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Abstract— We aim at enabling a biped robot to interact with
humans through real-world music in daily-life environments,
e.g., to autonomously keep its steps (stamps) in time with mu-
sical beats. To achieve this, the robot should be able to robustly
predict the beat times in real time while listening to musical
performance with its own ears (head-embedded microphones).
However, this has not previously been addressed in most studies
on music-synchronized robots due to the difficulty in predicting
the beat times in real-world music. To solve this problem, we
implemented a beat-tracking method developed in the field of
music information processing. The predicted beat times are then
used by a feedback-control method that adjusts the robot’s step
intervals to synchronize its steps in time with the beats. The
experimental results show that the robot can adjust its steps in
time with the beat times as the tempo changes. The resulting
robot needed about 25 [s] to recognize the tempo change after
it and then synchronize its steps.

I. INTRODUCTION

Humanoid robots that behave like humans have recently
gained a lot of popularity. They can interact with humans
through conversations and gestures in many science-fiction
stories. If robots are endowed with intelligence and shapes
similar to those of humans, we can easily predict their mental
and physical dynamics without any special knowledge, i.e.,
by reflecting our mental and physical models. In other words,
the thoughts and movements of humanoid robots should be
similar to those of humans in various situations. This is an
important factor for seamlessly introducing robots into our
daily-life environments. In the future, humanoid robots will
play roles not only in task-oriented missions (e.g., assisting
the elderly) but also in leisure-time activities (e.g., playing
sports with humans). We focus on music appreciation, which
is one of the most popular leisure-time activities.1

Our goal is to build an intelligent humanoid-robot dancer
that can interact with humans through various musical pieces.
Capturing rhythm structures and synchronizing body motions
(e.g., hand-clapping and foot-tapping) are fundamental capa-
bilities in music appreciation.2 To acquire these capabilities,
robots should be able to understand music and synchronize
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dancing movements in time with it while listening to it with
their own head-embedded microphones (ears). As an initial
step toward achieving our goal, we developed a biped robot
that can stamp its feet in time with musical beats (temporal
positions of quarter notes).

Researchers’ interests have recently centered on improving
physical functions to imitate the complex human movements.
For example, humanoid robots developed by Toyota Motor
Co., Ltd. that play the trumpet with their mouths and fingers
appeared in the 2005 World Exposition [1]. However, they
cannot play non-registered musical pieces because motion
sequences should be manually programmed for each piece.
That is, these programmed robots cannot dynamically inter-
act with humans through various pieces; their bodies are like
“buried treasure” without human-like intelligence.

We aim at associating an intelligent function that predicts
the next beat times in real time with a physical function
that synchronizes steps with the predicted beats. This is a
comprehensive approach that imitates the human intelligence
of associating the brain with the body in dancing. Our study
differs in this point from many previous ones that have
focused on imitating the external body motions of humans.
To achieve the intelligent function, we used a beat-tracking
method based on a pure signal-processing algorithm [2]. To
achieve the physical function, we used a feedback control
method that reduces the temporal differences between the
actual steps and musical beats.

The rest of this paper is organized as follows. Section II
introduces related work. Section III discusses problems and
approaches in developing the intelligent and physical func-
tions of a beat-synchronized biped robot. Sections IV and V
explain the implementations of these functions. Section VI
reports on our experiments that used popular CD recordings.
Section VII summarizes the key points of this study.

II. STATE-OF-THE-ART MUSIC ROBOTS

The humanoid robot is an interesting research subject not
only in the field of mechanical engineering but also in that
of intelligence science. However, there are a few studies that
integrate promising methods from both fields.

Many researchers of mechanical engineering have engaged
in improving physical functions. In the history of hardware
improvements, one of the most active areas concerns biped
robots. ASIMO, developed by Honda Motor Co., Ltd. [3],
is an advanced biped robot that can walk using its two legs.
QRIO, by SONY Co., Ltd. [4], can generate various dancing
movements. Nakazawa et al. [5] let a biped robot called
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HRP-2 imitate the spatial trajectories of complex motions of
a Japanese traditional folk dance by using a motion capture
system. Despite the flexibility of motion generation, a prob-
lem is that these robots cannot autonomously determine the
appropriate timing of dancing movements while interacting
with auditory environments, i.e., while listening to music.

In the field of intelligence science concerning robotics,
one of the hottest topics is robot audition, which aims at
understanding external auditory environments through robot-
embedded microphones (ears). For example, some studies
tried to recognize simultaneous speech signals of multiple
people [8], [9] or to determine the spatial positions of mul-
tiple sound sources [10]. However, understanding musical
audio signals (music scene analysis) through robot-embedded
ears has not previously been addressed.

A few studies have developed music-synchronized robots
by using promising results from both fields. The earliest
work was done by researchers at Waseda University, Japan in
1984 [11]. They created a robot musician called WABOT-2
that autonomously played the electronic organ with its own
fingers while reading ordinary musical scores with its camera
(eye) and determining the fingering. Afterwards, a more
refined robot named WABIAN was developed that could
generate dancing motions according to MIDI signals [12].
The motion speed could be interactively changed by moving
a conductor’s baton fast or slowly. MS DanceR, developed by
Kosuge’s group [13]–[15], is a robot dancer that dances with
a human partner while predicting the steps of the partner.
Note that these robots do not react to musical audio signals.
Kotosaka and Schaal [16] developed a robot that plays the
drum while synchronizing its drumming strokes to those of a
human drummer. Although this robot detects the stroke times
from the monophonic audio signals of human drumming with
its own ears, it is quite difficult to predict beat times from
the polyphonic audio signals of real-world music.

The development of artificial dancers was also addressed
in the field of music information processing. M. Goto [2]
developed a computer-graphics system named Cindy that
displays virtual dancers whose motions change in time to
musical beats in real time. However, the physical constraints
of real robot dancers were not taken into account, because
the virtual dancers can precisely and instantaneously change
the positions of their body parts in time to musical beats.

To develop a robot that autonomously synchronizes its
steps with beat times of musical audio signals, we should
achieve high temporal accuracy of motions by predicting
unavailable future information (beat times). This is a key
point that differs from conventional studies on robotics that
focus on improving the spatial accuracy of motions by using
complete information for environment recognition.

III. ARCHITECTURE

This section describes the system architecture for devel-
oping the stamping humanoid robot. First, we define our
task. Second, we explain the physical specifications of our
robot. Finally, we discuss the problems and approaches for
achieving the intelligent and physical functions.

Right step Left step

Microphone (mono)

Fig. 1. Foot stamping of biped robot while listening to music with its
head-embedded microphone.

A. Beat-synchronized Stamping Task

Our goal is to synchronize robot steps with musical beats
that are automatically predicted from musical audio signals.
This task can be divided into two parts: beat prediction and
step control, which correspond to the intelligent and physical
functions. To achieve human-like foot stamping, the system
should satisfy the following two requirements:

• Executing beat prediction and step control in parallel:
The robot should not alternate between beat prediction
and step control to avoid the negative effects of motor
sounds during beat prediction.

• Continuing steps during change in tempo: The robot
should not stop performing steps when a change in
tempo is detected. Humans usually deal with a change in
tempo by gradually making their steps faster or slower.

The former requirement makes our task more difficult com-
pared with standard human-robot interaction where robots
first concentrate on environment recognition (e.g., speech
recognition) and then move their bodies.

B. Specifications of Humanoid Robot

Our humanoid robot is ASIMO, which has two legs like
humans and can stamp its feet on the floor, i.e., perform
steps in a stationary location, as outlined in Fig. 1. The step
interval is limited to between 1,000 and 2,000 [ms]. If the
tempos of musical pieces are between 61 and 120 M.M.,3 the
robot can perform one step per two beats (quarter notes). We
assume that the tempos of input audio signals are between
61 and 120 M.M. and that the time signature is 4/4. The
robot records these signals with its own single microphone
embedded in the front of the head. Of course, the recorded
signals include many noises and motor sounds caused by the
real-time motions.

We can only control step intervals externally by sending
control commands to the robot via a TCP socket. Here, we
should take into account physical constraints (e.g., inertia,
friction, and latency) and the effects of autonomous posture
control. For example, the robot needs some time to start
moving its legs after sending it a command. In addition, the
robot cannot accurately perform steps at an interval specified

3Mälzel’s Metronome: the number of quarter notes per minute. For
example, if the tempo is 60 M.M., the quarter-note length is 1,000 [ms].
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Fig. 2. Overview of system architecture based on integration of intelligent
and physical functions.

by the command. Note that we receive an actual step interval
from the robot via a TCP socket when each step is completed.
To clarify the concept, we define the following three terms,
as outlined in Fig. 2.

• A target interval is a temporal duration obtained by
analyzing the tempo of a musical audio signal. That
is, the target interval is equal to two or four times the
quarter-note length.

• An input interval is an instruction value specified by a
control command.

• An output interval is an actual interval of robot steps
obtained as feedback information.

Therefore, our goal is to make the timing and intervals of
robot steps (outputs) equal to those of musical beats (targets)
by adjusting input intervals.

C. Intelligent Function: Beat Prediction

This function predicts the next beat times in real time
because the robot cannot immediately change behaviors after
sending it control commands. Therefore, control commands
should be sent in advance of the beat times to generate beat-
synchronized steps. This function is called “real-time beat
tracking” in the field of music information processing.

1) Problems: There are three major problems associated
with tracking the beat times in real time.

• Problem 1: The beat-time candidates should be detected
from polyphonic audio signals by focusing on appropri-
ate musical contents.

• Problem 2: There is ambiguity in selecting appropriate
combinations of beat times from among the detected
beat-time candidates.

• Problem 3: The real-time beat tracking should be robust
against motor sounds and other noises to satisfy the first
requirement mentioned in Section III-A.

2) Approach: By implementing a real-time beat-tracking
method [2], these three problems can be solved as follows:

• Strategy 1 (detection of chord changes and drum-sound
onsets): The method focuses on drum-sound onsets and
chord changes as important musical cues that indicate
beat-time candidates. This is based on the general fact
that drum-sound onsets and chord changes likely occur
at beat times.

• Strategy 2 (multi-agent architecture): The method man-
ages multiple agents that have different interpretations
of locations for beat times. These agents always predict

the next beat times simultaneously, and an agent that
has the most confident interpretation outputs the beat
times. This enables reliable beat tracking.

• Strategy 3 (weak musical-content analysis): The method
roughly calculates the reliabilities of chord changes and
drum-sound onsets continuously, i.e., it does not try
to accurately judge whether chord changes and drum-
sound onsets occur. The comprehensive judgment is
finally done on the basis of the multi-agent architecture.
This results in improved robustness.

D. Physical Function: Step Control

This function synchronizes the timing of robot steps
(outputs) with that of musical beats (targets) as promptly
as possible. To achieve this, we should dynamically adjust
the input intervals on the basis of a feedback control method.
This method reduces the amount of the differences (errors)
not only in timing but also in the intervals between outputs
and targets.

1) Problems: There are two major problems associated
with designing the feedback control method.

• Problem 1: Physical constraints and the second require-
ment mentioned in Section III-A prohibit the robot from
immediately changing its actual step interval to match
the target interval when the tempo change is detected
by the intelligent function.

• Problem 2: Adjustment of input intervals for reducing
the amount of interval errors often conflicts with that
for reducing the amount of timing errors.

2) Approach: To solve these two problems, we propose
the following two strategies.

• Strategy 1 (gradual adjustment of input intervals): The
method gradually changes the input intervals so that
the outputs gradually converge to the targets. This
contributes to fast and stable convergence.

• Strategy 2 (dynamic weighting): The method dynami-
cally switches weighting strategies to achieve not only
fast convergence but also good stability after conver-
gence. When the amount of errors in the output intervals
is large, the method reduces it. When convergence has
almost been achieved, the method mainly reduces the
amount of timing errors without largely changing the
input intervals.

IV. REAL-TIME BEAT TRACKING

This section describes the implementation of the intelligent
function. In this paper, we implemented a real-time beat-
tracking method proposed by Goto [2]. Figure 3 shows an
overview of the method, which is based on the multi-agent
architecture. The method outputs the next beat time and the
current tempo in real time.

In the frequency analysis stage, the spectrogram is consec-
utively obtained by applying the short time Fourier transform
(STFT) with a Hanning window of 4096 [points] and a shift-
ing interval of 512 [points] to input audio signals sampled
at 44.1 [kHz]. Then, the frequency components derived from
the onsets are roughly extracted from the spectrogram. Using
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Fig. 3. Overview of real-time beat-tracking method based on multi-agent
architecture.

these onset components, seven onset-time finders that focus
on different frequency ranges evaluate onset reliabilities at
each frame. The seven onset reliabilities of each frame
are transformed into vector representations called onset-time
vectors by three onset-time vectorizers.

In the beat prediction stage, the method manages twelve
agents that create parallel hypotheses from the onset-time
vectors on the basis of different strategies, i.e., each agent
calculates the beat interval and predicts the next beat time.
By communicating with a chord change checker and a drum
pattern checker, the agent evaluates the reliability of its own
hypothesis. Then, the method gathers all the hypotheses and
determines the most reliable one as the final output.

A. Strategy Parameters of Multiple Agents

Each agent uses different strategy parameters for predict-
ing the next beat time, i.e., for maintaining a hypothesis of
the beat-time sequence. There are three kinds of parameters
(The effects of these parameters are described later):

• Frequency focus type (S1): This parameter determines
an onset-time vectorizer that provides an agent with
onset-time vectors. Its value is chosen from among
type-all, type-low, and type-mid corresponding to the
three vectorizers focusing on the all, low, and middle
frequency ranges, respectively.

• Auto-correlation period (S2): This parameter takes a
value of either 500 or 1000 [frames], which deter-
mines the window size for calculating the vector auto-
correlation of the onset-time vector sequence.

• Initial peak selection (S3): This parameter takes a value
of either primary or secondary, which only makes sense
when the hypothesis reliability is low. When the value is
primary, the largest peak in a prediction field is initially
selected and regarded as the next beat time. Otherwise,
the second-largest peak is selected.

All twelve agents are grouped into six pairs. Two agents
in each pair share the same values of S1 and S2, and have
the different values of S3. These paired agents examine the
same beat interval and then cooperatively predict the next
beat times, which will always differ by half the beat interval
(eighth-note duration). To achieve this, one agent interacts
with the other in each pair through a prediction field, which
is an expectancy curve that represents the time at which the
next beat is expected to occur (Fig. 4).

B. Frequency Analysis Stage

We explain the algorithm of the frequency analysis stage.
1) Extraction of Onset Components: The onset times are

detected by frequency analysis that takes into account factors
such as the rapidity of an increase in power. Here, let p(t, f )
is the power at time frame t and frequency bin f . An onset
component (a frequency component that is likely derived
from an onset) at t and f , d(t, f ), is obtained by

d(t, f ) =

⎧⎨
⎩

max(p(t, f ), p(t +1, f ))−PrevPow,
if min(p(t, f ), p(t +1, f )) > PrevPow,

0, otherwise,
(1)

where PrevPow = max(p(t −1, f ), p(t −1, f ±1)). (2)

2) Onset-time Finders: Seven onset-time finders assign
the onset reliabilities to each time frame in seven frequency
ranges (0−125 [Hz], 125−250 [Hz], 250−500 [Hz], 500−
1000 [Hz], 1−2 [kHz], 2−4 [kHz], and 4−11 [kHz]). In
each range, onset times are roughly detected by picking peak
times in the sum, D f (t), along the time axis, where D f (t) =
∑ f d(t, f ), and the frequency range of ∑ f is limited. The
sum, D f (t), is linearly smoothed with a convolution kernel
before its peak time is calculated.

The onset reliability is then assigned to each time frame.
If an onset is found at frame t, the onset reliability is given
by D f (t), otherwise it is set to zero.

3) Onset-time Vectorizers: Three onset-time vectorizers
transform the seven reliabilities provided by the seven find-
ers into three seven-dimensional onset-time vectors at each
frame on the basis of the different sets of frequency weights
(strategy parameter S1). A sequence of onset-time vectors is
sent to an agent specified by the strategy parameter S1.

C. Beat Prediction Stage

We explain the algorithm of the beat prediction stage.
1) Calculation of Beat Interval: To determine the beat

interval (temporal duration between adjacent beat times),
each agent receives a sequence of onset-time vectors and
calculates its vector auto-correlation. The windowed and
normalized auto-correlation, Ac(τ), is given by

Ac(τ) =
∑c

t=c−AcLen win(c− t,AcLen)(o(t) ·o(t − τ))
∑c

t=c−AcLen win(c− t,AcLen)(o(t) ·o(t))
, (3)

where o(t) is a 7-dimensional onset-time vector at frame t,
and c is the current time. AcLen is strategy parameter S2,
andwin(t,s) is a window function whose size is s:

win(t,s) =
{

1.0−0.5 t/s (0 ≤ t ≤ s),
0 (otherwise). (4)
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The beat interval is determined as τ that maximizes Ac(τ)
under the condition that τ is between 43 [frames] (the length
of quarter note in 120 M.M) and 85 [frames] (that in 61
M.M).

2) Prediction of Next Beat Time: To predict the next beat
time, each agent forms a prediction field, as outlined in
Fig. 4. The prediction field is obtained by calculating the
windowed cross-correlation, Cc(τ), using onset-time vectors:

Cc(τ) =
c

∑
t=c−CcLen

(
win(c− t,CcLen)O(t)

CcNumBeats

∑
m

δ (t −Tp(c+ τ ,m))
)
, (5)

Tp(t,m) =
{

t − I(t) (m = 1),
Tp(t,m−1)− I(Tp(t,m)) (m ≥ 1), (6)

δ (x) =
{

1 (x = 0),
0 (x �= 0), (7)

where CcLen (= CcNumBeats I(c)) is the window size for
calculating the cross-correlation, and O(t) is the sum of seven
dimensions of o(t). I(t) is the beat interval at frame t, and
CcNumBeats is a constant factor that determines how many
previous beats are taken into account in calculating the cross-
correlation. {Tp(t,1), · · · ,Tp(t,CcNumBeats)} is a sequence
of provisional beat times that is determined recursively when
frame t is regarded as the next beat time. The prediction field
is given by Cc(τ), where 0 ≤ τ ≤ I(c)−1.

Each agent then selects the next beat time (time c + τ)
that gives the maximum peak in the prediction field after the
field is inhibited by its paired agent, as outlined in Fig. 5.
When the reliability of a hypothesis is low, the agent initially
selects the peak in the prediction field on the basis of strategy
parameter S3. The agent then pursues a peak close to time
(c+ τ)+ I(c+ τ).

3) Calculation of Hypothesis Reliability: To evaluate the
hypothesis reliability, each agent communicates with a chord-
change checker and a drum-pattern checker. The former
evaluates the coincidence of beat times with chord changes.

The latter evaluates the degree of similarity between a set of
roughly-detected drum-sound onsets and registered typical
drum patterns.

The chord-change checker calculates two kinds of chord-
change possibilities, i.e., quarter-note-level possibility and
eighth-note-level possibility, by slicing the spectrogram into
strips at the provisional beat times. These possibilities rep-
resent how likely a chord is to change at each quarter-note
time and at each eighth-note time under the current beat-
time hypothesis. The use of the two kinds of possibilities
enables us to select an appropriate hypothesis from the paired
hypotheses that differ by eighth-note duration.

The drum-pattern checker first roughly detects the onset
time of a bass drum by using onset components and the onset
time of a snare drum by using noise components. These onset
times are then formed into the drum patterns by making use
of the provisional beat times. The checker then compares the
drum patterns with registered drum patterns.

4) Integration of Multiple Hypotheses: The manager clas-
sifies all agent-generated hypotheses into groups on the basis
of the beat time and beat interval. Each group has an overall
reliability given by the sum of the reliabilities of the group’s
hypotheses. The manager then selects the dominant group
that has the highest reliability. The reliable hypothesis in the
most dominant group is thus selected as the output.

V. FEEDBACK STEP CONTROL

This section describes the implementation of the physical
function, which aims at synchronizing the timing of robot
steps (outputs) with that of musical beats (targets) by only
adjusting the step intervals of commands (inputs) sent to the
robot. In general, the feedback-based robot control is quite
difficult when precise target values are not available, e.g.,
when the beat times include prediction errors and quantiza-
tion errors. Although typical feedback-control theories allow
outputs to include errors, those included in targets are not
considered. Note that in related work, the correct beat times
were given as MIDI signals [12] or could be easily detected
from monophonic audio signals [16].

Putting aside this theoretical difficulty (beyond our scope),
we take a simple approach that simultaneously reduces the
amount of errors in step timing and those in output intervals.

A. Basic Algorithm

Our method adjusts input intervals by using feedback
information, as outlined in Fig. 6. Here, let Tout(n) be the
time when the previous step-completion signal sent by the
robot is received by the control PC, where n is the index of
the previous beat time. The objective of the method is given
as follows:

Time: Tout(n+1) → T (n+1), (8)
Interval: Iout(n+1) → T (n+1)−T (n), (9)

where Tout(n+1) is the next receiving time and Iout(n+1) is
the actual interval of the next step. T (n) and T (n+1) are the
previous and next beat times. I(n+1) is the interval between
adjacent beats T (n) and T (n+1). Although it is theoretically
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Fig. 7. Overview of pipeline-processing-like step control.

sufficient to take into account the synchronization of beat
times with receiving times (Eq. (8)), we also focused on that
of their intervals (Eq. (9)). This contributes to good stability.
Therefore, the updating formula is given by

Iin(t +1) = Iin(t)+βI (I(t)− Iout(t)))
+βT (T (t)−Tout(t))) , (10)

where βI and βT are weighting factors that determine the
adjustment of the actual step interval and that of the step-
completion time.

B. Dynamic Adjustment of Weighting Factors

To determine the values of the two weighting factors,
βI and βT , we should take into account the two strategies
described in Section III-D.2. Here, we judge the convergence
of output intervals by

|I(t)− Iout(t)| < εI(t), (11)

where ε is an error tolerance, which we set to a small value,
0.02. When the amount of errors in output intervals is large,
i.e., Eq. (11) is not satisfied, βI and βT are empirically set
to 0.30 and 0.00. After Eq. (11) is satisfied, βI and βT are
set to 0.10 and 0.02.

There are two important reasons for switching the two
weighting strategies. The first reason is to take a pipeline-
processing-like approach, as outlined in Fig. 7. The intelli-
gent function (beat-prediction function) requests less time to
estimate the correct beat intervals than to output the correct
beat times. Therefore, the physical function can adjust the
step intervals ahead of receiving the correct beat times.

Speaker

1.5 [m]

Robot

Fig. 8. Overview of experimental condition: The system concerning to the
robot is completely separated from that concerning to the music playback.

The second reason is to improve robustness of the system
against inevitable errors caused by the intelligent function.
Although the beat times often include prediction errors, the
beat intervals tend to be accurately estimated. Therefore, it
is important to constantly make the output intervals to be
close to the target intervals.

VI. EXPERIMENTS

This section reports on our experiments that evaluated
whether our robot could synchronize its steps with musical
beats while predicting the beats from popular music.

A. Conditions

To prepare a 4-minute input audio signal, we selected four
songs (No. 57, No. 87, No. 18, and No. 62) from the RWC
music database (RWC-MDB-P-2001) developed by Goto et
al. [17]. They include vocals and various instruments as
commercial CDs do. Their tempos were 70, 90, 112, and
81 M.M, respectively. We concatenated four 60-s segments
that were extracted from the four pieces. The prepared audio
signal was played back by using an ordinary speaker in a
standard room, as outlined in Fig. 8. The distance between
the robot and the speaker was 1.5 [m].

We tested two systems for comparison. The one was our
proposed version that used both the intelligent and physical
functions. We called the other an “oracle” version in which
the intelligent function was disabled, where the correct beat
times were given as MIDI signals.

B. Results

We evaluated the experimental results in terms of errors
(temporal gaps) included in intervals and timing of robot
steps. Small errors between targets and outputs indicate the
better performance.

We will first discuss the oracle system to evaluate basic
capabilities of the physical function. Figure 9 shows the
historical record of target intervals, input intervals, and
output intervals. We confirmed that the robot can adjust the
output intervals to match the precise target intervals given
as MIDI signals. Note that the robot needed about 10 [s]
to perform the adjustment after the tempo was changed.
Figure 10 shows the historical record of errors included in
the output timing (temporal gaps between musical beats and
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Fig. 9. Results of controlling step intervals by oracle system.
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Fig. 10. Results of controlling step timing by oracle system.

robot steps). The amount of the timing errors was retained
under 100 [ms] when the output intervals were close to the
target intervals, i.e., after the interval convergence was almost
achieved. These results proved that the physical function
worked well.

Then, we evaluated the proposed system. Figure 11 shows
the historical record of the three types of intervals. We
confirmed the following capabilities of the system:

• The intelligent function can estimate the correct tempos
(beat intervals) of musical audio signals, although it
takes about 15 [s] to detect a change in change.

• The physical function can adjust the output intervals to
match the target intervals while automatically estimating
the target intervals from musical audio signals.

Figure 12 shows the historical record of timing errors. Al-
though the amount of errors tend to be larger than that
obtained by the oracle system, it was also retained under 100
[ms] when the physical function took a weighting strategy
that focused on reducing the amount of timing errors. In
total, the robot needed 25 [s] to synchronize its stamps with
the predicted musical beats. We can conclude that this is a
promising result although the robot requires more time to
perform the synchronization than humans.
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Fig. 11. Results of controlling step intervals by our proposed system.
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Fig. 12. Results of controlling step timing by our proposed system.

VII. CONCLUSION

We developed a biped humanoid robot that stamps its feet
in time with musical beats like humans. This was achieved
by building a computational mechanism that duplicates the
natural human ability in terms of associating intelligent and
physical functions. The former predicts the beat times in real
time for polyphonic musical audio signals. The latter then
synchronizes step motions with the beat times by gradually
reducing the amount of errors in intervals and timing. To
implement these functions, we associated a beat-tracking
method with a feedback control method. These methods have
been originally investigated in different research fields. This
is an indispensable study for advanced robotics.

Our robot represents the significant first step in creating
an intelligent robot dancer that can generate rich and ap-
propriate dancing movements that correspond to properties
(e.g., genres and moods) of musical pieces. To achieve this,
we should increase the variety of robot’s movements and
use promising techniques analyzing musical content, e.g.,
genre classification and mood detection. In addition, we plan
to enhance human-machine interaction through dancing by
improving the response time with an adaptive control method
such as a neuronal controller [18].
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