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Abstract— This paper proposes a novel model which enables
a humanoid robot infant to discover other individual (e.g.
human parent). In this work, the authors define “other individ-
ual” as an actor which can be predicted by a self-model. For
modeling the developmental process of discovering ability, the
following three approaches are employed. (i) Projection of a self-
model for predicting other individual’s actions. (ii) Mediation
by a physical object between self and other individual. (iii)
Introduction of infant imitation by parent. For creating the
self-model of a robot, we apply Recurrent Neural Network with
Parametric Bias (RNNPB) model which can learn the robot’s
body dynamics. For the other-model of a human, conventional
hierarchical neural networks are attached to the RNNPB model
as “conversion modules”. Our target task is a moving an object.
For evaluation of our model, human discovery experiments by
the robot projecting its self-model were conducted. The results
demonstrated that our method enabled the robot to predict the
human’s motions, and to estimate the human’s position fairly
accurately, which proved its adequacy.

I. INTRODUCTION

There are many challenges in the development of human

infants. One of these is how infants discover their parents

in environments full of information. This paper proposes a

constructive model that enables a robot to discover other

individuals. Recently, cognitive developmental robotics [1]

has gained attention as a novel approach for the design of

humanoid robots and understanding infant development.

For modeling the development process, following three

approaches are employed. (i) Projection of a self-model

for predicting other individual’s actions. (ii) Mediation by

a physical object between self and other individual. (iii)

Introduction of infant imitation by parent.

It is absolutely essential for creatures including humans to

predict the environment around them so that they can adapt

themselves to the real world. For adaptation, they need to

construct models of environmental dynamics by learning,

etc. However, it would not be effective for them to retain

all the models discretely in their own mind because real

environment has a great variety of dynamical properties.

Individual creatures fundamentally have their own model

of dynamics, a “self-model”, for generating behaviors in

their own mind. As indicated by Makino et al. [2], if the

external environment has certain properties similar to the

creatures’ internal models, they should be able to retain

various environmental models, “other-models”, by reusing
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their own self-models. When they discover another individual

who has properties similar to their own in the external

environment, they will recognize the individual as “another

individual similar to me”, and communication between them

may eventually occur. In this work, the robot infant predicts

human parent by reusing its self-model (approach (i)).

Humans acquire the ability to recognize themselves and

others through interactions with their parents in early child-

hood. It has long been noted that “ternary relationship among

self-object-other” [3] and “infant imitation by parent” [4]

are important for infants to develop their cognitive faculty.

Moreover, Jones empirically indicated the probability that

infants notice being imitated by their parents [5]. We set

a moving object on a table as a task (approach (ii)), and

introduce “infant imitation by parent” to our model (approach

(iii)) based on the knowledge about the development of

human infants.

This paper proposes a novel model for discovery of other

individuals by a humanoid robot based on predictions reusing

the self-model. In this work, the authors define “other indi-

vidual” as an actor which can be predicted by a self-model.

The robot preliminarily has no correspondences between its

own body and human body. It constructs the other-model

and discovers the existence of other individual through some

interactions focusing only on the object.

Section II describes our discovery method, and the details

of the self-model and other-model. Section III describes the

implementation of the robot hardware and the neural network

model. Section IV describes the discovery experiments and

the results obtained. Section V discusses the results and its

relation with the brain science. Section VI concludes this

paper.

II. METHOD FOR DISCOVERING OTHER INDIVIDUALS

BY PROJECTING A SELF-MODEL

A. Proposed Model

1) Interaction between Parent and Infant: This section

describes how the infant discovers his parent from the

environment around him. We assume that a parent imitates

an infant in the early interaction between them.

From before birth to after birth, an infant organizes his

self-model through body babbling, which is an experiential

process where the infant learns what muscle movements

achieve a particular goal state [6]. Soon after birth, the

infant begins to interact with the parent by focusing on

specific information such as voice or sound resulting from his

motions: the information is an object in this work. Through

the interaction in which the parent imitates the infant, the
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Fig. 2. Other-model: RNNPB with NN.

infant comes to be able to recognize the rough position of

the parent who has a dynamical model similar to his own

self-model.

2) Overview of Our Process: We present an overview of

our method based on the situation described in section II-

A.1.

The self-model for the robot infant and the other-model

for the human parent consist of following two parts.

• Recurrent Neural Network with Parametric Bias

RNNPB (See Fig. 1) is used for the self-model. It

can learn the relations between the robot’s motions and

resulting object’s motions.

• Hierarchical neural networks

The other model is organized by attaching pairs of

conventional hierarchical neural networks, mIn and

mOut, to input-output units of the RNNPB model (See

Fig. 2). In this work, each pair of networks is called

“conversion module”. The conversion module plays the

role of mutual conversion between the subjective and

objective information; Is and Io. In this work, only

object motion is a conversion target.

Our discovery process consists of three phases (See Fig.

3). Fundamentally, this process should be seamless; however,

it is divided into these phases for convenience. Note that the

robot focuses only on the object’s motion all of the time. We

overview it as follows.
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Fig. 3. Discovery process.

a) Phase 1: Learning of Self-Model (Infant Body Bab-

bling): The robot collects the data of its arm motions and ob-

ject motions while it manipulates the object. The self-model,

RNNPB, is then trained with the data. The relations between

the robot’s motions and object’s motions are acquired in this

phase.

b) Phase 2: Learning of Conversion Modules (Infant

Imitation by Parent (1)): Soon after the robot first manip-

ulates the object, the human parent imitates it at multiple

positions. While the human manipulates the object, the robot

collects observed data. The conversion modules are trained

with the data so that the other-model can predict the object’s

motion generated by the human. In this phase we assume

that the robot knows being imitated by the human.

c) Phase 3: Estimation of Human Position (Infant Im-

itation by Parent (2)): In the same way as in the previous

phase, the robot collects data while it observes the human’s

imitative motion at a certain position. The robot predicts the

observed motions by using the other-model. The position of

the parent is then estimated based on the prediction errors.

We also assume that the robot knows being imitated by the

human in this phase.

B. Self-Model and Other-Model

This section describes the learning models used in our

method and their learning algorithm.

1) RNNPB and Its Learning Algorithm: This section de-

scribes the architecture and learning algorithm of the RNNPB

model.

The RNNPB model is the FF-model (forwarding forward

model) proposed by Tani and Ito. The RNNPB model works

as a prediction system: its input data is the current sensory

state S(t) and its output data is the predicted sensory state

S(t+1) in the next step. This model has the same architecture

as the conventional hierarchical neural network model except

for the context layer and the PB nodes in the input layer.

Unlike the other input nodes, these PB nodes take a constant

value throughout each time sequence. The context layer has

a loop that inputs the current output as input data in the next

step. An advantage of this layer is that the RNNPB model can

use it to learn the time sequences by leveraging past contexts.
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After learning the time sequences, the RNNPB model self-

organizes the PB values at which the specific properties of

each time sequence are encoded.

An algorithm called the BPTT (back propagation through

time) [8] is employed for RNNPB learning. Although the

learning algorithm for the conventional hierarchical neural

network is back propagation, the RNNPB model cannot learn

with this algorithm because it does not have a teacher signal

to the context layer.

The PB values are calculated during the learning process

as follows.

δρt = kbp ·

T∑

0

δ
bp
t , (1)

pt = sigmoid(ρt), (2)

where kbp is a constant; ρt is the internal value of the PB

node at t; pt is the PB value of the PB node at t; δ
bp
t is

the delta error back-propagated from the output nodes to the

PB nodes; and T is the sensory sequence length. In (1), the

delta errors are integrated errors in all the steps. In (2), the

current PB values are obtained from the sigmoidal outputs

of the internal values. Based on these equations, a unique

PB value is calculated for each time sequence.

In the first phase, the weights and the PB values of the

RNNPB model are calculated simultaneously. The input data

for the RNNPB model are motor information and visual

information in this work.

2) Method for Organization of Conversion Modules:

After the RNNPB model is organized using BPTT in the

babbling phase, the RNNPB model is used in the second

and third phases. This section describes how the conversion

module is organized in the second phase.

The other-model is used for prediction of the object’s

motion generated by the parent. The weights of the con-

version modules are updated using BPTT without updating

the connection weights for the RNNPB model so that the

other-model can predict the observed data. The PB values

corresponding to the observed manipulation acquired in the

first phase are input to the model. This is done based on

the fact that the robot knows what kind of manipulation the

parent did, due to the assumption that a parent imitates an

infant.

The collected data include no arm motor data because the

robot is just looking at the target and does not move, unlike

in the first phase. The initial arm motor values are then

input to the motion input layer in step 0, and the outputs

are calculated forward in the closed looping mode from step

1; the outputs in the motion output layer in step t-1 are input

to the motion input layer in step t (See Fig. 4). To put this

simply, the motion input layer plays the same role as the

context layer does.

3) Method for Discovery of Other Individuals: This sec-

tion describes how the robot estimates the position of the

parent by using the other-model in the third phase.

The robot predicts the observed data thorough the forward

calculation of the other-model by using each conversion

Object input

Step 0

Motion input

Object input

Step 1

Context 

initial value

Fig. 4. Forward calculation of other-model.

module and calculates output errors: the observed data are

input to the other-model, and delta errors are calculated based

on the output data and the real data (teacher data). The PB

values corresponding to the observed manipulation are input

to the model. The robot then estimates the position based

on the errors calculated by each module. The estimation is

described in detail in section IV-C.2.

III. MODEL AND SYSTEM

A. Humanoid Robot Robovie-IIs and Target Object

Our experimental platform was a humanoid robot,

Robovie-IIs, a refined model of Robovie-II developed at

ATR [9] (See Fig. 5). Robovie has three d.o.f. (degree of

freedom) in its neck and four d.o.f. in each arm. Each motor

angle value is measured with potentiometers. It also has

stereoscopic CCD cameras on its head.

The manipulation target is a box-shaped object (See Fig.

5). The top of the object is separated into two colors; red

and blue.

B. Experimental System

Figure 6 is the system diagram. After the camera and

the motors collect data, the self-model and the conversion

modules of the other-model are trained with the data off-

line.

The self-model, the RNNPB model, consists of fifty-nine

neurons: seven in the input layer, thirty-five in the middle

layer, fifteen in the context layer, and two as parametric bias.

The other-model has four conversion modules corresponding

to four positions of the human: 0 deg., 90 deg., 180 deg. and

270 deg. Each conversion module consists of eight neurons:

four in the input layer and four in the middle layer. The input

for the modules is the visual data only.

The following sensory data were collected in the experi-

ment for use in the model.
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Fig. 5. Robovie-IIs and object.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Out
m0

Out
m0

Data
translation

CameraCamera Motor

RNNPB

Observation

OtherOther--modelmodel

Camera Motor

RNNPB

Generation

SelfSelf--modelmodel

Data
translation

CameraCamera MotorMotor

RNNPBRNNPB

Generation

SelfSelf--modelmodel

Data
translation

Out
m90

Out
m90

Out
m270

Out
m270

In
m0

In
m90

In
m270

Out
m180

Out
m180

In
m180

In
m180
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a) Visual Information (four units):

The trajectory of an object was collected from the image

information by a CCD camera with a resolution of 500×400

pixels. The center position of each colored top face, the

X-Y coordinates in the camera ([0-1]), was estimated by

extracting the object from the color information: the visual

information had four dimensions. The initial position of the

object is the center of the camera view in all phases. Only

the left eye camera was used.

b) Motor Information (three units):

The left arm (3 d.o.f.: roll and yaw axes of the shoulder,

and pitch axis of the elbow) was used. Note that the pitch

axis of the shoulder and the neck motors were fixed in the

experiment. In our experiments, the initial arm motor values

were constant.

Those values were synchronized between different modali-

ties, and were normalized in [0.1-0.9] based on the maximum

and minimum values. The sensory data were stored every 800

msec for each manipulation, and their lengths were all ten

steps: each trial duration was 8 sec.

IV. EXPERIMENTS FOR DISCOVERY OF OTHERS

A. Task

There were five kinds of manipulation: parallel translation

from the left to the right (“L→R”), rotation to the right

TABLE I

OBJECT MANIPULATION.

Moving direction

Motion 1 L→R
2 Rrot
3 Lrot1
4 Lrot2
5 F→B

(“Rrot”), rotation to the left by pushing the right side of the

object (“Lrot1”), rotation to the left by pulling the left side

(“Lrot2”) and moving from the front to the back (“F→B”)

(See Table I). Only motion 5 is not used for learning the

conversion modules in the second phase.

B. Procedure

c) Phase 1: Learning of Self-Model: The robot first

conducted the motions listed in Table I to manipulate the

object. The robot began all motions from the four object

postures (See Fig. 7), because this avoided the chance that the

human’s position was obvious only from the initial posture

of the object. A total of twenty sets of data were collected

in the first phase. The RNNPB model was then trained with

the collected data simultaneously 200,000 times, which took

approximately ten minutes.

In the second and third phases, both the robot and the

human began the motions from the initial posture of the

object 1 (See the upper left of Fig. 7).

d) Phase 2: Learning of Conversion Modules: The

robot observed four types of manipulation, motions 1-4,

presented by human parent. The parent did the motions at

four positions, 0 deg., 90 deg., 180 deg. and 270 deg (See

Fig. 3). The angles represent the parent’s position in the

counterclockwise direction relative to the initial position of

the object. The robot collected sixteen sets of visual data.

Four conversion modules were trained 100,000 times each

with the collected sensory data, which took approximately

ten minutes per module. Each pair of modules learned with

four sets of data. Note that the PB values corresponding to

the observed manipulations acquired in the first phase are

input to the other-model.

e) Phase 3: Estimation of Human Position: Finally, the

robot observed motions 1-5 presented by its parent. The

parent did the motions at eight positions, 0 deg., 45 deg.,

90 deg., 135 deg., 180 deg., 225 deg., 270 deg. and 315

deg. The robot collected visual data: there were five patterns

for each parent position. The other-model with four pairs

of conversion modules predicted the dynamic sequences by

forward calculation with the collected sensory data. The

robot then estimated the parent’s position based on the

calculated errors. The details of the estimation are described

in section IV-C.2. As in the case of the previous phase, the

PB values corresponding to the observed manipulations are

input to the model.

Figure 8 shows an example of sequential photographs of a

scene in the second or third phase: the manipulation is Rrot,

and the human’s position is 270 deg. The left photograph

captures the robot manipulating the object, and the right one

captures the human imitating the manipulation.
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Fig. 8. Infant imitation by parent (Motion 2 at 270 deg).

C. Results

1) Prediction of Other’s manipulations by Reusing Self-

model: Figure 9 shows examples of the real trajectory of

the object generated by the human, and object trajectory

predicted by the conversion modules organized in the second

phase. The solid lines describe the output (predicted data) of

the other-model with the conversion modules corresponding

to 0 deg, and the broken lines describe the input (real data).

We confirmed that the other-model could predict the learned

and un-learned sequences fairly accurately.

2) Estimation of Human Position: All the data observed

in the third phase were input to the other-model with the

conversion modules, and output errors were calculated for

each module. A value Li was then calculated as follows for

all the data.

Li =
1

ei

1

e0

+ 1

e90

+ 1

e180

+ 1

e270

(i = 0, 90, 180, 270) (3)

where ei(i = 0, 90, 180, 270) are errors calculated by each

pair of modules. The errors were obtained through forward

calculation of the other-model: the difference between the

output of mOut at the current step and the real data at

the next step were accumulated for all the steps. Figure

10 shows X-Y coordinates in which each plotted point

represents (L90 −L270, L180 −L0). Thus, distance from the

coordinate origin represents a value similar to the likelihood

of the existence of the human at the corresponding position.

The points resulting not only from the data used for the

module learning but also from un-used data are plotted in

fairly accurate positions.

3) Analysis of PB Space: Figure 11 shows the two-

dimensional PB space acquired in the first phase, which

consisted of pairs of PB values. The numbers in parentheses

in the label box represent the initial postures of the object.

The PB values corresponding to the initial posture 1, the

rhomboid points, were used in the second and third phases.
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Fig. 9. Prediction of object trajectory.
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The PB values were self-organized corresponding to the

categories of object manipulations.

V. DISCUSSION

A. Discovery of Other Individual

As can be seen from Fig. 9, the robot could predict the

object motions that the parent generated by reusing its self-

model. This confirms that the human was recognized as an

individual who can be predicted by the robot’s self-model.

Figure 10 indicates the motion used for the learning of

the conversion modules was recognized quite accurately.

Because even the unlearned motions (Motion 5) and other

motions generated by the parent standing at unlearned po-

sitions (45 deg., 135 deg., 225 deg., and 315 deg.) were

recognized as being at fairly accurate positions, it can be

said that the conversion modules were accurately organized
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as viewing transformations. This proves the generalization

capabilities of the proposed model.

B. Efficiency by Projecting Self-model

Our model enables the robot to conserve its resources.

In our experiments, if the robot were to organize another

RNNPB for the other-model from scratch, it would need

to train 1,610 parameters of the weights. Instead, it could

acquire the other-model by training only 64 parameters of

the weights for each pair of conversion modules.

C. Relation with Mirror Neuron

The function of the PB values, which mediate the recog-

nition of other’s motions and the generation of self-motions,

corresponds to that of mirror neurons [10]. The mirror

neurons were originally discovered in area F5 of the monkey

premotor cortex, which discharge both when the monkey

makes a particular action and when it observes another

making a similar action. This kind of system might be the

basis of the mind-reading of other individuals.

VI. CONCLUSIONS

This paper proposed a constructive model which enabled

a humanoid robot to discover other individuals by reusing

its own self-model. For modeling the development process,

following three approaches were employed. (i) Projection

of a self-model for predicting other individual’s actions.

(ii) Mediation by a physical object between self and other

individual. (iii) Introduction of infant imitation by parent.

The task was moving objects on a table. The RNNPB model,

which can learn temporal sequences, was used as the self-

model of the robot, and the RNNPB model with hierarchical

NN was used as the other-model for the human parent.

The robot self-organized the relation between its own arm

motions and the object motions in the babbling phase. The

NN, conversion modules, for four human parent positions

were then learned for predicting the object motions generated

by the parent. Finally, the parent’s position was estimated

from the prediction errors by using the other-model. Both

the learned and unlearned parent’s positions were estimated

fairly accurately both in the case of the prediction of the

learned and unlearned motions.

This work is only the first step in modeling the devel-

opment processes of infants. There still remain a lot of

phenomena to be clarified: some of these are the discovery

of the correspondence between self and other’s body, and

interactions by reading the other’s mind after acquiring self-

consciousness and other-consciousness. Our future work will

validate the characteristics of our method in more detail, and

evolve the method of interaction. Although the conversion

target in this work was visual information only, there is other

information to be converted such as contextual information.

We believe that the process by which infants acquire imita-

tive capabilities can be modeled by integrating the method

proposed in this paper and the imitation method we have

proposed [11].
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