200 ms by using 

( ) ( )
4

34 3

1
n

after

i n

i i
n n

θ θ
=

=
−
∑      (15) 

4) Finally, using the difference between the initial average 

angle calculated by equation (14) and the final average angle 

calculated by equation (15), the robot can localize sounds 

over the entire azimuth range and turn its head to that 

direction. 

The system can logically distinguish between front and 

back localization if sound signals are continuously 

generated for longer than 0.7 seconds (Figure 8). This is 

because our system�has a delay of more than 200 ms for 

detecting speech signals, 200 ms for rotating the motor 10 

degrees, and more than 200 ms for localizing sounds after 

turning its head. Here, we rotated the head motor less than 

0.25 rad/sec (0.25 rotations per 1 second) in order to avoid 

the effect of motor noises. We confirmed that the magnitude 

of our motor noise is less than 55 dB(A) when rotating that 

less than 0.25 rad/sec, at that time, our sound localization 

system could work without the disturbing noise generated 

from the motor. In addition, within �80°  to �100° , our 
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system does not try to distinguish front and back 

localizations because sounds are coming from the side in 

these cases as shown in Figure 9. Besides, although our 

sound localization system over entire azimuth range has 

been evaluated for fixed sounds, it would be able to cope 

with linearly moving sounds slower than the average 

walking speed, 1 m/s, of healthy adults. In the future work, 

we are considering the evaluation of our system to 

distinguish whether the direction of linearly moving sounds 

is the front or rear by rotating two microphones. 

C. Experiments and results 

 
Fig. 9. Results of localizing sounds for whole azimuth. 

 

Figure 9 shows the results of applying our system to the 

robot called SIG2. In this experiment, the robot 

distinguished between sounds coming from the front and 

back whenever speech signals of “sig”, its name, were 

generated. The length of the speech signals was about 0.75 

seconds, and speech signals were generated 20 times at each 

position. The left part of Figure 9 shows the success rate of 

distinguishing the right sound localization. In right part of 

Figure 9, the robot obtained a success rate of 97% in the 

forward area, and The success rate in the backward areas 

excluding �70° and �80°  was 75%. We analyzed that the 

performance in the backward areas was not good because of 

the effect of the artificial ears installed at SIG2. The bottom 

part of Figure 9 shows that SIG2 performed entire azimuth 

sound localization by rotating its head. In this experiment 

setup, two talkers were at 60°  and -60°  and when the talker 

1 who was at 60 °  called SIG, it first localized the front 

sounds at 60°  and the talker 2 was located at -150°  in (A). 

Next, the robot localized the back sounds at -150°  from (B) 

to (C) when the talker 2 called “sig”. It then localized the 

back sound at 150°  from (C) to (D) when the talker 1 called 

“sig” again. 

V. CONCLUSION 

We proposed the way that can repeatedly evaluate sound 

source localization under the same conditions regardless of 

the kind of localization method and number of microphones. 

We developed a two-channel sound source localization 

method incorporating a cross-power spectrum phase (CSP) 

analysis and the EM algorithm. Tests showed that our 

method can reliably locate sounds moving slower than 1.125 

rad/sec. Also, to localize sounds over the entire azimuth 

with two microphones, we developed a system that can 

distinguish whether sound signals are coming from the front 

or back of a robot by rotating the robot’s head. In the future 

work, we will design robots that can communicate with 

people by adding speech recognition with a source 

separation function and voice synthesis to our system. 
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