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Abstract— This paper describes a new semi-blind source
separation (semi-BSS) technique with independent component
analysis (ICA) for enhancing a target source of interest and
for suppressing other known interference sources. The semi-
BSS technique is necessary for double-talk free robot audition
systems in order to utilize known sound source signals such
as self speech, music, or TV-sound, through a line-in or
ubiquitous network. Unlike the conventional semi-BSS with
ICA, we use the time-frequency domain convolution model
to describe the reflection of the sound and a new mixing
process of sounds for ICA. In other words, we consider that
reflected sounds during some delay time are different from the
original. ICA then separates the reflections as other interference
sources. The model enables us to eliminate the frame size
limitations of the frequency-domain ICA, and ICA can separate
the known sources under a highly reverberative environment.
Experimental results show that our method outperformed the
conventional semi-BSS using ICA under simulated normal and
highly reverberative environments.

I. INTRODUCTION
Robot audition systems should be robust against unknown

or known noises, because robots are expected to work even
in unknown and/or dynamically-changing environments. For
example, in real environments, people often talk at the same
time. This situation is called “double-talk”. In human-robot
interactions, or in human-computer interactions, while the
robot or the system speaks, the user speaks at the same time.
This situation is called “barge-in”. Robot audition in human-
robot interactions should be double-talk free. Here, we use
double-talk to include barge-in.

The idea in attaining double-talk free robot audition is to
use the fact that the robot knows the original signals of its ut-
terance, in either digital or analog format. Usually, the robot
hears by its ears (microphones) sounds distorted by spatial
transfer functions including the influence of reflection and
echoes. If the system knows original sound source signals,
the problems in sound source separation and recognition may
be alleviated and thus robot audition performance is expected
to improve.

In this paper, we present a new method called “semi-blind
source separation” by exploiting known source signals to
attain double-talk free robot audition. Barge-in is a well-
known problem in the speech recognition community and
many researchers have attacked it. We extend the concept
of barge-in or double-talk to include the cases where the
robot knows the original sound source signals such as line-
in signals of TV or audio devices. In these cases, the robot

need not separate such signals from observed ones, since
it knows the original ones. The problem in the semi-blind
source separation is to estimate signals affected by the
spatial transfer functions and to improve the performance
of sound source separation (SSS) and recognition of normal
blind source separation. Such double-talk free robot audition
system requires SSS with less a priori information on
an environment, because the environment around robots is
usually unstable.

Only a few researchers have focused on the speech separa-
tion and the recognition of separated sounds. The humanoid
HRP-2 can localize and separate a mixture of sounds and
recognize speech commands in noisy environments [1] with
adaptive beam former. Yamamoto et al. developed a new
interfacing scheme between source separation and automatic
speech recognition (ASR) based on the Missing Feature
Theory (MFT) [2]. Takeda et al. succeeded in integrating
independent component analysis (ICA) and MFT-based ASR
and created a robot audition system with less a priori
information on the environment [3]. However, these systems
do not handle the cancellation of known noises or double-in
free interaction.

For a double-talk free spoken dialogue system, Miyabe
et al. proposed semi blind source separation (semi-BSS)
with frequency domain (FD)-ICA, which uses the known
sound waveform information [4]. Semi-BSS does not re-
quire double-talk detection, unlike many types of acoustic
echo cancellers (AECs), e.g., single channel, stereophonic,
wave synthesis, and beamformer-integrated [5], [6], [7]. The
conventional AECs need a duration in which only known
noise is emitted, because adaptation to double-talk duration
is difficult. Semi-BSS with ICA is also advantageous when
more than two noises and unknown noises exist. However,
FD-ICA limits the performance derived from the relationship
between the independency and the window size of the short-
time frequency transformation (STFT) analysis [8], and it
degrades the suppression of known noise under a more
reverberative environments.

To cope with this problem, we use the convolution in
the time-frequency (TF)-domain to describe the reflection
sounds and a new mixing process model for FD-ICA. This
means we consider the reflections during some delay time as
sounds originating from different sound sources, even if they
originate from the same sound source. Therefore, FD-ICA
separates the reflections as other sources. With this model,
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we can effectively suppress the known sources in highly
reverberative and noisy environments without the limitation
of the FD-ICA.

The rest of the paper is organized as follows: Section
II explains the conventional semi-BSS with ICA. Section
III presents out semi-BSS with a time-frequency domain
convolution model. Section IV describes the experiments by
simulation, and Section V discusses the results. Section VI
concludes the paper.

II. CONVENTIONAL SEMI-BLIND SOURCE
SEPARATION WITH ICA

A. MIXING PROCESS
The signals observed by a process of linearly mixing sound

sources in the time domain are expressed as

x̂(t) =

M−1
∑

m=0

â(m)s(t − m), (1)

where x̂(t) = [x1(t), . . . , xJ (t)]T is the observed signal
vector, and s(t) = [s1(t), · · · , sI(t)]

T is the source signal
vector. J and I are the number of microphones and sound
sources respectively. In addition, â(n) = [aij(n)]ij is the
mixing filter matrix of length M , where [X]ij denotes a
matrix that includes the element X in the ith row and the
jth column.

For the semi-BBS, the signals, sK(t), · · · , sI(t), are al-
ready known sound sources, and the mixing process is re-
described as follows,

x(t)=

N−1
∑

n=0

a(n)s(t − n) (2)

aij(n)=

{

1 (K ≤ j ≤ I and n = 0 and j = i)
0 (K ≤ j ≤ I and (n ≥ 1 or j 6= i))

, (3)

where x(t) = [x1(t), . . . , xJ (t), sK(t), . . . , sI(t)]
T is the

newly observed signal vector, and a(n) = [aij(n)]ij is the
new mixing matrix.

B. FD-ICA FOR SEMI-BLIND SOURCE SEPARATION
FD-ICA is often used to solve the unmixing problem

because ICA converges faster in the frequency domain than
in the time domain (TD)-ICA.

We expressed the original source signal, s(t), as the
signal, S(ω, f), at the f th frame and the ωth frequency
bin in the time-frequency (TF) domain by a short-time
analysis with the window frame size, T , and the shift
size, U . The observed signal, x(t), is also expressed as
X(ω, f), and we obtain the observed vector X(ω, f) =
[X1(ω, f), . . . , XJ (ω, f), SK(ω, f), . . . , SI(ω, f)]T . The
unmixing process can be formulated in a frequency bin as

Y (ω, f) = W (ω)X(ω, f), (4)

wij(ω) =

{

1 (K ≤ j ≤ I and j = i)
0 (K ≤ j ≤ I and j 6= i),

(5)

where Y (ω, f) = [Y1(ω, f), . . . , YK−1(ω, f), SK(ω, f), . . .
, SI(ω, f)]T is the estimated source signal vector, and

W (ω) = [wij(ω)]ij represents an unmixing matrix in a
frequency bin.

An algorithm based on the minimization of Kullback-
Leibler divergence is often used on speech signals to estimate
the unmixing matrix, W (ω), in Eq. (4). Based on KLD,
we used the following iterative equation with non-holonomic
constraints [9].

W [j+1](ω) = W [j](ω) − α{off-diag〈φ(Y )Y h〉}W [j](ω),
(6)

where α is a step-size parameter that controls the speed of
convergence, [j] expresses the value of the jth step in the
iteration, and 〈·〉 denotes the time-averaging operator. The
operation, off-diag(X), replaces each diagonal element of
matrix X with zero. The nonlinear function, φ(y), is defined
as φ(yi) = tanh(|yi|)e

jθ(yi) [10].
FD-ICA for the semi-blind source separation is achieved

by not updating the elements of W related to the known
sound source SK(ω, f), . . . , SI(ω, f). Obviously, these ele-
ments are constant values of 1, 0 and do not require learning
for separation.

III. OUR SEMI-BLIND SOURCE SEPARATION
A. TIME-FREQUENCY DOMAIN CONVOLUTION
MODEL AND NEW MIXING PROCESS

We considered all the processes from the source signal
to the observed signal in the TF domain because the source
separation and the extraction of the features for ASR are
usually done in the domain. The key idea for dealing with the
reflections is to consider the reflections as different sounds
and separate them with BSS.

We assumed that the reflections of the sound affects the
succeeding frames’ observed sound, X(ω, f). With the num-
ber of assumed reflection filter (NRF), N , it is formulated
as

X(ω, f) =

N
∑

n=0

A(ω, n)Ŝ(ω, f − n), (7)

where A(ω, n) is the nth delay’s transfer function in the
TF domain. This model describes the N frames’ transfer
function, and it can deal with highly dereverberated sound
that includes many reflections. Fig. 1 illustrates them.

Then, the mixing process of sounds is redefined as

Xj(ω, f) =

I
∑

i=0

N
∑

n=0

Aij(ω, n)Ŝi(ω, f − n), (8)

where Ŝi(ω, f) is the ith sound source spectrum at frame n,
and Aij(ω, n) denotes the transfer function from the sound
source, i, to the microphone, j, with delay, n. Suppose that
Ŝi(ω, k) and Ŝj(ω, l) (k 6= l) are different sounds, the mixing
process assumes the (I+1)(N +1) sound sources are mixed.
We express it as

X(ω)=H(ω)S(ω) (9)
X(ω)= [X1(ω, f), X2(ω, f), . . . , XJ (ω, f)]T (10)
S(ω)= [S1(ω, f), S1(ω, f − 1), . . . , SI(ω, f − N)]T(11)
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Fig. 1. Model of time-frequency convolution. s(t) represents the original source signal, and S(ω, f) is the short-time Fourier analyzed s(t) with window
size T and shift size U . S(ω, t) with a different frame is treated as different (virtual) sources. Therefore, the observed signal, X(ω, f), is the convolution
of these signals and the transfer function, H(ω, n), of each source.

H =











H11(ω) H12(ω) . . . H1(I+1)(N+1)(ω)
H21(ω) H22(ω) . . . H2(I+1)(N+1)(ω)

...
...

. . .
...

HJ1(ω) HJ2(ω) . . . HJ(I+1)(N+1)(ω)











, (12)

where X is the observed signal vector, H is the mixing
matrix, and S is the new source signal vector with size
(I + 1)(N + 1). Therefore, the new mixing process can be
described as linear mixing.

B. ADAPTATION OF SEMI-BSS FD-ICA TO THE MODEL
To simplify the problems, we assume one known sound

source and one unknown sound source. In addition, we did
not need the convolution of the reflection of the unknown
sound, because solving the convolution of unknown sounds
is equal to dereverberation. We focused on eliminating the
known sound. In this case, we treated the reflected sounds
as one sound,

X(ω, f) =
N
∑

n=0

H(ω, n)S(ω, f − n) (13)

=

(

N
∑

n=0

H(ω, n)
S(ω, f − n)

S(ω, f)

)

S(ω, f) (14)

= Ĥ(ω)S(ω, f). (15)

Therefore, the model of the mixing process is reduced to,

X(ω)=H(ω)S(ω) (16)
X(ω)= [X1(ω, f), S2(ω, f), . . . , S2(ω, f − N)]t (17)
S(ω)= [S1(ω, t), S2(ω, f), . . . , S2(ω, f − N)]t (18)

H =











H11(ω) H12(ω) . . . H1(1+N)(ω)
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1











. (19)

Then, the conventional FD-ICA is applied to this model.
Before applying FD-ICA, the whitening process is done

to speed the convergence of the learning unmixing matrix

for practical use. The problems specific to FD-ICA are
ambiguities with scaling and permutation. We solved the
ambiguities of scaling using the projection back method
proposed by Murata [11]. The permutation problem does not
need to be solved if the number of unknown sounds is one.

IV. EXPERIMENTS BY SIMULATION
We evaluated our method and conventional semi-BSS

with ICA using the simulation data. The following two
experiments were conducted,

A) An evaluation of the relationship between the number
of filters and the noise reduction rate (NRR) and the
convergence speed in the highly reverberated environ-
ment

B) An evaluation by speech recognition and NRR in the
normal reverberated environment .

Experiment A) required examining whether the TF domain
convolution model is efficient for a reverberative environ-
ment. Experiment B) shows the contribution to speech recog-
nition for robot audition.

A. EXPERIMENTAL SETUP IN THE HIGHLY REVERBER-
ATIVE ENVIRONMENT

1) RECORDING CONDITIONS: The impulse response
data were recorded at 16 kHz in the room shown in Fig. 2.
Speaker A was 2.0 m away from the microphone, and speaker
B was 3.0 m away from speaker A. The room and reverber-
ation time we used was 7.55×9.55×3.2 m and 0.9–0.93 sec
(RT60), respectively.

2) EXPERIMENTAL CONDITIONS: A simultaneous
speech signal was generated with impulse responses, and the
speeches were Japanese sentences of about 13 sec each. We
set speaker A as the unknown signal and B as the known
signal. We used NRR for the criteria on how the separation
was effective. They were calculated by the formulation

SNRtar =10 log10

∑

t

∑

ω |Sori(ω, t)|2
∑

t

∑

ω |Star(ω, t) − Sori(ω, t)|2
(20)

NRR=SNRsep − SNRobs, (21)
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Fig. 2. Layout of room used for experiment A.
Reverberation time (RT60) = 0.9–0.93 sec

where Sori(ω, t) is the convoluted sound without any noise,
and Sobs and Ssep are the observed mixture of sounds and
separated sounds, respectively.

The parameters of this experiment are the shift size, U ,
and the number of assumed reflection filter (NRF), N . We
obtained values from 160 to 500 with a difference of 40 for
U. The window frame size, T , was 1,024 points (64 msec),
and the learning parameter, α, was 0.45. The initial values
for the unmixing matrix, W (ω), were given at random. The
SNR of the unknown signal in the observed signal was about
-11 dB. We examined only NRR under these conditions
because other techniques are needed for recognition under
such high reverberative environment.

B. EXPERIMENTAL SETUP IN THE NORMAL REVER-
BERATIVE ENVIRONMENT

1) RECORDING CONDITIONS: In this experiment, we
used two kinds of known sources, speech and music. The
former involved the cancellation of self speech, while the
latter involved cancellation of other known sound obtained
through line-in or network. The impulse response data were
also recorded at 16 kHz in this room, as shown in Fig. 3.
The room we used was 7.0×9.0×3.2 m, and the reverberation
time was 0.3–0.35 s (RT60). For the former, the angle, θ,
from the front of the microphone was 0, 15, 30, 45, 60, 90,
270, 300, 315, 330, and 345 degrees, and for the latter, θ,
was 0, 15, 30, 60, 90, 150, 180, 210, 270, 300, 330, and
345 degrees. The distance between the microphone and the
speaker was 1.5 m in both cases.

2) EXPERIMENTAL CONDITIONS: We used combina-
tions of two different words selected from a set of 200
phonemically balanced Japanese words for known and un-
known speech sounds. For the music, 200 words were used
as the unknown speech sounds. We used Julian [12] as the
ASR, and the mel frequency cepstrum coefficients (MFCC:
12+∆12+∆Pow) for the speech features. It uses a triphone-
based acoustic model (3-state, 4-mixture) trained with 216
words of clean speech uttered by 22 male and female
speakers. The training data sets do not include the data for
the evaluation (open test).

The parameters of this experiment are the angle, θ, and
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Fig. 3. Layout of room used for experiment B. The upper part is for the
known speech situation, and the lower part is for the known music situation.

Reverberation time (RT60) = 0.3–0.35 sec

NRR, N . The window frame size, T , and the shift size,
U , were 1,024 points (64 msec) and 256 points, (16 msec)
respectively, and the learning parameter α was 0.45. The
initial values for the unmixing matrix, W (ω), were given
at random. The SNR of the unknown signal in the observed
signal was set to about -11 dB. To examine the best per-
formance, we estimated the unmixing matrix from data of
10 consecutive words of which length is 13 sec. The word
correctness (WC) and the NRR were evaluated.

V. RESULTS
A. EXPERIMENT A

Fig. 4 is the waveforms of the observed sound, the convo-
luted sounds, the separated sound (N = 1) and the separated
sound (N = 15). We can see how the separated sound
is improved with large NRF. Fig. 5 shows the relationship
between NRRs, NRF and shift size, U . As the number of
filter increases, the NRR converges and improves about 17
points at shift size 280 and with 24 filters. About the shift
size, U , the NRR peaks at U = 280, 300 different from NRF.

Next, we focus on the convergence speed. Fig. 6 reveals
the relationship between the number of iteration, the number
of assumed reflection filter (NRF), N , and the shift size U .
The number of iteration increase as NRF increase at any shift
size U . However, the increment speed is obviously different
between small and large shift size.

From the results, our method outperformed the conven-
tional method in the highly reverberative environment, and
we moved beyond the limitations of the performance of the
FD-ICA with the TF domain convolution model. And these
two experiments about NRR and the number of iteration, we
can say that a trade-off between the number of calculations
and the performance of the separation apparently exists.
Moreover, the shift size, U , affect the performance of our
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Fig. 4. Waveforms: (1) is the ideal signal of the unknown speech without noise. (2) is the observed signal. (3) is the separated signal with N = 1
(conventional semi-BSS ICA). (4) is the separated signal with N=15 (our method).
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method. If U is too large, the reflections cannot be separated
well because of the effect of the sides of the window
function. If the main power of the known source exits at the
sides of the window, the model cannot deal with the reflection
well. If U is too small, the independency among the original
source S(ω, f −N) decreases, because the transfer function
is almost the same. It is a factor of the slow convergence of
the matrix.

B. EXPERIMENT B
Fig. 7 and 8 show the relationship between NRR and WC

and NRF, respectively. The upper limit in Fig. 8 indicates
the limitation of the WC at each angle, θ, that is, without
noise. Obviously, both the NRR and WC are improved as the
number of filters increases. Six NRF is enough to suppress
the known sound in the normal reverberative environment.
In particular, if the known sound is music, the performance
with six filters is almost equal to that of the upper limit.
And the WC of the music is better than that of the speech,

because the noise is also words for recognition in the case
of the known speech. Our method also outperformed the
conventional method in this case.

The performance of the separation seems to saturate
around N = 6. It is small number compared with the
Experiment A. This indicates the validity of the TF-domain
convolution model, because the optimal size differs with
the reverberation time. In the two experiments, the highly
reverberative environment requires a large NRF, and the
normal reverberative environment requires a small NRF.

VI. CONCLUSION
We created a double-talk free robot audition system that

can be used in unknown and/or dynamically-changing en-
vironments and deal with a priori information. To fulfill
such requirements, we used FD-ICA with the TF domain
convolution model. We achieved semi-BSS with the FD-ICA
and the model, and it outperformed the conventional semi-
BSS with ICA in two experiments under different conditions.
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Fig. 8. Relationship between word correctness (WC) and number of filters. The left part is the case of known speech, and the right part is that of known
music.

For improving the speech recognition rate, we have created
a combination of ICA and MFT-based ASR to compensate
for the remains of the separation. This technique improves
the recognition rate by generating a more accurate missing
feature mask because the interference sound source is already
known.

In future work, we will first work on real-time processing
of this technique and the optimal parameters for the shift size,
the window frame size, and the initial values of the matrix.
Integrating MFT-based ASR is the next challenge. After that,
we will try to develop a better BSS with this model or a
semi-BSS that has fewer constraint than this method.
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