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 Abstract - Dynamic features play an important role in 
recognizing objects that have similar static features in colors and 
or shapes.  This paper focuses on active sensing that exploits 
dynamic feature of an object.  An extended version of the robot, 
Robovie-IIs, moves an object by its arm to obtain its dynamic 
features.  Its issue is how to extract symbols from various kinds 
of temporal states of the object.  We use the recurrent neural 
network with parametric bias (RNNPB) that generates self-
organized nodes in the parametric bias space.  The RNNPB with 
42 neurons was trained with the data of sounds, trajectories, and 
tactile sensors generated while the robot was moving/hitting an 
object with its own arm. The clusters of 20 kinds of objects were 
successfully self-organized. The experiments with unknown (not 
trained) objects demonstrated that our method configured them 
in the PB space appropriately, which proves its generalization 
capability. 
 
 Index Terms - Active Sensing, Humanoid Robot, Recurrent 
Neural Network 
 

I.  INTRODUCTION 

 Our final goal is to develop techniques to enable robots to 
manipulate tools designed for humans. Conventional robots 
only manipulate specific tools designed for robot hands. It is 
still quite difficult for mechanical systems to handle the 
dynamics of objects and generate adaptive behaviors through 
the learning of a dynamic environment. 
 A crucial problem for such tool manipulation is object 
recognition and there have been some studies concerning 
“active sensing” [1] to solve this problem [2][3][4]. Noda et 
al. reported a study using the humanoid robot, Wamoeba-2Ri, 
which grasps objects with its hand and recognizes them by 
integrating multiple sensory data: size, weight, and color 
images [2]. Since that study used a three-layered SOM (Self-
Organizing Map [5]) which can only deal with static features 
and it required over a thousand neurons for processing multi-
modal sensory data, it was quite difficult for the robot to apply 
the recognition results to its motion planning. Arsenio et al. 
focused on rhythmic motion as the dynamics of objects and 
merged the visual-audio sensory data to recognize them using 
the humanoid robot Cog [3]. Though that study showed cross-
modal dynamics was essential for object recognition and 
manipulation, the target was only “rhythmic motion” 
generated not by the robot but by the human operators. 
Therefore, it was not enough for the robot to plan more 
general tool manipulations. The common problem of these 

studies is that their target was recognition of fewer than 10 
objects designed and/or selected for the robot system.  
 In this paper, we propose a novel active-sensing method 
using the dynamics of objects. This method uses a recurrent 
neural net (RNN) trained using the multi-modal sensory data 
generated while a robot is moving/hitting objects. The RNN 
enables robots to use the dynamic features for various object-
recognition and motion-prediction methods. Furthermore, the 
proposed method has generalization capability that can 
configure unknown (not trained) objects appropriately. 
 Section II introduces the recurrent neural network model 
as the learning method. Section III described the actual design 
of active sensing, such as, motion design, target objects, 
sensors, and configuration of the neural network. Section IV 
shows some experiments and the results of our proposed 
methods. Section V discusses the characteristics of our 
method and compares them with those of conventional 
recognition methods. Section VI concludes this paper and 
describes future work concerning motion generation. 

II.  LEARNING ALGORITHM 

This section describes a method that enables robots to 
deal with dynamic features of sensory information during 
active sensing. It is well known that ‘statistical techniques’ 
represented by the hidden Markov model (HMM) can process 
time-sequence data efficiently. However, these methods 
require huge amounts of data for learning. It is quite laborious 
for real robot systems to carry out experiments for collecting 
such a lot of data due to the durability problem. Moreover, the 
HMM can deal with only “known” objects. This could be a 
fatal problem in the adaptability to the real dynamic 
environment. Therefore we tried to use a ‘deterministic model’ 
represented by an artificial neural net (ANN) technique to 
solve this problem. For example, it is well known that RNN 
can self-organize (acquire) contextual information [6].  

We use the FF-model (forwarding forward model) 
proposed by Tani [7]. This model is also called the RNN with 
parametric bias (RNNPB) model. It articulates complex 
motion sequences into motion units, which are encoded as the 
limit cycling dynamics and/or the fixed-point dynamics of the 
RNN. We have already reported the study of human-robot 
interaction based on quasi-symbols acquired by the RNNBP 
[8]. 

 
 



A. RNNPB Model 
 The RNNPB model has the same architecture as the 
conventional Jordan-type RNN model [9] except for the PB 
nodes in the input layer. Unlike the other input nodes, these 
PB nodes take a constant value throughout each time sequence 
and are used to implement a mapping between fixed length 
values and time sequences. The network configuration of the 
RNNPB model is shown in Figure 1. 
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Fig. 1 Network Configuration of RNNPB 

 
Like the Jordan-type RNN model, the RNNPB model 

learns data sequences in a supervised manner. The difference 
is that in the RNNPB model, the values that encode the 
sequences are self-organized in the PB nodes during the 
learning process. The common structural properties of the 
training data sequences are acquired as connection weights by 
using the back propagation through time (BPTT) algorithm 
[10], as also used in the conventional RNN. Meanwhile, the 
specific properties of each individual time sequence are 
simultaneously encoded as PB values. As a result, the RNNPB 
model self-organizes a mapping between the PB values and 
the time sequences. 
 

B. Learning of PB Vectors 
The learning algorithm for the PB vectors is a variant of 

the BPTT algorithm. The step length of a sequence is denoted 
by l. For each of the sensory-motor outputs, the back-
propagated errors with respect to the PB nodes are 
accumulated and used to update the PB values. The update 
equations for the ith unit of the parametric bias at the t in the 
sequence are as follows. 
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In Eq. (1), the δ force for updating the internal values of the 
PB pt is obtained from the summation of two terms. The first 

term represents the delta error, δt
bp,

 back propagated from the 
output nodes to the PB nodes: it is integrated over the period 
from the t–l/2 to the t+l/2 steps. Integrating the delta error 
prevents local fluctuations in the output errors from 
significantly affecting the temporal PB values. The second 

term is a low-pass filter that inhibits frequent rapid changes of 
the PB values. Internal value ρt is updated using the delta 
force, as shown in Eq. (2). And kbp, knb, and ε are coefficients. 
Then, the current PB values are obtained from the sigmoidal 
outputs of the internal values. After learning the sequences, 
the RNNPB model can generate a sequence from the 
corresponding PB values. 

Furthermore, the RNNPB model can be used for 
recognition processes as well as for sequence generation 
processes. For a given sequence, the corresponding PB value 
can be obtained by using the update rules for the PB values 
(Eqs. (1) to (3)), without updating the connection weight 
values. This inverse operation for generation is regarded as 
recognition. 

The other important characteristic of the RNNPB model is 
that relational structure among the training sequences can be 
acquired in the PB space through the learning process. This 
generation capability enables the RNNPB model to generate 
and recognize unseen sequences without any additional 
learning. For instance, by learning several cyclic time 
sequences of different frequencies, it can generate novel time 
sequences of intermediate frequencies. 

III.  ACTIVE SENSING BY MOVING OBJECTS 

A. Addition of New Functions to Robovie-IIs 
 We refined the humanoid robot Robovie-IIs [11] as a 
platform of our experiments. Robovie-IIs itself is the refined 
model of Robovie-II developed at ATR [12]. The original 
Robovie-II has three DOF (degrees of freedom) on the neck 
and four DOF on each arm. It also has two CCD cameras on 
the head. The characteristic of Robovie-IIs is tactile sensors in 
soft silicon covering its whole body. The tactile sensor can 
discriminate three kinds of contact: hit, rub, and touch by 
detecting the pressure velocity. 
 Furthermore, we added some functions to Robovie-IIs: 
two external ears on the head and two 1-DOF hands on the 
arms for the experiment on “active sensing”. Figure 2 shows a 
photograph of the head with external ears and the hand of our 
Robovie.  
 

  
 

Fig. 2 The Head with External Ears and The Hand 
 

B. Motion of Active Sensing and Target Objects 
 Perception with only static features such a visual image is 
not enough to discriminate objects that have similar sizes, 
shapes, and colors. Also such a recognition framework cannot 
be applied to dynamic motion planning. The perception should 
be designed in the sense of “sensory-motor coordination” [13]. 



 We focused on active sensing motion that a robot is 
moving/hitting an object on the table with its own arm. Infants 
often touch and hit unknown object in front of them, and they 
acquire the skill to manipulate objects through such 
experiences. The motion of a moving object is the behavior 
for exploiting the dynamic features of the object, like tactile 
pressure to move it, actual trajectory, and sound pattern 
generated by collision with the table etc. 
 Figure 3 shows an actual experiment. Robovie touched 
and moved the object by rotating the shoulder motor (roll axis) 
with constant velocity (60 deg/s). While the robot was moving 
each object, the sound, object trajectory, and touch pressure 
were collected by its own microphones, cameras, and tactile 
sensors.  
 

 
 

Fig. 3 Experiment of Active Sensing 
 

 In total, 20 kinds of objects were used as the recognition 
target as shown in Figure 4: a rubber ball, plastic ball, 
ceramic cup, plastic cup (2 kinds), glass, can, moneybox, 
stuffed doll, Rubik’s cube, toy-car, funnel, pen tray, scrub 
brush, soft brush, water dumbbell, and shampoo container. In 
particular, the water dumbbell and shampoo container had two 
conditions, “full” and “empty”. These two patterns cannot be 
discriminated just by the static features like visual images. 
 

 

 
 

Fig. 4 Target Objects for Recognition 
 

C. RNNPB Configuration and Learning 
 The following sensory data were normalized ([0-1]) and 
synchronized (9 frame/s) between different modalities for use 
by the RNNPB model. 

 1) Audio Information (5 units): The audio signal was 
detected by the microphones in the external ears (48 kHz). The 
five signal features were extracted using a Mel Filter Bank.  
 2) Visual Information (4 units): The center position (x, y) 
and the color (R, B) were detected by a CCD camera with 
resolution of 320 x 240 pixels (30 frame/s). 
 3) Tactile Information (1 unit): The input voltage from the 
skin tactile sensor was used (4.3 Hz). 
 The system diagram is shown in Figure 5. The designed 
RNNPB works as a prediction system whose input is current 
sensory data s(t) and output is next sensory state s(t+1). It 
consists of only 42 neurons: 10 neurons in the input layer, 20 
neurons in middle layer, 10 neurons in context layer, and 2 
neurons as parametric bias.  
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Fig. 5 System Diagram of Object Recognition 
 

 The training sequence of the RNNPB was segmented 
when the change values of all sensory input were less than the 
threshold. In the experiments, the sensory sequence lengths Ls 
were 15 to 40 steps.  
 Our goal is to acquire the specific parameter values 
corresponding to each object for recognition and motion 
generation. Therefore, in order to fix the parameter values 
during the sensing motion, Eq. (1) was simplified in our 
RNNPB model training as follows.  
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 Also, Eq. (3) that normalizes the parameter values was 
not used in our experiments to make analysis of the acquired 
PB spaces ease. 

IV. EXPERIMENTS AND RESULTS 

A. Self-Organization of PB Space and Modality Differences 
 We carried out the experiment using the 20 kinds of 
objects described in the previous section in order to confirm 
the clustering capability of the proposed method using object’s 
dynamic features. Robovie moved these objects five times (20 
x 5 = 100 sequence data), and the RNNPB was trained by a 
collecting data 100,000 times which required approx 1 hour 
using Pentium IV, 2.8 GHz.  
 Figure 6 shows the sequences of the tactile pressure, the 
object position (x coordinate), and the sound power, when 
Robovie moved (a) glass and (b) scrub brush. The black lines 
describe the RNNPB input (real value) and the gray lines 
show the RNNPB output (prediction). We confirmed that the 



RNNPB predicts each sequence well. The average prediction 
error is less than 1.5%. 
 Figure 7 shows the PB space acquired by each sensor 
modality. Two parametric values in the RNNPB before 
normalization correspond to the X-Y axes in the space. The 
characteristics of each space are as follows. 
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(a) An Example of Glass 
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(b) An Example of Scrub Brush 
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Fig. 6 Sensor Flow and Prediction output of the RNNPB 

 

 1) PB space acquired by tactile sensor: Figure 7-(a) 
shows the PB space when only tactile sensors were used. 
Though most objects were not categorized, there was a 
tendency for heavy objects to be mapped in the upper part in 
the space.  
 2) PB space acquired by sound signal: Figure 7-(b) shows 
the space when only sound signal was used. In this space the 
objects that did not make a sound were mapped in the right-
upper area. Though some vague clusters can be seen, the 
sharpness of separation is quite low.  
 3) PB space acquired by visual data: Figure 7-(c) shows 
the space when only visual information was used. In this 
space, almost all objects could be separated. However, the 
objects with similar trajectories, such as “can/glass” and 
“moneybox/pen tray”, were not separated. 
 4) PB space acquired by all sensory modalities: Figure 7-
(d) shows the PB space self-organized when all sensory 
modalities were used. We confirmed that the RNNPB could 
acquire the clusters for all kinds of objects.  

 

B. Clustering of Unknown Objects 
 We carried out other experiments to confirm the ability of 
generalization of our method by recognizing unknown (not 
trained) objects. In this experiment, we used 8 objects: a 
rubber ball, glass, moneybox, pen tray, scrub brush, soft 
brush, and shampoo container (empty and full).  
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 (a) PB Space Acquired by Tactile Sensor  
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 (b) PB Space Acquired by Audio Signal 
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 (c) PB Space Acquired by Visual Image 
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 (d) PB Space Acquired by All Sensor Modality 
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 Fig. 7 PB Spaces Acquired by Sensor Modality 
 

 The RNNPB was trained in two different ways. The 
RNNPB-1 was trained using all multi-modal sensory data in 
active sensing motion. The RNNPB-2 was trained using only 
the rubber ball, glass, scrub brush, and shampoo container 
(empty). For this RNNPB-2, moneybox, pen tray, soft brush, 
and shampoo container (full) were unknown objects. Both 
RNNPB were trained 100,000 times. 
 Figure 8 shows the PB spaces of RNNPB-1 (a) and 
RNNPB-2 (b) respectively. The trained/untrained objects are 
shown by white/black plots respectively. Here, the parameter 
values of RNNPB-2 corresponding to unknown objects were 
determined by renewing only the parameter values without 
updating the synaptic weights (recognition process). 
Renewing the PB value only 1000 times completed the 
recognition. 
  

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5

 
 

(a) PB Space Acquired of RNNPB-1 
Trained by 8 objects 
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(b) PB Space Acquired of RNNPB-2 
Trained by 4 objects and recognition results of untrained 4 objects 
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Fig. 8 Comparison between two RNNPB 
(Generalization Analysis) 

 
 It can be observed that the clusters were self-organized 
corresponding to all objects in the PB space of the RNNPB-1. 
Specifically,  

1) Objects that moved easily were mapped in the upper-
left area, 

2) Objects making sound were mapped in the upper 
area, 

3) Blue objects were mapped in the upper-right area. 
Furthermore, Figure 8-(b) demonstrates that RNNPB-2 
acquired almost the same map as Figure 8-(a) of RNNPB-1, 
even though it had been trained with the data of only four 
objects. This means that the RNNPB-2 could configure the PB 
space with a similar structure to that of the RNNPB-1 except 
the distribution of each cluster was different between two PB 
spaces. 

V.  DISCUSSION 

A. Motion Design and Multi-Modality 
 It is difficult to prepare a motion pattern that can be 
applied to various kinds of objects. Most research concerning 
active sensing selected touch and/or grasping motions which 
focused on tactile and joint-degree sensing. Though these 
motions guarantee to obtain reliable data about the shape, size, 
and weight of objects, such motions require elaborate skills for 
detecting the accurate position of objects in order to pick them 
up. However, it is well known that even human infants have 
difficulty manipulating objects with their own hands. 

We selected the motion of object moving/hitting by the 
robot’s arm for the active perception. This motion can be 
completed without any accurate sensor data and it is possible 
to extract many kinds of dynamic features of objects including 



moving trajectory and sound. In particular, the ‘sound’ signal 
reflects many properties of objects such as shape, material, 
and internal structure. Visual device alone cannot obtain these 
properties simultaneously as shown in Figure 7-(c).  

A large number and variety of motion patterns of 
moving/hitting objects in different speeds and directions could 
enable the extraction of a greater variety of dynamic features 
of objects.  
 
B. Clustering Ability of RNNPB 
 As mentioned in Section I, most conventional studies 
concerning active sensing have dealt with few objects as the 
recognition target. Hence it is also difficult to prepare a 
recognition system that can handle various kinds of objects. 
For example, typical neural networks for time-sequence data 
processing represented by TDNN need an impractically large 
number of neurons and learning times for the problem treated 
in this paper, because it is designed to store all time-sequences 
of sensory data in the input layer. In contrast, the number of 
neurons in our RNNPB was only 42 because it uses self-
organizing contextual information in the context-layer. 
  
C. Generalization Ability of RNNPB 

We confirmed that RNNPB has superior generalization 
capability for clustering dynamic sequences. It can express 
various objects and their relationships in the PB space self-
organized through training with a few objects. As mentioned 
in Section II, our method is better for robot learning than 
stochastic learning methods because real robot systems have 
fatal limitations of hardware-durability.  
 There is another deterministic learning system called 
“mixture of experts” represented by MOSAIC [14] which also 
works well to deal with multiple dynamic-patterns (attracters). 
This type of system usually consists of several dynamic 
recognizers which categorize and learn target sequences 
individually (local expression). In contrast, RNNPB acquires 
multi-attracters in overlapping fashion in a single network by 
changing parameters that represent the boundary condition 
(distributed expression). In RNNPB, all neurons and synaptic 
weights participate in representing all trained patterns. 
 In local expression, interference is minimized between 
patterns because it allocates a novel pattern in an additional 
recognizer. However in a distributed expression, memory 
interference will occur since the memories share the same 
network resources. Nevertheless, as a result of embedding 
multiple attractors in a distributed network, we got a global 
structure that handles learned patterns as well as unknown 
(unlearned) patterns. We think this is why RNNPB could 
show the generalization ability in recognizing unknown 
objects in Section IV-B. 

VI.  CONCLUSIONS AND FUTURE WORK 

 This paper proposed an active sensing method using a 
humanoid robot with a recurrent neural net to solve the 
problem of object recognition. Specifically, the RNNPB 
model with only 42 neurons was trained with the data of 
sounds, trajectories, and tactile senses generated while a 
humanoid robot was moving/hitting an object with its own 

arm. The clusters of 20 kinds of objects could be self-
organized in the parametric bias space (PB space). Also 
experiments using unknown (not trained) objects 
demonstrated that the proposed method could configure these 
unknown objects in PB space appropriately, which proves its 
generalization capability. 
 An interesting challenge for future work is to achieve the 
robot motion planning using our method. The configuration of 
the RNNPB can be redesigned for treating the motor output 
easily. We expect that our robot will be able to generate arm 
motion by using the RNNPB output. For example, the RNNPB 
could associate the arm motion patterns with observed object 
trajectories and sounds. This association could be related to 
the discussion of “imitation” based on behavioral primitives 
corresponding to the parametric bias in our study. 
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