
 

 

 

  

Abstract—The purpose of this research is to develop 

techniques that enable robots to choose and track a desired 

person for interaction in daily-life environments. Therefore, 

localizing multiple moving sounds and human faces is necessary 

so that robots can locate a desired person. For sound source 

localization, we used a cross-power spectrum phase analysis 

(CSP) method and showed that CSP can localize sound sources 

only using two microphones and does not need impulse response 

data. An expectation-maximization (EM) algorithm was shown 

to enable a robot to cope with multiple moving sound sources. 

For�face localization, we developed a method that can reliably 

detect several faces using the skin color classification obtained 

by using the EM algorithm. To deal with a change in color state 

according to illumination condition and various skin colors, the 

robot can obtain new skin color features of faces detected by 

OpenCV, an open vision library, for detecting human faces. 

Finally, we developed a probability based method to integrate 

auditory and visual information and to produce a reliable 

tracking path in real time. Furthermore, the developed system 

chose and tracked people while dealing with various 

background noises that are considered loud, even in the 

daily-life environments. 

I. INTRODUCTION 

Techniques that allow humans and robots to interact are 

essential so that robots can detect and understand human 

intentions and emotions. Therefore, for robots to interact 

effectively with people, they must be able to identify people in 

different social and domestic environments, pay attention to 

their voices, look at speakers to identify them visually, and 

track them while integrating auditory and visual information 

[1-5]. The system we developed has some principal 

techniques that enable humans to be tracked for effective 

human-robot interactions. 

First, robots require the ability to localize sound sources to 

find the location of the talkers. However, to localize sound 

sources in environments where several sounds are present, 

conventional methods require a microphone array, which 

usually consists of eight microphones, and/or additional 

information such as impulse response data [3]. Therefore, a 

method is needed that uses just two microphones and does not 

need impulse response data. Nakadai et al. have already 

developed a system to localize multiple sound sources only 

using two microphones [1, 2]. However, this system can even 
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estimate the impulse response when the shape of a robot’s 

head is a sphere. Therefore, if the shape of the robot’s head is 

changed, the system’s capability will be affected. To avoid 

this, we developed a method to integrate a cross-power 

spectrum phase analysis (CSP) method [6] and an EM 

algorithm [7]. This method can localize several moving 

sound sources by only using two microphones, and it does not 

need impulse response data. A robot’s appearance is variable 

as long as it knows the delay of arrival (DOA) between two 

microphones. Moreover, we have confirmed that our method 

performs better than the conventional methods. 

Second, localizing human faces is also necessary for 

accurately selecting a desired person. OpenCV, a open vision 

library, has recently become popular and is used to detect 

faces [5]. However, OpenCV has difficulty detecting faces 

that are turned or tilted. Although the face detection system 

included a method to incorporate skin color, detection relied 

heavily on the illumination and color status. Accordingly, 

robots have difficulty coping with various races and 

operational situations. Therefore, we developed a method that 

can perform face localizations by using skin color features [8] 

extracted from faces detected by using OpenCV. Also, the 

robot can recreate the color feature whenever the illumination 

or background condition changes. To cope with several faces 

and accurately estimate face areas, we use an EM algorithm 

to classify skin color distribution extracted by using the skin 

color feature. 

Finally, robots must focus on a specific person to detect and 

understand their intentions and emotions. Therefore, human 

tracking is an important part of a human and robot 

interaction. The human robot interaction systems by using 

integrating audio and video information have been developed 

in various forms. For example, Nakadai et al. developed 

real-time multiple-talker tracking system based on auditory 

and visual integration [1, 2], HRP-2 of AIST [3] can track a 

human according to an azimuth, and SIG2 of Tasaki et al. [4] 

can perform various actions according to a distance by the 

fusion of audio-visual information. Unfortunately, since these 

systems did not have abilities to cope with a loud noise and/or 

a dynamically changed environment. For this reason, we 

developed a probability based method to integrate audio and 

video information. Since the developed method is a simple 

and compact, robots can execute a real time auditory and 

visual integration. Also, it is easy to manage and modify the 

program. Moreover, our system was able to track humans 
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while dealing with various background noises, such as music 

played from audio components or voice signals generated by a 

TV or radio, typically found in everyday environments. 

II. SOUND SOURCE LOCALIZATION 

Many methods for sound source localization have been 

developed and their performance has been steadily improved. 

Three typical methods for sound source localization are used: 

HRTF [1, 2], MUSIC [3], and CSP [6]. However, the features 

of each method differ. For example, HRTF and MUSIC need 

impulse response data, and their performance degrades when 

the robot’s shape is transformed or local conditions change. 

Moreover, those methods need to interpolate to manipulate a 

moving talker because it is available only for discrete azimuth 

and elevation. However, these methods perform well in a 

fixed environment and can detect multiple localizations of 

mixed sounds entering from different directions. On the other 

hand, CSP can even seldom find multiple localizations 

simultaneously, does not need impulse response data, and can 

accurately find the direction of a sound. Therefore, we used a 

CSP method for sound source localization. The CSP method 

can usually estimate one delay of arrival (DOA) at a frame. 

However, for multiple sound localizations, we can estimate 

multiple directions of sound after we have gathered the CSP 

results for three frames (one frame consists of 1024 samples) 

so that the EM algorithm can estimate the distribution of the 

CSP results. 

A. CSP (Cross-power Spectrum Phase analysis) 

The direction of a sound source can be obtained by 

estimating the time delay of arrival (TDOA) between two 

microphones [5]. When there is a single sound source, the 

TDOA can be estimated by finding the maximum value of the 

cross-power spectrum phase (CSP) coefficients [6], as 

derived from 
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where k and n are time delays, FFT (or IFFT) is the fast 

Fourier transform (or inverse FFT), * is the complex 

conjugate, and �is the estimated TDOA. The sound source 

direction is derived from 
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where � is the sound direction, v is the sound propagation 

speed, Fs is the sampling frequency, and dmax is the distance 

with the maximum time delay between two microphones. The 

sampling frequency of our system is 16 kHz. 

B. Localization of multiple moving sounds by EM 

Using CSP with two microphones can locate a specific 

sound source in a frame even if several sound sources are 

present. Because CSP is unreliable in noisy environments, we 

developed a new method to estimate the number and 

localization of sound sources based on probability. To use this 

method, we first need to gather the CSP results for three 

frames (shifting every half a frame). Then, the EM algorithm 

is used to estimate the distribution of the gathered data [7]. 

Figure 1 (A) shows the sound source localization events 

extracted by CSP according to time or frame lapses. As shown 

in this figure, events that lasted 192 ms are used to train the 

EM algorithm to estimate the number and localization of 

sound sources. We experimentally decided that the 

appropriate interval for the EM algorithm was 192 ms. If the 

interval for the EM algorithm was increased, dealing with 

sounds that are moving fast would be difficult. Figure 1 (B) 

shows the training process of the EM algorithm. In detail, 

events for 192 ms are first converted into histograms. Next, 

Gaussian components defined by using equation (8) for 

training the EM algorithm are uniformly arranged on whole 

angles. Then, the histogram data is applied to the arranged 

Gaussian components. After training the EM algorithm, the 

arranged Gaussian components are relocated based on the 

density and distribution of the histogram data. Finally, if 

components overlap, the mean and variance of Gaussian 

components will be one, and each weight value will be added. 

In addition, components with scant weights are regarded as 

noise and are removed. Figure 1 (C) shows the results of 

localizing sound sources by iterating processes (A) and (B) in 

the same way. The interval for EM training is shifted every 32 

ms. 

 
Fig. 1  Estimating localization of multiple sound sources 

C. Experiments and Results 

The following conditions were used in the experiment to 
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evaluate localization: the sound sources were 1.5 m from the 

head of a robot, and the sounds emitted from speakers in the 

magnitude of 85 dB were recorded female and male speech. 

We obtained the sound source localization results while the 

robot’s head was rotating from 90° to -90°. By rotating the 

head, we created the effect of moving sound. The rotation 

speeds used in these experiments was 1.1 m/s, and this is 

faster than the average walking speed, 1.0 m/s, of healthy 

adults. Figure 2 (A) and (C) show the results achieved with 

the developed method. To compare performance, we also 

experimented using a conventional method that used HRTF 

with scattering theory [1, 2] under the same conditions. 

Those results are shown in Figure 2 (B) and (D). 

Figure 2 shows the results of the sound source localization 

experiment when two sound sources were used with a gap of 

60° and 30° between the sound sources. The red dotted lines 

inside Figure 2 indicate the reference line for the correct track 

of moving sounds. Based on the results, the developed 

method (A) and (C) was more accurate than the conventional 

method (B) and (D) because it could hardly distinguish the 

two sound sources. The results indicate that the developed 

method can accurately locate two sound sources moving at 

1.1 m/s and with a gap wider than 30° between the two 

sources. In other words, our method enables robots to locate 

the voices of people who are walking. 

 
Fig. 2  Sound source localization results 

III. FACE LOCALIZATION 

Face localization is also necessary for selecting a desired 

person. The simplest method to detect faces is to use a skin 

color [8]. However, this method is limited because a 

performance relies heavily on illumination condition and 

background color status. Also, dealing with various colored 

races is difficult. Therefore, robots cannot easily detect faces 

based on skin colors in environments that are constantly 

changing. An open vision library called OpenCV has become 

popular for face detection [5]. However, OpenCV is limited in 

that, for example, it cannot detect faces that are turned or 

tilted and has difficulty detecting over 2 m away in the case of 

320 x 240 images. To overcome these limitations, we 

developed a method that after determining face skin color 

features using faces detected by OpenCV, the constructed 

color feature extracts the face skin color in images. Robots 

can then automatically recreate the face skin color feature 

whenever illumination or background condition changes. 

Moreover, to accurately localize several different faces, we 

used an EM algorithm to classify skin colors distribution 

extracted using the skin color feature. Therefore, the 

developed method can reliably localize faces regardless of 

changing environments and various human races. 

A. Skin Color Clustering 

For color clustering, each pixel in the image is described by 

a feature vector, f=[c p]T, where, c=[Y U V]T describes the 

color and p=[x y]T describes the row and column of the pixel. 

Target pixels in a selected target area are presented as 

fT(i)=[cT(i) pT(i)]T, where i=1~k, k is the number of the target 

color, background pixels in the selected background areas are 

presented as fN(j)=[cN(j) pN(j)]T, where j=1~m, m is the 

number of the background color, and an unknown pixel is 

described by fU=[cU pU]T.  

The fU can be classified by comparing the distance dT. 

( )
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T U
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f f
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i k

d imin
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and the minimum distance dN. 

( )
2
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f fN

j m
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=

= −                     (5) 

If dT < dN, fU is classified as a target pixel, otherwise a 

background pixel. 

B. Accurate Face Localization by using EM 

For the purpose of face localization, a robot firstly uses 

OpenCV. If OpenCV fails to detect a face, the system will try 

to detect faces using skin color. To detect a face this way, we 

need to first create a Lookup table that contains skin and 

background color information. This creation requires that a 

robot should initially detect the face by using OpenCV. The 

system can then extract a target (face skin color) feature, fT, 

and a background feature, fN, from areas inside and outside 

the detected face. The top image in Figure 3 is a detected face 

by using OpenCV and the designated area used to create 

feature vectors. Step (A) indicates that the created fT and fN 

features are saved in the Lookup table and are used to detect 

faces by using skin color. Since creating the Lookup table 

needs about 0.5 second (Celeron 2.4 GHz, 512 M ram, and 

320 x 240 image), the robot only updates the Lookup table 

when the update conditions are satisfied: First, not many skin 

colors are present in the detected face when OpenCV 

succeeded in a face detection; and second, many skin colors 

are present in the background areas. Our system uses 320 x 
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240 images and can calculate about five images per second 

without updating the Lookup table. 

Figure 3 shows the process used to extract human faces by 

using skin colors and the EM algorithm. Step (B) is where an 

image is captured from a camera and is converted to an image 

that contains only pixel related to skin color determined by 

equations (4) and (5) with the constructed Lookup table. The 

circles in step (C) indicate the arranged Gaussian 

components defined by equation (9) and are used to find the 

number and area of faces in the image. Step (D) represents 

the relocated Gaussian components based on the density and 

distribution of the skin color data after executing the EM 

algorithm. Step (E) is where the number and size of faces are 

estimated using the means and variances obtained by 

executing the EM algorithm. If the variances calculated by 

EM algorithm in this step are broad and many skin colors 

exist in the background area, the robot will create new color 

feature vectors and create a new Lookup table as shown in 

step (F) based on satisfying the second update condition. 

 
Fig. 3  Estimating localization of faces using skin color and EM algorithm 

C. Experiments and Results 

We experimented using the Georgia Tech face data base 

(we downloaded a zip file at www.anefian.com/face_reco. 

htm), which contains images of 50 people. First, for single 

face detection, we chose 60 images of 17 people, including 

faces that are turned or tilted. For several faces detection, we 

created 20 images including three people. The face detection 

results are listed in Table I. 
TABLE I 

FACE DETECTION RESULTS 

Single Face Several Faces 
Face 

Detection OpenCV 
Skin 

Model 
OpenCV 

Skin 

Model 

Success rate 52% 80% 58% 72% 

Success rate in Table � indicates the percentage of when 

the areas of faces are accurately detected. The success rate of 

a skin model for single faces increased 28% compared to that 

using only OpenCV. The Lookup table to classify skin colors 

was automatically updated seven times based on satisfying 

the update conditions as shown in Figure 3. That is to say, our 

system will update the Lookup table when the skin color is not 

or few inside the detected face by OpenCV and/or when a lot 

of skin colors exist at the background area. For several faces, 

we got the performance increasing 14% compared to using 

only OpenCV. At that time, the updates of six times was 

performed and we used additional 20 images including a 

single face with 20 images including three faces because our 

system can do update when there is a single face each image 

(See Figure 3). Since updating the Lookup table requires 

much execution time, the robot should just update when the 

update condition is satisfied. Figure 4 shows some of the 

result images detected by a skin model even if OpenCV failed 

to detect those because most faces were turned or tilted. The 

red boxes indicate the faces detected by using the skin model 

and EM algorithm. 

 
Fig. 4  Faces detected by using skin color and EM algorithm 

D. Face Distance Estimation 

To estimate distances between detected faces and a pair of 

CCD cameras, we used a correlation method as derived from 

( ) ( ) ( )' ' ' '

0 0

, , ,
W H

k i j k i j

i j

R x y T x y I x x y y
= =

 = ⋅ + + ∑∑         (6) 

where T is the template image captured from a right CCD 

camera and template images are detected faces, x’ and y’ 

describes the row and column of the pixel, W and H are the 

width and height of detected faces respectively, I is the image 

captured from a left CCD camera, R is a correlation result, the 

range of xk is from -W/2 to W/2, and y indicates y’0. Then, we 

can estimate the distances of detected faces through 

calculating the maximum value of R as derived from 

( )distance arg max ,k
k

R x yτ =                       (7) 

where�
��������

�is the estimated disparity between the right 

and left image. 

IV. EM (EXPECTATION-MAXIMIZATION) ALGORITHM 

We used an EM algorithm to process sound and face 

localization. This algorithm allows us to effectively classify 

the number and area of the distributed data. To use EM, we 

need to first properly arrange Gaussian components before 

the system runs the E-step and M-step. We used a 

one-dimensional Gaussian model, denoted as equation (8), 

for sound localization and the Bivariate Gaussian model, 

denoted as equation (9), for face localization. 
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where� k is the mean,� 2
k is the variance,� k is a 

parameter vector, m is the number of data, x and y are the 

values of m-th data on the basis of a x axis and a y axis in two 

dimensions, and k is the number of mixture components. The 

objective is to find the parameter vector,��k, describing each 

component density, P(Xm|�k), through iterations of the E and 

M step. This EM step is described as follows: 

1) E-step: The expectation step essentially computes the 

expected values of the indicators, P(�k|Xm), that each data 

point Xm is generated by component k, given N is the number 

of mixture component, the current parameter estimates �k 

and weight wk, using Bayes’ Rule derived as 
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2) M-step: At the maximization step, we can compute the 

cluster parameters that maximize the likelihood of the data 

assuming that the current data distribution is correct. As a 

result, we can obtain the recomputed mean using equation 

(11), the recomputed variance using equation (12), and the 

recomputed mixture proportions (weight) using equation (13). 

The total number of data is indicated by M. 
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After the E and M steps are iterated an adequate number of 

times, the estimated mean, variance, and weight based on the 

current data distribution can be obtained. 

V. HUMAN TRACKING SYSTEM 

A. System Overview 

Figure 5 shows an overview of the structure of our system 

used in human tracking and a humanoid robot called SIG2. 

The robot has two omni-directional microphones inside 

humanoid ears at the left and right ear position. Its head has 

three degree of freedom (DOF) and the body has one DOF, 

each of which is enabled by a DC motor controlled by an 

encoder sensor. SIG2 is equipped with a pair of CCD cameras.�

Our system consists of five modules (audition, vision, motor, 

viewer, and tracking). The audition module generates sound 

events using sound source localization. Specifically, after it 

judges that sound signals exist by using the first value of 

mel-frequency cepstral coefficients (MFCC) [9], it locates the 

sound source with the CSP method. The vision module 

generates face events using face localization and each face 

event includes the distance information of a detected face. 

The tracking module can track humans by using events 

extracted by the subsystems. The position of a desired path is 

sent to the motor module to turn the robot’s head. 

 
Fig. 5  System overview 

B. Auditory and Visual Integration 

How to integrate auditory and visual information is an 

important problem for improving the information processing 

ability. Since the aim of this research is to choose and track a 

desired person, we estimated the location of targets using a 

probability based method to integrate sound and face 

localization. 

 
Fig. 6  Integrating auditory and visual information 

 

Figure 6 represents auditory and visual integration. A 

tracking module initially receives events generated from the 

audition and vision modules every 0.1 second. At this time, 

each event includes the angle information. Next, the received 

events are applied to Gaussian models, as indicated by 

equation (8). Step (A) in Figure 6 is where parameters are 
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determined in which the number of received events is k, the 

angle of each events is �k, the variance of events is �2
k, �k 

is each parameter vector, xi is an angle, and i=�180,..,180. 

In other words, Gaussian models are created for every angle 

in each generated event. The variance of Gaussian models for 

face events is narrow at that time because the accuracy range 

of face localization is normally narrower than that of sound 

source localization. Second, corresponding probability is 

calculated using 

( ) ( ) ( ) ( ), , ,i k FS F i k F S i k S N i NP x P x P x P xθ θ θ θ= + −      (14) 

where PF is the probability of face localization, PS is the 

probability of sound localization, and PN is the probability to 

cope with sound noise. Therefore, if sound noise did not 

happen at angle i, PN (xi|�k,N) will be 0. The total probability 

density can be calculated using 

( )
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⋅

∑
∑ ∑

                   (15) 

where n is the total number of received event, wk is the 

weight concerning each Gaussian component. Here, wk is 

fixed in 1/n�when sound events are only present, but when 

face events are present, face events generated at near distance 

have the higher wk than face events generated at far distance. 

Figure 6 (B) shows the result calculated when using equation 

(15) with whole angles. The maximum value,�, can be 

calculated using 

( )arg max ,  180,...,180i
i

P x iτ θ= = −       (16) 

Finally, we obtained two positions, -35 and 22 degree, 

which are peak values in intervals satisfying the condition 

where thr��>PT (�| xi). These positions were used to choose 

and track a desired person, and we call those associated 

events. 

C. Creating and Choosing a tracking path 

Robots must create tracking paths, including the status of 

received events, based on the real time so that robots can deal 

with various situations. Then, after the robot choose 

appropriate tracking path, it should track a designated path in 

order to interact with humans. In our system, the left part of 

Figure 7 shows that the robot made associated events every 

0.1 second by using equation (15) and (16). 

To create a tracking path, the present tracking position can 

be estimated from some past tracking positions by using this 

model: 
2

1 1 1
2

s
t t t s t

T
x x x T x− − −= + ⋅ +ɺ ɺɺ                     (17) 

where Ts is a sample period, xt is a estimated tracking 

position, xt-1 is the previous tracking position, x� t-1 is the 

differential value between xt-1  and xt-2, and the differential 

value between x� t-1 and x� t-2 is 
1tx −

ɺɺ .  

The tracking path includes associated events within a 

range of ± 15 °  of the expected position calculated by using 

equation (17), shown as step (B) in Figure 7. Tracking paths 

can then be continuously created every 100 ms. As shown in 

step (B) in Figure 7, the tracking path has not started if some 

associated events are missing in the intervals of some of the 

following frames. On the other hand, once the tracking path 

has started, the tracking path can be continuously estimated 

even if some associated events are missing in a few frames. 

Also, the tracking path is terminated if some associated 

events are missing at the adjacent interval of several frames. 

 
Fig. 7  Estimating tracking paths 

 

To achieve reliable human tracking in a real environment, 

the developed system was designed with the following points 

in mind: First, if several tracking paths are created, the 

system will follow the first tracking path created or the 

tracking path nearest the current motor position, the angle of 

the robot’ head. Second, various sounds are present in 

domestic environments, such as music played from audio 

components or voice signals generated by a TV or radio. 

Therefore, to identify noise, the robot first turns a camera to 

the direction of the noise. If a face event is not extracted in 3 

seconds and the range of location variations extracted by 

sound source localization is narrow, in other word, the sound 

source is not moving and a human face is not detected, the 

robot will regard the sounds as noise. The robot then applies 

PN of equation (14) to the angle of the detected noise. 

Therefore, the robot can create associated event only using 

face events where noise is effective. On the other hand, if 

noise is not generated from a designated noise direction for 

several seconds, the robot will release sounds entering from 

the noise direction from noise. Third, the path including 

sound events has higher priority for tracking than the path 

including the face events. Finally, face events generated at a 

near distance has higher priority for tracking than face events 

generated at the far distance. Also, if several face events 

occurred in 0.1 second, the robot will adjust the weight 

proportion, wk, of equation (15) in order to track the face that 

is closer to the robot. As a result, the robot can reliably track 

and choose a designated person while reducing the effect of 

noise. 

D. Experiments and Results 

Figures 8 represents events generated from an audition 
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module and a vision module, the current position of a motor, 

and the status of human tracking received from the tracking 

module. The red lines indicate created tracking paths and the 

red rings indicate the selected tracking path for human 

tracking. We experimentally evaluated our methods ability to 

track humans while coping with domestic noises. (A) in 

Figure 8 shows that the robot was tracking a human face 

which was close to the robot. (B) shows that the robot 

responded to a call of a person at -60° and changed the 

tracking target. Then, after the robot turned its head to the 

call direction, it continued to track a person using face events. 

(C) shows that after the robot turned its head to 80° where 

sounds whose magnitude was 85 dB happened, it checked 

whether there is a human face or not. If face localization 

events is not created and the range of location variations of 

sound events is narrow for 5 seconds, the robot will 

discontinue tracking the sounds because it will regard the 

sounds as noise generated by equipment. (D) shows that the 

robot tracked the person through integrating sound and face 

events while dealing with noises. (E) shows that the robot 

used only face events at the noise range so as to track the 

person. (F) shows that after the robot automatically 

recognized that noises were extinct, it then continued 

tracking the person even in the former noise range while 

integrating of sound and face events. 

 
Fig. 8  Human tracking results in noisy environments 

VI. CONCLUSION 

We developed a system that enables robots to choose and 

track a desired person in daily-life environments and 

confirmed that our system performed well. Our system has 

some principal capabilities. First, the algorithm we developed 

can localize multiple sound sources even if it has only two 

microphones and a normal sound card device because the EM 

algorithm helps the system cope with multiple sound sources 

in real time. Results indicated that our system reliably located 

two sound sources moving less than 1.1 m/s and with a gap 

wider than 30° between two sources. Therefore, robots 

equipped with our system can simultaneously localize the 

voices of two people that are walking. Second, we combined 

the advantages of OpenCV and a skin color method to detect 

human faces. Therefore, a robot cannot be significantly 

affected by different angles of human faces and illumination 

conditions when performing face localization. An EM 

algorithm was shown to help face localization system classify 

human faces in images. Finally, to choose and track a desired 

person while dealing with the noise from electric home 

appliances, the robot produced tracking paths which 

integrated auditory and visual information. Therefore, the 

robot was able to choose and/or track a human by referring to 

tracking paths. 
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