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Abstract— Tool-body assimilation is one of the intelligent
human abilities. Through trial and experience, humans are
capable of using tools as if they are part of their own bodies.
This paper presents a method to apply a robot’s active sensing
experience for creating the tool-body assimilation model. The
model is composed of a feature extraction module, dynamics
learning module, and a tool recognition module. Self-Organizing
Map (SOM) is used for the feature extraction module to
extract object features from raw images. Multiple Time-scales
Recurrent Neural Network (MTRNN) is used as the dynamics
learning module. Parametric Bias (PB) nodes are attached to
the weights of MTRNN as second-order network to modulate
the behavior of MTRNN based on the tool. The generalization
capability of neural networks provide the model the ability
to deal with unknown tools. Experiments are performed with
HRP-2 using no tool, I-shaped, T-shaped, and L-shaped tools.
The distribution of PB values have shown that the model
has learned that the robot’s dynamic properties change when
holding a tool. The results of the experiment show that the
tool-body assimilation model is capable of applying to unknown
objects to generate goal-oriented motions.

I. INTRODUCTION

Tool use is one of the fundamental and indispensible

abilities for humans. Most human environments consist of

a variety of tools, each with its peculiar functionality. Intro-

duction of robots into such society calls for implementation

of tool use into the robot’s abilities.

A key to developing the robot’s ability to use tools is to

refer to how humans develop to learn to use tools. Infants

develop and generalize their knowledge of tools through

numerous execution of trial and error [1]. Most inexperienced

infants tend to rely on dynamic touch for determining the

functionality of tools. Dynamic touch refers to the process of

perceiving properties of hand-held or hand-wielded objects

through a single perceptual system [2]. Through tool manipu-

lation experience, humans tend to learn to use tools as if they

are part of their own bodies. Reports from cognitive fields

have also shown that such phenomenon can be observed

with monkeys [3]. This phenomenon is called “tool-body

assimilation” in neurophysiology. Our goal is to implement

the tool-body assimilation model into the robot through its

own active sensing [4] experiences.
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There are two fundamental issues for creating the tool-

body assimilation model.

1) Tool recognition.

2) Design of tool manipulation motion.

Most existing studies on robot tool use have aimed to

deal with either 1) or 2). In these studies, the features for

representing tools are predefined. Therefore, these models

were incapable of adapting to unknown tools which cannot

be represented by the predefined features.

We dealt with the two issues through the following ap-

proaches.

1) Self-organization of tool features, and active waving

for tool determination.

2) Generalization of tool features and robot motions.

Concerning the first approach, we utilize Self-Organizing

Map (SOM) [5] for self-organizing tool features from camera

images. During this process, the necessary features are self-

organized without the need to predefine the features. For dy-

namic touch motion, we apply active waving for determining

the dynamical properties of the tool. Concerning the second

approach, we utilize neural networks for creating our model.

The generalization capability of neural networks provide the

model the ability to deal with unknown tools and motions.

Our model consists of three modules: dynamics learn-

ing module, tool recognition module, and feature extrac-

tion module. As described above, we utilized SOM for

the feature extraction module. For the dynamics learning

module, we utilize Multiple Time-scales Recurrent Neural

Network (MTRNN) [6]. MTRNN is capable of learning and

generalizing multiple sequential data in a single model. A

second-order hierarchical neural network with Parametric

Bias (PB) nodes in the input layer is used as the tool

recognition module. The tool recognition module is linked

to MTRNN to modulate its behavior based on the value of

PB nodes, which represents the tool.

As a criterion for tool use, we focus on extension of reach.

This is one of the four factors for which Beck proposes that

animals use tools [7]. A related work by Stoytchev was con-

ducted to ground the affordance of tools based on the robot’s

experience [8]. The work showed the robot’s capability to

adapt to unknown tools by removing the motion affordance

when the target object does not move as expected. Although

the method showed great effectiveness with a variety of

tools, the robot motions were limited to predefined motions.

The model also used color information for determining the

tools, and therefore required trials of object manipulation

to confirm the tool affordance (specifically for unknown or
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broken tools) by observing the target object motions. Our

model is capable of generalizing motion data using neural

networks. Image features are also self-organized during the

process to describe the tools. Therefore, our model is capable

of observing the tool motions for determining the dynamic

properties of the tool, without the necessity to generate

motions with the target object.

Other related works on tool-body assimilation have been

conducted by Nabeshima [9] and Hikita [10]. The work by

Nabeshima used tools to retrieve (or pull) an unseen object

towards the robot through a simulation model. Although

the work proved effective with a variety of rigid tools, the

features describing the tools were predefined and would not

be able to adapt to general tools (e.g. soft tools) which are

incapable of being defined by these features. The work by

Hikita used a saliency map to express how the representation

of robot arm extends based on the grasping tool. Our work

presents how such representation can be used to generate

robot motions with tools.

The rest of the paper is composed as follows. Section II

describes the overview of the model. Section III describes

the tool-body assimilation method using the model. Section

IV describes the experimental setup. Section V describes the

experimental results. Section VI presents some discussions

considering the results. Conclusions and future works are

presented in Section VII.

II. OVERVIEW OF MODEL

This section describes the overview of the technique. The

model is composed of a feature extraction module, dynam-

ics learning module and a tool recognition module. Self-

Organizing Map (SOM) [5] is used for the feature extraction

module to extract object features from raw images. Multiple

Time-scales Recurrent Neural Network, shown in Fig. 1, is

utilized for the dynamics learning module. MTRNN works

as a predictor which inputs the current motor value M(t) and

image feature I(t), and outputs the next motor value M(t+1)
and image feature I(t+1). It also has fast context nodes CF

and slow context nodes CS to deal with history information.

A detail of the model is presented in the next subsection.

The selection of the two models are due to works applying

SOM and MTRNN, showing the compatibility of the two

models [11]. The tool recognition module is constructed

by a second-order network [12] which connects Parametric

Bias (PB) nodes to the weights of MTRNN. The PB nodes

possess the same role as those of Recurrent Neural Network

with Parametric Bias (RNNPB) [13]. Changing the value

of the PB nodes would change the behavior of MTRNN.

Thus, training of the whole system would learn dynamics of

the robot/tool/object in MTRNN while self-organizing the

relationship between different tools and robot motion in the

PB nodes and slow context nodes. An overview of the model

is shown in Fig. 2.

A. MTRNN Model

MTRNN, shown in Fig. 1, is a variant of the Jordan type

RNN [14] with two layers, which acts as a predictor that
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Fig. 1. Composition of MTRNN
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Fig. 2. Overview of the Whole Model

inputs the current state [M(t), I(t)] and outputs the next

state [M(t + 1), I(t + 1)]. M(t) and I(t) each represent

the motor value and image feature value. Context nodes are

composed of fast context nodes (CF ), which possess small

time constant, and slow context nodes (CS), which possess

large time constant. Difference in time constants leads to

difference in firing speed of the context nodes. Therefore,

CF nodes represent the primitives of sequential data, while

CS nodes represent the sequence of these primitives (Fig.

3). Thus, MTRNN is capable of learning longer and more

complex sequential patterns compared to conventional RNN

models. The time constant of input nodes [M(t), I(t)] are

the smallest out of the three types of nodes. Each node of

MTRNN in the input layer is connected to the output layer,

with an exception of [M(t), I(t)] nodes to CS(t+1) nodes,

CS(t) nodes to [M(t + 1), I(t + 1)] nodes, M(t) nodes to

I(t+1) nodes, and I(t) nodes to M(t+1) nodes. Compared

to RNNPB, which has been used as the dynamics learning

module in our previous work (e.g. [15]), MTRNN has the

advantage in complexity and capacity of learning sequences.

Training of MTRNN is done using the Back Propagation

Through Time (BPTT) algorithm [16]. The algorithm con-

sists of forward calculation and weight update.

Primitives

Fast Context Unit

Sequence

Slow Context Unit

Dynamics

Fig. 3. Dynamics Representation of MTRNN
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First, the outputs of the neurons are calculated through

forward calculation. The internal value of the ith neuron

ui(t) at step t is given by

ui(t) =

(

1 −
1

τi

)

ui(t−1)+
1

τi





∑

j∈N

wijxj(t − 1)



 , (1)

where τi is the time constant of the ith neuron, wij is the

weight value from the jth input neuron to the ith output

neuron, and xj(t) is the input value. The output of the ith
neuron yi(t) is calculated by applying the sigmoid function,

yi(t) = sigmoid(ui(t)), (2)

sigmoid(x) =
1

1 + exp(−x))
. (3)

The input value xi(t) is calculated by

xi(t) =

{

0.9 × yi(t − 1) + 0.1 × Ti(t) i ∈ M, I
yi(t − 1) otherwise

, (4)

where Ti(t) is the teacher signal for the ith neuron at step

t. The input values xi(t) are calculated using the output of

the previous step yi(t − 1), feedbacking the teacher signals

Ti(t). This process prevents the training error to increase.

The outputs of the context nodes of the previous step (t−1),

CF (t−1) and CS(t−1), are directly input into the input of

the context nodes of the current step t, CF (t) and CS(t).
Using the outputs calculated in forward calculation, the

weights are updated using the training error E defined as

E =
∑

t

∑

n∈M,I

(yi(t − 1) − Ti(t))
2. (5)

The weight from the jth input to the ith output is updated

using the derivative of the training error ∂E/∂wij as

wij(n + 1) = wij(n) − α
∂E

∂wij

. (6)

Back propagating the errors to the initial step, the initial CS

value, CS(0), is also updated along with the weight values.

Using the trained MTRNN, sequences can be recovered

by the CS value. By inputting the initial CS value (CS(0)),
CF value (which is fixed), and the initial motor/image feature

values [M(0), I(0)] the output of step 0 can be calculated. By

recursively inputting the output back into the input, the whole

sequence can be recovered. This process is called closed loop

calculation. On the other hand, the process which inputs the

observed motor/image feature values for each step is called

open loop calculation.

B. Training of Tool Recognition Module

The tool recognition module is also trained using BPTT

algorithm. We denote the output neuron of the tool recogni-

tion module, linked to the weight from the jth input to ith
output of MTRNN, as Oij .

Weight update of the tool recognition module is conducted

using the derivative ∂E/∂wij . The update equation for

weight from the kth PB node to the output Oij is calculated

by

wijk(n + 1) = wijk(n) − α
∂E

∂wijk

, (7)

where α is the learning constant.

For updating the PB values, we differentiate the output

error E with the internal value of the kth PB value pk as

∂E

∂pk

=
∑

i,j

∂E

∂oij

∂oij

∂pk

, (8)

where oij is the output value for the output neuron Oij . The

update value for the kth PB node ∆pk can be calculated as

∆pk = −ε
∑

i,j

∂E

∂oij

∂oij

∂pk

, (9)

where ε is the training constant.

C. Feature Extraction Module

In this paper, the authors do not predefine object features

for adaptation to unknown tools and objects. For feature

extraction, the authors use Self-Organizing Map (SOM) to

self-organize the necessary features required for training.

SOM is composed of two layers: input and output layers.

Neurons in the output layer are arranged two-dimensionally,

possessing weight vectors w with the same dimension as

the input vector v. The firing rate of each output neuron is

determined from the similarity of the weight vector and input

vector.

In this paper, the input vector is composed of raw image,

with the neurons corresponding to each image pixel. The

image features are composed of the normalized firing rate to

[0.1, 0.9]. For calculating the similarity between the weight

vector and input vector, we use the Euclidean distance ||w−
v||.

III. TOOL-BODY ASSIMILATION PROCESS

In this section, we describe the tool-body assimilation pro-

cess. Tool-body assimilation is conducted by the following

four phases.

1) Train self model.

2) Train tool recognition module.

3) Determination of grasping tool based on active waving

motion of the tool.

4) Motion generation using tool.

The first two phases are done during training, and the other

two are done when generating motion.

A. Training Self Model

As a preliminary phase, the robot conducts active sensing

motions with objects using various tools and robot motions.

Features of image data obtained during this preliminary

phase are acquired using SOM. Using the acquired motion

and image features during active sensing, the dynamics

learning module MTRNN is trained. This phase links the

robot motion with the visual change in the image.
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B. Training Tool Recognition Module

During active sensing, the robot uses a variety of tools.

The tool recognition module (hierarchical neural network) is

trained by fixing the weights of MTRNN. The training self-

organizes the similarities of tools in the PB space based on

their dynamical properties.

C. Active Waving of Tools

To determine the dynamical property of the tools, the robot

generates active waving motion while grasping the tool. The

PB value which minimizes the error of the predicted image

feature and observed image feature is calculated through

the BPTT algorithm only updating the PB values. The PB

derived during this process represents the tool the robot is

grasping.

D. Motion Generation with Tool

Using the PB value determined in the third phase, the robot

generates robot motion by determining the CS value. Given

the target image, the BPTT algorithm is used to update only

the CS value. The PB value calculated in the third phase and

the obtained CS value are input into the model to calculate

the motion sequence through closed loop calculation. The

robot traces through the motor value sequence to achieve

the target image state.

IV. EXPERIMENTAL SETUP

The authors used the humanoid robot HRP-2 shown in Fig.

4 for evaluation of the method. Tools (L-shaped, T-shaped,

and I-shaped shown in Fig. 5) are fixed onto the left arm

of HRP-2 while generating robot motions. The robot used

the T-shaped, I-shaped tools for acquiring training data, in

addition to generating motions without tools. The L-shaped

tool is used as an unknown tool for evaluation of the model.

A. Data Acquisition

The authors conducted an experiment with two red objects:

one within the robot’s reaching distance and the other capable

of reaching only when using a tool. During the experiment,

the robot used 7 DOF (shoulder roll, shoulder yaw, shoulder

pitch, elbow pitch, wrist roll, wrist yaw, and wrist pitch)

of the left arm for generating robot motions. Nine types

of motions shown in Fig. 6 were generated for the T-

shaped and I-shaped tools (and bare handed), acquiring a

Fig. 4. HRP-2

Fig. 5. Tools used in Experiment

total of 27 motion patterns. Each motion is composed of

movement to two different postures from the initial. Image

data were acquired using the central camera with the image

resolution reduced to 16 × 12 pixels each holding the R,

G, B values. The output of SOM, which represents object

features, is composed of 9 dimensions. Each data (acquired

at 15 steps/sec for 90 steps) is normalized to [0.1, 0.9] based

on the minimum and maximum value of each data.

B. Construction of Model

The construction of the model is shown in Table I. The

time constant for the input nodes, fast context nodes, slow

context nodes were set to 2, 5, and 70, respectively.

V. EXPERIMENTAL RESULTS

In this section, we present the results of the experiment.

A. Determination of Tools

The third phase of tool-body assimilation consists of active

waving of the robot arm to determine the PB value which

represents the tool type. For each tool, the robot generated

eight sets of motion, determining the PB for each set. Each

set of motion is composed of four motion patterns shown in

Table II. The motion pattern number in Table II corresponds

to the motion number in Fig. 6.

Figure 7 shows the PB distribution for the determined

PB values. The blue rhombi represent PB values of robot

motions without tools. The red squares, green triangles,

and orange circles represent PB values of robot motions

with I-shaped tool, T-shaped tool, and unknown L-shaped

tool, respectively. These PB values were calculated after the

model has been trained, during the third phase of tool-body

assimilation process.

There are two notable characteristics in the PB space. First,

the blue rhombi are distributed far from PB values with tools.

This result shows the effectivity of the tool-body assimilation

model, as the robot has learned that it’s dynamical properties

Number

1
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4

5

6

7

8

9

Initial

Initial

Initial

Initial

Initial

Initial

Initial

Initial

Initial
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( lf, d00 )
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( lf, d00 )
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( rn, d45 )
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( lf, d00 )

( lf, d00 )

Motion Type
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d00 : wrist facing vertical

d45 : wrist facing diagonal (45 degrees)

Fig. 6. Motion Patterns used in Experiment

TABLE I

CONSTRUCTION OF MODEL

No. of Motor Input Nodes 7

No. of Image Feature Input Nodes 9

No. of Fast Context Nodes 45

No. of Slow Context Nodes 15

No. of Parametric Bias Nodes 2

No. of Input Nodes for SOM 576
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TABLE II

MOTION SET FOR PB DETERMINATION

Motion Set Motion Patterns

A 2, 3, 6, 8

B 1, 4, 5, 6

C 1, 5, 6, 7

D 4, 5, 7, 9

E 4, 6, 8, 9

F 1, 6, 8, 9

G 1, 6, 7, 9

H 5, 6, 7, 9

0
0.5

0.75

1

0.25 0.5 0.75 1

Without Tool I-Shaped Tool

T-Shaped Tool L-Shaped Tool

PB1

P
B

2

Fig. 7. Self-Organized PB Space of Tools

would change drastically when holding a tool. Second, the

PB values of unknown L-shaped tool are located between

the PB values of I-shaped tool and T-shaped tool. This

result implies that the robot has learned that the unknown

L-shaped tool possesses dynamical properties medial to that

of I-shaped tool and T-shaped tool.

B. Goal-Oriented Motion Generation

For motion generation experiment, we considered a con-

dition that the robot is required to pull the target objects

toward the robot. The robot first determined the tool by

calculating the PB value of the tool recognition module

using waving motion in the third phase of the tool-body

assimilation process. Then the robot was provided a goal

state image to calculate the CS value in the fourth phase of

the tool-body assimilation process. The goal state image was

generated with the T-shaped tool in the image as shown in

Fig. 8.

The generated motions for the L-shaped tool, T-shaped

tool, and I-shaped tool are shown in Fig. 9, Fig. 10, and Fig.

11, respectively. While, the robot succeeded in generating

the motion that would pull the objects toward the robot for

L-shaped tool and T-shaped tool, the robot just touched the

object when holding the I-shaped tool. The motions in Fig. 9

and Fig. 10 are similar in the sense that the objects are pushed

a little to the right from the robot, before being pulled. In

contrast, the robot generated a different motion when holding

the I-shaped object as the robot did not even push the objects

to the right. As the robot cannot pull the objects, the robot

did not generate a pulling motion as it did with the T-shaped

and L-shaped tools. These results show that the robot has

learned the affordance of the hooked shape of the tool, to

pull an object towards the robot.

Fig. 8. Goal State Image
Fig. 9. Motion Generation with
L-Shaped Tool

Fig. 10. Motion Generation with
T-Shaped Tool

Fig. 11. Motion Generation with
I-Shaped Tool

VI. DISCUSSIONS

In this section, we present discussions considering the

experiments.

A. Tool-Body Assimilation Model

The ability to assimilate tools to the body is a product

of the capability to perceive affordance through experience.

Mark has conducted experiments using 10-cm platform shoes

to sit and climb stairs [17]. The results have shown that

perception of affordance boundaries become accurate over

trials. The ability to assimilate these platform shoes (tools)

has developed through experience.

In our experiment, we have shown that through the robot’s

active sensing experience with various tools, the robot has

learned to alter its dynamical properties by changing PB

values. The distribution of PB values between a tool holding

and without tool conditions differed greatly compared to the

distributions between different tool types. This result shows

that the dynamical properties of the robot’s arm change

greatly when holding tools, compared to changing tools.

The result of the motion generation experiment denotes the

model’s capability to deal with unknown tools. A difficulty

in training the model, is in the determination of tool features

and object features. By self-organizing image features using

SOM and applying the generalization capability of neural

networks, the robot was successful at generalizing training

data to adapt to an unknown L-shaped tool. The success

of motion generation with the L-shaped tool and T-shaped

tool, in contrast to the failure with I-shaped tool, implies the

model’s capability to perceive and generalize tool affordance.

B. Motion Generation with General Objects

In this paper, we conducted an experiment which uses a

single type of object and three types of tools. The experiment

showed the model’s generalization capability to handle an

unknown tool (L-shaped tool), by generalizing the experience

with the T-shaped tool and I-shaped tool. In this subsection,
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we discuss the model’s capability to deal with general target

objects.

A difficulty in dealing with various objects is in the variety

of motions the object can take based on its shape. In the ex-

periment presented in this paper, we used an upright cylinder

which would slide when pushed. However, the cylinder may

roll when laid, or may fall over if the cylinder was taller and

pushed on the top. These object motions all have different

characteristics, and the model should be capable of adapting

to different object motions when generating goal-oriented

motions.

In our previous work, we created a model that predicts

object motion based on the visual image and robot motion

[15]. The work showed the model’s capability to predict four

types of motion (slide, roll, fall over, and bounce) using

general objects. Although RNNPB was used as the dynamics

learning model in the paper, the model could be easily

refined to use MTRNN for the dynamics learning model.

By integrating the two methods, we believe that the model

could be improved to deal with a larger variety of objects.

C. Tool-Body Assimilation from Cognitive Fields Perspective

Experiments by Michaels have shown that visual informa-

tion dominates over information acquired by dynamic touch

when humans perceive affordance of tools [18]. On the other

hand, studies with infants have shown that dynamic touch is

the main property for perceiving objects [1]. The two works

imply that inexperienced infants tend to rely on dynamic

touch for perceiving tool affordance, and change to rely on

visual information as they gain experience.

In our work, we used the waving motion as dynamic touch

motion to determine the dynamical properties (affordance)

of the tool. The result has shown that the model is capable

of perceiving the dynamical properties of unknown objects.

Based on the human development model, our next step would

be to transit to the stage where visual information would

be introduced to predict the dynamical property. The model

would require a prediction model to link the static image

to tool dynamics, which we presented in our previous work

[15]. We plan to link the two works to improve our model

to the next stage of infant development.

VII. CONCLUSIONS

In this paper, we presented a tool-body assimilation model

composed of dynamics learning module, tool recognition

module, and a feature extraction module. MTRNN is utilized

for the dynamics learning module to learn multiple sequential

data of robot motor and image feature values. PB nodes are

linked to the weights of MTRNN as the tool recognition

module to alter the behavior of MTRNN based on the

dynamical properties of tools. SOM is utilized as the feature

extraction module for self-organizing image features. Experi-

ments were conducted with the humanoid robot HRP-2 using

I-shaped, T-shaped, and L-shaped tools. The active waving

motion experiment to determine the grasping tool has shown

that the model has learned that the robot’s dynamic model

alters greatly when holding a tool. The PB distribution has

also shown that the PB value of the unknown L-shaped tool is

calculated appropriately in the middle of the PB distributions

of I-shaped tool and T-shaped tool. The motion generation

experiment of pulling an object toward the robot has shown

that the robot is capable of appropriately generating pulling

motions with the unknown L-shaped tool.

As our next step, we plan to develop our model through

integration with our past works. This would lead to the next

stage of infant development where visual information would

be mainly used for perceiving the dynamical properties of

tools. Further on, we plan to apply our model to more

complex motions and a larger variety of tools and objects.
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