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Vocal Imitation Using Physical Vocal Tract Model

Hisashi Kanda, Tetsuya Ogata, Kazunori Komatani and Hiroshi G. Okuno

Abstract— A vocal imitation system was developed using a
computational model that supports the motor theory of speech
perception. A critical problem in vocal imitation is how to
generate speech sounds produced by adults, whose vocal tracts
have physical properties (i.e., articulatory motions) differing
from those of infants’ vocal tracts. To solve this problem, a
model based on the motor theory of speech perception, was
constructed. This model suggests that infants simulate the
speech generation by estimating their own articulatory motions
in order to interpret the speech sounds of adults. Applying
this model enables the vocal imitation system to estimate
articulatory motions for unexperienced speech sounds that
have not actually been generated by the system. The system
was implemented by using Recurrent Neural Network with
Parametric Bias (RNNPB) and a physical vocal tract model,
called the Maeda model. Experimental results demonstrated
that the system was sufficiently robust with respect to individual
differences in speech sounds and could imitate unexperienced
vowel sounds.

I. INTRODUCTION

Our final goal is to clarify the development process in
the early-speech period of human infants. In this paper, we
mainly focus on their vowel imitation using computational
model that supports the motor theory of speech perception.
The target are primitive utterances such as cooing! or bab-
bling? before infants utter first words.

Human infants can acquire spoken language through vocal
imitation of their parents. Despite their immature bodies, they
can imitate their parents’ speech sounds by generating those
sounds repeatedly by trial and error. This is closely related
to the cognitive development of language. Recently, many
researchers have designed robots that duplicate the imita-
tion process of human infants in terms of the constructive
approach.

Typical methods of vocal imitation using vocal tract
models first segment speech signals into multiple units of
phonemes and then learn the corresponding vocal tracts
shapes. To imitate a target speech signal, these fixed units
are concatenated in an appropriate order so that a generated
speech signal resembles the target signal. Therefore, it is
necessary to interpolate adjacent units that are individually
learned. This does not, however, reflect the articulatory
mechanism of humans. Articulatory motions for the same
phoneme are dynamically changed according to the context
of continuous speech, (e.g. coarticulation). This effect derives
from a physical constraint that articulatory motions should be
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continuous in sound generation. Therefore, we should reflect
this constraint in vocal imitation.

In this study, we propose a speech imitation model based
on the motor theory of speech perception [1], which was
developed to explain why speech sound (in the form of
phonemes) is characterized by motor articulation informa-
tion. This model is based on the observation that human
infants actively imitate the speech sounds of their parents
by distinguishing between imitable and unimitable features.
The model captures sounds not as a set of phonemes but as
temporal dynamics. To apply this model, we use Recurrent
Neural Network with Parametric Bias (RNNPB) [2] and an
anatomic vocal tract model, called the Maeda model, to
recreate physical constraints.

In the remainder of this paper, section II introduces the
motor theory of speech perception. Section III describes the
vocal tract model and RNN model used as the learning
method. Section IV describes our imitation model and sys-
tem. Section V gives the results of some experiments with
our proposed method. Section VI discusses the adequacy
and generalization capabilities of our system as an imitation
model, and section VII concludes the paper.

II. MOTOR THEORY OF SPEECH PERCEPTION

In this section, we describe the motor theory of speech
perception with consideration of the association between
speech perception and production in speech communication.

Speech is formed by complex cooperative action of the
articulatory organs transforming a sequence of discrete pho-
netic units into continuous sounds. As a result, speech
has a complicated configuration, and no acoustic invariants
corresponding with phonemes have ever been found [3].
Nevertheless, human beings can hear the intended phonetic
gestures of a speaker. The motor theory of speech perception
was proposed as an answer to this question. This theory
basically insists on the following two propositions.

1) Speech perception is active processing for the listener,
and there is a special sensory mechanism for speech
sound, called “speech mode.”

2) Speech perception is executed through the speech
production process.

In other words, we can make sense out of what we hear
because we guess how the sounds are produced. Although
this motor theory has been controversial, recent neuro-
imaging studies seem to support the idea of perception as
an active process involving motor cognition [4]-[6].
Starting from the motor theory of speech perception, we
propose that the motor information in speech, which enables
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the recovery of articulatory motions, enables the vocal imi-
tation required for infants to learn spoken vocabulary. This
function is essential for subsequent processes such as word
identification.

III. VOCAL IMITATION SYSTEM
A. Overview of Our Imitation Process

In this section, we present an overview of our system
imitating the sound of a human voice. As illustrated in Fig.
1, our imitation process consists of three phases: learning, as-
sociation, and generation. The system executes the following
tasks.

1) Learning (Babbling)
The vowel imitation system make articulatory motions
to produce sounds, and it acquires the mapping be-
tween motions and sounds. This phase corresponds to
babbling in infants.

2) Association (Hearing parents’ speech sounds)
In this phase, a speech sound is input to the system.
The system associates the sounds with an articulation
producing the same dynamics as the heard sound.

3) Generation (Vocally imitating heard sounds)
Finally, the system use the articulatory motion to
produce a imitation speech sound.

In this process, one problem is how to get an appropriate
articulation from a speech sound input. We need a method
of connecting an articulatory motion with the corresponding
sound dynamics. To solve this problem, we use the method
proposed by Yokoya et al. [7], which connects a robot motion
with an object motion via RNNPB, to connect articulatory
motions with sound dynamics.

B. Physical Vocal Tract Model

A speech production model simulating the human vocal
tract system incorporates the physical constraints of the
vocal tract mechanism. The parameters of the vocal tract
with physical constraints are better for continuous speech
synthesis than acoustic parameters such as the sound spec-
trum. This is because the temporal change of the vocal
tract parameters is continuous and smooth, while that of
the acoustic parameters is complex, and it is difficult to
interpolate the latter parameters between phonemes.

In this study, we use the vocal tract model proposed by
Maeda [8]. This model has seven parameters determining
the vocal tract shape, which were derived by principal
components analysis of cineradiographic and labiofilm data
from French speakers. Table I lists the seven shape param-
eters. Although there are other speech production models,
such as PARCOR [9] and STRAIGHT [10], we think that
Maeda model, with physical constraints based on anatomical

TABLE I

PARAMETERS OF THE MAEDA MODEL.
Parameter number Parameter name
1 Jaw position
Tongue dorsal position
Tongue dorsal shape
Tongue tip position
Lip opening
Lip protrusion
Larynx position
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findings, is the most appropriate, because of our aim to
simulate the development process of infant’s speech.

Each Maeda parameter takes on a real value between -3
and 3, and may be regarded as a coefficient weighting an
eigenvector. The sum of these weighted eigenvectors is a
vector of points in the midsagittal plane, which defines the
outline of the vocal tract shape. The resulting vocal tract
shape is transformed into a vocal tract area function, which
is then processed to obtain the acoustic output and spectral
properties of the vocal tract during speech.

C. Learning Algorithm

This subsection describes a method that enables our im-
itation model to learn temporal sequence dynamics. For
this method, we apply the FF-model (forwarding forward
model) proposed by Tani [2], which is also called RNN with
Parametric Bias (RNNPB) model.

1) RNNPB model: The RNNPB model has the same
architecture as the conventional Jordan-type RNN model
[11], except for the PB nodes in the input layer. Unlike
the other input nodes, these PB nodes take a constant value
throughout each time sequence Figure 2 shows the network
configuration of the RNNPB model. The RNNPB model
works as a prediction system: its input data is current sensory
state S(¢) and its output data is predicted sensory state S(z+1)
in the next step. The context layer has a loop that inputs
current output as input data in the next step.

After learning time sequences using the back propagation
through time (BPTT) algorithm [12], the RNNPB model self-
organizes the PB values at which the specific properties of
each individual time sequence are encoded. As a result, the
RNNPB model self-organizes a mapping between the PB
values and the time sequences. In our study, input data S(z)
are articulatory and sound parameters in time ¢, and one pair
of the PB values represents a time sequence of an articulatory
motion and sound by the motion.

Output S(t+1)

X(t+1)

Parametric

Bias

Input S(t) Context loop X(t)

Fig. 2. RNNPB model.
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2) Learning of PB Vectors: The learning algorithm for the
PB vectors is a variant of the BPTT algorithm. The length of
each sequence is denoted by T'. For each of the articulatory
parameters outputs, the backpropagated errors with respect
to the PB nodes are accumulated and used to update the PB
values. The update equations for the ith unit of the parametric
bias at ¢ in the sequence are as follows:

Forward calculation of PB Fig. 4. Articulatory motion genera-

tion.

T

Spi = &) &), (D
=0

pi = sigmoid(p;), (2)

where € is a coefficient. In Eq. 1, the d force for updating the
internal values of the PB p; is obtained from the summation
of the delta error ;. The delta error J; is backpropagated
from the output nodes to the PB nodes: it is integrated over
the period from the O to 7 steps. Then, the current PB
values are obtained from the sigmoidal outputs of the internal
values.

D. Calculation in Association and Generation Phases

After the RNNPB model is organized via the BPTT and
the PB values are calculated in the learning phase, the
RNNPB model is used in the association and generation
phases. This subsection describes how the RNNPB model
is used in the latter two phases.

The association phase corresponds to how infants recog-
nize the sound presented by parents, i.e., to how the PB
values are obtained. The PB values are calculated from Eq.
1 and 2 by the organized RNNPB without updating the
connection weights. At this point, however, there is no vocal
tract data because the system is only hearing sounds without
articulating them, unlike in the learning phase. The initial
vocal tract values are input to the motion input layer in step
0, and the outputs are calculated forward in the closed-loop
mode from step 1. More generally, the outputs in the motion
output layer in step t — 1 are the input data in the motion
input layer in step ¢, as illustrated in Fig.3. Put simply, the
motion input layer plays the same role as the context layer
does.

SP : Sound parameter
VTP : Vocal tract parameter

JL

4 RNNPB
PB calculation

3. Generation

S

2. Association

v
Maeda model

Diagram of the experimental system.

Fig. 5.

The sound generation phase corresponds to what articula-
tion values are calculated, as shown in Fig 4. The motion
output of the RNNPB model is obtained in a forward
calculation. The PB values obtained in the association phase
are input to the RNNPB in each step.

IV. MODEL AND SYSTEM
A. Experimental System

In this subsection, we describe our experimental system,
which is illustrated Fig.5. This system model was used to
verify the relation between vocal imitation and the phoneme
acquisition process according to the motor theory of speech
perception. To simplify the system, we purposely used a
simple vocal tract model and target vowel sound imitation.

In the learning phase, several articulatory motions are put
into Maeda model, and learn temporal sequence dynamics of
an articulatory motion and the speech sound for the motion
by RNNPB. We first decide arbitrarily motion parameters:
initial values of each motion parameters are all zero, and we
produce sequences of vocal tract parameters by interpolating
some vowel parameters, which are already known. Second,
the sequences are put into the Maeda model to produce
the corresponding sounds, which are then transformed into
temporal sound parameters. Finally, the RNNPB learns each
set of the vocal tract and sound parameters, which are
normalized and synchronized. The size of the RNNPB model
and the time interval of the sequence data differed according
to the experiment. In the association phase, we put speech
sound data into the system. The corresponding PB values are
calculated for the given sequence by the organized RNNPB
to associate the articulatory motion for the sound data. In
the generation phase, the system generates these imitation
sounds by inputting the PB values obtained in the association
phase into the organized RNNPB.

B. Sound Parameters

To convert a speech waveform into feature parameters,
we use the Mel-Frequency Cepstrum Coefficient (MFCC),
which is based on the known frequency variation of the
human ear’s critical bandwidths. Filters spaced linearly at
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low frequencies and logarithmically at high frequencies
capture the phonetically important characteristics of speech.

In the experiments, the speech signals were single channel,
with a sampling frequency 10kHz. They were analyzed using
a Hamming window with a 40-ms frame length and a 17-ms
frame shift, forming five-dimensional MFCC feature vectors.
The number of mel filterbanks was 24. In addition, Cepstrum
Mean Subtraction (CMS) [13] was applied to reduce linear
channel effects.

C. Vocal Tract Parameter

In the experiments, we applied the Maeda model - with
the first six parameters listed in Table I. When Maeda model
produces vowel sounds, the seventh parameter has a steady
value. In the generation phase, it is possible for the vocal
tract parameters produced by the RNNPB to temporally
fluctuate without human physical constraints. This occurs
if the system does not easily associate the articulation for
an unexperienced sound. Therefore, to help prevent extraor-
dinary articulation, we execute temporal smoothing of the
vocal tract parameters produced by the RNNPB. Concretely,
the vocal tract parameters in each step are calculated by
averaging those of the adjacent steps.

V. EXPERIMENTS
A. Model Verification by Two Continuous Vowels

We carried out this experiment to verify the adequacy of
our system by comparing the use of sound and articulatory
information with the use of only sound information.

For the experiment, we organized two RNNPBs. One,
called RNNPB-1, learned only the MFCC parameters as
sound information. The input and output layers had five units,
the hidden layer had 20 units, the context layer had 10 units,
and the PB layer had two units. The other, called RNNPB-2,
learned both the MFCC and vocal tract parameters as sound
and articulatory information. The input and output layers
had 11 units, the hidden layer had 20 units, the context
layer had 15 units, and the PB layer had two units. The
learning data consisted of the following vowels: /ai/, /iu/,
Jue/, [eo/, and /oa/ (380 ms, 20 ms/step), produced by the
Maeda model. In the association phase, We inputted MFCC
parameters, which were produced by recording the speech
sounds of two speakers, into each organized RNNPB. Each
RNNPB obtained the PB values from each set of sound data.
The recording data used the same vowels as those in the
learning data. In the following, we describe the association
data of one person with the additional character ‘1’, e.g.,
/ai1/, and that of the other person with the additional
character ‘2°, e.g., /aiy/. Figure 6 shows the PB space
acquired by each organized RNNPB. The two parametric
values in the RNNPBs correspond to the X-Y axes.

Figure 6(a) shows the PB space when only sound informa-
tion was used. Although some of the PB values for the same
vowel sounds were closely mapped, /ai/ and /oa/ was not
clearly classified, and /iuy/ had been confused with /eo/.

Meanwhile, Fig. 6(b) shows the PB space when both
sound and articulatory information was used. The PB values
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(a) PB space of RNNPB-1, using only sound informa-
tion.
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(b) PB space of RNNPB-2, using both sound and
articulatory information.

Fig. 6. PB space.

for the same vowel sounds, including the learning data,
were mapped with sufficient dispersion. We confirmed that
RNNPB-2 could recognize the vowel sounds correctly. As
we can see from table II, there are sharp differences between
vocal tract parameters of /a/ and /o/, which are acoustically
similar. In fact, it is said that articulation information helps
human beings to recognize speech sounds.

TABLE I
PARAMETERS OF VOWEL /a/, /o/ FOR THE MAEDA MODEL.
Parameter number 1 2 3 4 5 6
Ja] -15 20 00 05 05 05
Jo/ 07 30 15 00 -06 00

B. Vocal Imitation

We next carried out an experiment to verify the adequacy
of our imitation model by having it imitate both experienced
and unexperienced sounds.

1) Imitation of Two Continuous Vowels: In the learning
phase, we organized the following RNNPB: the input and
output layers had 11 units, the hidden layer had 20 units, the
context layer had 15 units, and the PB layer had two units.
The RNNPB learned the MFCC and vocal tract parameters
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Fig. 7. PB space for two continuous vowels: five learned sounds and the
four associated sounds, where the first vowel was /a/.

of the learning data (/ai/, /iu/, /ue/, /eo/, and /oa/, 320
ms and 20 ms/step), produced by the Maeda model. In
the association phase, we inputted the MFCC parameters,
generated by recording the speech sounds of a person, into
the organized RNNPB, and we obtained the PB values for
each of the sounds. Table III summarizes the recording two
continuous vowels sounds. In the generation phase, we used
the PB values to reproduce each of the recording sounds.

Figure 7 shows the resulting PB space, consisting of five
learned sounds and four associated sounds, where the first
vowel was /a/. Figure 8 shows the time series variation
of the MFCC parameters for the original and imitation
sounds /ai/ and /au/, as examples of an experienced sound
and an unexperienced sound, respectively. The vertical axis
represents the MFCC value, and the horizontal axis repre-
sents time [x 20 ms]. We could confirm that the imitation
sound /ai/ reproduced the original sound. On the other
hand, although the imitation sound /au/ differed from the
original sound in the last part, the sound was reproduced to
a differentiable extent. Most of the imitation sounds were
similar to the original ones.

2) Imitation of Three Continuous Vowels: In the learning
phase, we organized the following RNNPB: the input and
output layers had 11 units, the hidden layer had 25 units, the
context layer had 15 units, and the PB layer had two units.
The RNNPB learned the MFCC and vocal tract parameters
of the learning data (/iue/, /ueo/, and /oai/, 580 ms, and 30
ms/step), produced by the Maeda model. In the association
phase, we inputted the MFCC parameters generated by
recording the speech sounds of a person into the organized

TABLE III
RECORDING OF TWO CONTINUOUS VOWELS.
Experienced Unexperienced
Jai/ Jau/ Jae/ Jao/
Jiu/ Jia/ Jie/ Jio/
Jue/ Jua/ Juif Juo/
Jeo/ Jea/ Jei/ Jeu/
Joa/ Joi/ Jou/ Joe/

24.00 [x20ms]

1600
800 r

0.00

-8.00

-16.00

Leaminé ---'MFCC1 - - - -MFCC2
Imitation| —— MFCC1 —— MFCC2

MFCC3 - - - -MFCC4 - - - - MFCC5
MFCC3 —— MFCC4 —— MFCC5

(a) MFCC parameters of the original and imitation sound /ai/.
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MFCC2

——MFCC1 —— MFCC2

MFCC3 - - - -MFCC4 - - - -MFCC5
MFCC3 —— MFCC4 —— MFCC5

(b) MFCC parameters of the original and imitation sound
Jau/.
Fig. 8. MFCC parameters.

RNNPB, and we obtained the PB values for each of the
sounds. Table IV summarizes the recording of the three
continuous vowels sounds. In the generation phase, we used
the PB values from the association phase to produce imitation
sounds for the data.

Figure 9 shows the resulting PB space, which consisted of
three learned sounds and five associated sounds, where the
first vowel was /i/. The PB values for /iue/, an experienced
sound, were mapped close to those of the learning phase.
Figure 10 shows the time series variation of the MFCC
parameters for the original and imitation sound /iuo/, as an
example of an unexperienced sound. The vertical axis rep-
resents the MFCC value, and the horizontal axis represents
time [x 30 ms]. Although /iuo/ was reproduced exactly, to an
extent, some of the unexperienced sounds were reproduced
either as undifferentiable, unclear sounds, or the same as the
experienced sounds.

VI. DISCUSSION

A. Adequacy of Proposed Model

As we can see from Fig 6, RNNPB-1, which used only
sound information, acquired PB values that were affected by
acoustic similarities in the sound data, and it made mistakes
in recognizing the sounds. On the other hand, despite of
the differences between the two speakers, RNNPB-2, which
used both sound and articulation information, acquired PB
values that were mapped closely to the same sounds, and
it robustly recognized the sounds. These results show that
articulation information helps human beings to recognize
speech sounds, thus supporting the motor theory of speech

TABLE IV
RECORDING OF THREE CONTINUOUS VOWELS.
Experienced | Unexperienced
Jiue/ Jiuo/ Jiae/ Jioe/ Jiua/
Jueo/ Juea/ Juei/ Juao/ Juio/
Joai/ Joau/ Joae/ Joui/ Joei/
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Fig. 9. PB space of three continuous vowels: three learned sounds and
five associated sounds, where the first vowel was /i/.
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Fig. 10. MFCC parameters of the original and imitation sound /iuo/.

perception. We have thus confirmed the adequacy of our
imitation model for targeting language acquisition in infants.

B. Imitation Capability

In the case of imitating two continuous vowels, our system
could accurately reproduce, to an extent, most of the heard
sounds that were experienced or unexperienced. Meanwhile,
in the case of imitating three continuous vowels, although the
system could imitate experienced sounds, it had difficulty in
imitating unexperienced sounds. The reason is that adding
a vowel to the target sounds for imitation caused increased
diversity in the combination of sounds.

The limitation in our model implies the requirement of
acquiring phonemes. The RNN used in our model encoded
a vowel sequenceas a dynamics: a PB vector. However, the
result showed that two or more PB vectors were required to
imitate a sequence with three vowels. This requirement could
relate to the form of phoneme. Tani has already proposed
for automatic extraction of the PB vectors from a sequence
[2]. It would be interesting to investigate the correspondence
between the extracted PB vectors and phonemes.

VII. CONCLUSIONS

We have proposed a vocal imitation system focused on
the physical constraints of the human vocal tract and on

treating speech sounds as dynamic sequences. Through ex-
periments, we have verified the properties and the imitation
capability of the system. The results show that the system
could robustly recognize speech sounds without exhibiting
the effects of differences between two speakers, and it
could imitate experienced sounds accurately. In the case
of imitating unexperienced sounds, two continuous vowels
could reproduced accurately , to an extent, whereas three
continuous vowels posed difficulties in accurate generation.
These results imply the possibility that the PB values for the
RNNPB used in this model correspond directly to phonemes.

Our future work include extracting phonemes from speech
sounds through an automatic tuning method for the RNNPB
parameters.
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