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Abstract— This paper describes a step-size parameter adap-
tation technique of multi-channel semi-blind independent com-
ponent analysis (MCSB-ICA) for a “barge-in-able” robot audi-
tion system. By “barge-in”, we mean that the user can speak si-
multaneously when the robot is speaking. We focused on MCSB-
ICA to achieve such an audition system because it can separate
a user’s and a robot’s speech under reverberant environments.
The problem with MCSB-ICA for robot audition is the slow
speed of convergence in estimating a separation filter due to
its step-size parameters. Many optimization methods cannot
be adopted because their computational costs are proportional
to the 2nd order of the reverberation time. Our method
yields adaptive step-size parameters with MCSB-ICA at low
computational costs. It is based on three techniques; 1) recursive
expression of the separation process, 2) a piecewise linear model
of the step-size of the separation filter, and 3) adaptive step-size
parameters with a sub-ICA-filter. Experimental results show
that our approach attains faster convergence speed and lower
computational costs than those with a fixed step-size parameter.

I. INTRODUCTION
A robot should recognize a user’s speech from a mixture

of sounds with the least prior information, because it has to
work in unknown and / or dynamical environments. These
may include the robot’s own speech and a user’s speech
reverberations, because microphones are installed on its
body, and not attached close to the user’s mouth. Therefore,
these should be suppressed to enhance the user’s speech (Fig.
1). In human-robot and in human-computer interaction, the
user often interrupts and begins speaking while the robot or
the system is speaking. This situation is called “barge-in”.
Robot audition systems should be “barge-in-able” to enable
smoother speech interactions.

To achieve such a barge-in-able system, we must deal
with problems of echo cancellation (separation of the
robot’s/known speech) and blind dereverberation (separation
of the user’s speech reverberations) at the same time. We
adopted multi-channel semi-blind independent component
analysis (MCSB-ICA) [1], because: 1) it is theoretically
robust against Gaussian noise, such as that from fans, 2) it
can theoretically deal with separation of the known speech,
user’s speech, and other sound sources, including their rever-
berations. Other methods have not dealt with known-source
signals [2], [3], [4], user’s speech signals [5], or have not
been able to deal with reverberation [6], [7].
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Fig. 1. Data flow and our problems

The requirements for MCSB-ICA to achieve robot audition
are: a) fast convergence speed for estimating the separation
filter of source signals, and b) low computational cost. ICA
originally used many computational resources because it
estimated the separation filter by an iterative learning, which
was especially caused by a fixed step-size parameter. This pa-
rameter controlled the convergence speed, and poorly chosen
step-sizes resulted in poor separation or slow convergence of
the learning filter. This problem has usually been solved with
a kind of the Newton methods, such as [8], [9]. However, it
is difficult to apply these methods to MCSB-ICA because:
1) the MCSB-ICA model is different to standard ICA, 2) its
evaluation function is highly nonlinear, and 3) the separation
filter has large dimensions. These often results in increasing
the computational cost.

We solved this step-size scheduling problem by adapting
step-size parameters with a small sub-ICA filter. The direct
implementation of this sub-ICA filter increased the compu-
tational cost. We avoided this problem by focusing on the
recursive expression of the separated signals and piecewise
linear step-size modeling. These approaches decreased the
number of parameters to be estimated in the sub-ICA filter
and reduced the computational cost.

This paper introduces three techniques we used to adapt
the step-size parameters: 1) recursive expression of the sep-
aration process, 2) a piecewise linear model of the step-size
of the separation filter, and 3) adaptive step-size parameters
with a sub-ICA filter. Section 2 explains the MCSB-ICA and
its step-size problem. Section 3 explains the three techniques
in detail, and discusses our evaluations of our method in
Section 4 and 5. The last section concludes the paper and
discusses future work.

II. PROBLEMS WITH MULTI-CHANNEL
SEMI-BLIND ICA

This section explains MCSB-ICA [1] and its problems
with robot audition. Note that the MCSB-ICA model is de-
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Fig. 2. Signal flow of MCSB-ICA

scribed here with a short-time Fourier transformation (STFT)
representation [2] which is a form of multi-rate processing.
We denote the spectrum after STFT as s(ω, t) at frequency
ω and frame t. For the sake of simplicity, we have skipped
denoting the frequency index, ω. Fig. 2 outlines MCSB-ICA,
and we explain how the filter was estimated in this section.

A. Observation and Separation Model
We denote the observed spectra at microphones

M1, . . . ,ML as x1(t), . . . , xL(t) (L is the number
of microphones), and its vector form as x(t) =
[x1(t), x2(t), . . . , xL(t)]T . With the spectrum of user’s
utterance, su(t), and known-source (robot’s) spectrum,
sr(t), the observed signals, x(t), can be described as the
following finite impulse response (FIR) filter model:

x(t) =
N

∑

n=0

hu(n)su(t − n) +
M
∑

m=0

hr(m)sr(t − n), (1)

where hu(n) and hr(m) correspond to the N - and M -
dimensional FIR coefficient vectors of the user’s and known-
source spectra.

Before explaining the MCSB-ICA separation model, let
us define the observed vector, X(t), and the known-source
vector, Sr(t), as:

X(t) = [x(t),x(t−1), . . . ,x(t−N)]T and (2)
Sr(t) = [sr(t), sr(t−1), . . . , sr(t−M)]T , (3)

The separation model for MCSB-ICA is set so that the
direct sound frame of user’s speech, su(t), is independent of
the delayed-observed and known sound spectra, X(t−d) and
Sr(t). Here, d(> 0) is an initial-reflection interval parameter,
and we consider the dependence between the direct and
adjacent frame of su(t). The separation model is written as:





ŝ(t)
X(t−d)
Sr(t)



=





W 1u W 2u W r

0 I2 0

0 0 Ir









x(t)
X(t−d)
Sr(t)



 ,(4)

where ŝ(t) is an estimated signal vector with an L dimension,
W 1u and W 2u correspond to L × L and L × L(N + 1)
separation matrices, and W r is the L × (M +1) separation
matrix. I2 and Ir correspond to optimally-sized unit matri-
ces. Note that the estimated signal, ŝ(t), includes direct and
some reflected signals of the user’s speech.

B. Estimation of Filter Parameters
The filter parameter set, W = {W 1u,W 2u,W r}, is

estimated by minimizing the Kullback-Leibler divergence
(KLD) between the joint Probability Density Function (PDF)
and the products of the marginal PDF of s(t), X(t−d), and
Sr(t). The explicit evaluation function is expressed as,

J(W ) = −

L
∑

i=1

E[log pi(si(t))] − log |det W 1u| + H, (5)

where pi(si) is a PDF of random variable si, E[·] is a
time-averaging operator, and H represent a joint entropy of
{x(t),X(t − d),Sr(t)}.

We obtain the following iterative update rules for W with
a natural gradient method [10].

D = Λ − E[φ(ŝ(t))ŝH(t)], (6)
W

[j+1]
1u = W

[j]
1u +µDW

[j]
1u, (7)

W
[j+1]
2u = W

[j]
2u +µ

(

DW
[j]
2u−E[φ(ŝ(t))XH(t−d)]

)

,(8)

W [j+1]
r = W [j]

r +µ
(

DW [j]
r −E[φ(ŝ(t))SH

r (t)]
)

, (9)

where ·H denotes the conjugate transpose operation,
and Λ is a non-holonomic constraint matrix, i.e.,
diag(E[φ(ŝ(t))ŝH(t)]) [11]. The µ is a step-size pa-
rameter and φ(x) is a non-linear function vector,
[φ(x1), · · · , φ(xL)]H . φ(x), defined as

φ(x) = −
d log p(x)

dx
. (10)

We assume that the source PDF is a noise-robust function
p(x) = exp(−|x|/σ2)/(2σ2) with variance σ2, and φ(x)
becomes x∗/(2σ2|x|). Here, x∗ denotes the conjugate of x.
The two functions are defined in the continuous area, |x| > ε.

We use enforced spatial sphering as pre-processing, which
is an approximation of sphering. We assume that the variance
described above is almost 1 (σ2 ≈ 1) because sphering
decorrelates the input signals and normalizes the variances
[8]. The observed signal, X(t), and the known signal, Sr(t),
are transformed as the following rules:

z(t) = V ux(t), V u = EuΛ
−1/2
u EH

u , (11)
s̃r(t) = λ−1/2

r sr(t), (12)

where Eu and Λu are the eigenvector matrix and eigenvalue
diagonal matrix of Ru = E[x(t)xH(t)]. After sphering, x

and sr in Eqs. (4) – (9) are substituted into z and s̃r.

C. Problem with MCSB-ICA: Step-size parameter
The step-size parameter in Eqs. (7)–(9) is essential because

this controls the convergence speed and efficiency of separa-
tion. For example, large values result in fast adaptation with
divergence and poor separation, while small values result in
slow convergence and good separation.

Many step-size methods of control or fast methods of
adaptation cannot be applied mainly because: of the i) high-
nonlinearity and complexity of the evaluation function (Eq.
(5)), the ii) the asymmetric structure of the separation model
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(Eq. (4)), and the iii) the high-calculation cost proportional
to the second order of the reverberation time. For example,
Nakajima’s method [9] requires the calculation of H in Eq.
(5), and this is almost impossible. Instead of it, he set another
evaluation function easy to calculate which converges the
same separation filter theoretically. However, it is unclear
whether our separation model is valid with the function.
A fast-ICA algorithm [8] assumes perfect sphering and this
increases the calculation cost, proportional to the third order
of reverberation time.

We previously proposed a heuristic step-size method of
scheduling combined with annealing and an exponentially-
weighted step-size [12]. The step-size, µk, of the separation
matrix at the j-th iteration and k-th delayed frame is defined
by

µ
[j]
k = αλk/j + β, (13)

where α, β, and λ are constant values. However, this
approach needs some parameters to be set in advance. The
optimum value of λ especially depends on the configurations
and situation.

To accomplish fast MCSB-ICA processing for robot au-
dition, we need to adapt the step-size parameters to the
optimum one at a low computational cost.

III. STEP-SIZE ADAPTATION WITH SUB-ICA FILTER

This section explains the adaptation of step-size in MCSB-
ICA with a sub-ICA filter.

A. Recursive Expression of Separation Process and Adaptive
Step-size Parameter Problem

Let us introduce an expression for the recursive separation
process to enable computational efficiency. Before explaining
the recursive expression, we rewrite Eq. (4) into

ŝ(t)=

N
∑

n=0

W u(n)x(t−n) +

M
∑

m=0

W r(m)sr(t−m), (14)

where W u(n) and W r(m) are the L × L and L × 1
separation matrix, respectively. Since we have omitted the
range (1 ≤ n < d) of W u(n) for simplicity, we as-
sume that W u(n) equals 0 in that range. Note that W 1u,
W 2u, and W r correspond to W u(0), [W u(d), ...,W u(N)],
and [W r(0), ...,W r(M)]. In addition, Eqs. (7)–(9) can be
rewritten as, W [j+1]

x = W [j]
x + µ∆W [j]

x , by using the
incremental symbol, ∆W x.

These notations and Eq. (14) yield the following recursive
expression of the estimated signal ŝ(t),

ŝ[j+1](t) =

N
∑

n=0

(

W [j]
u (n) + µ∆W [j]

u (n)
)

x(t − n)

+

M
∑

m=0

(

W [j]
r (m) + µ∆W [j]

r (m)
)

sr(t − m) (15)

= ŝ[j](t) +
N

∑

n=0

µy[j]
u (t − n) +

M
∑

m=0

µy[j]
r (t − m), (16)

][ jW∆

][ jW ]1[ +jW
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Fig. 3. Relation between parameters and signal flow with our method

where y
[j]
u (t − n) = ∆W [j]

u (n)x(t − n) and y
[j]
r (t −

m) = ∆W [j]
r (m)sr(t − m). To generalize the problem of

estimating the step-size, we modify the step-size, µ, to differ
with each source ŝ

[j+1]
i , the delayed frames m and n, and

each iteration, j. With the frame-variant L × L diagonal
step-size matrices µ

[j]
r (n) = diag(µ

[j]
1,u(n), ..., µ

[j]
L,u(n)) and

µ
[j]
u (m) = diag(µ

[j]
1,r(m), ..., µ

[j]
L,r(m)), Eq. (16) can be

rewritten as:

ŝ[j+1](t) = ŝ[j](t) +

N
∑

n=0

µ[j]
u (n)yu(t − n)

+

M
∑

m=0

µ[j]
r (m)yr(t − m). (17)

The update rules for the separation matrices also change as
to

W [j+1]
x (n) = W [j+1]

x (n) + µ[j]
x (n)∆W [j]

x (n). (18)

The optimum step-size parameters, µ[j] = {µ
[j]
u ,µ

[j]
r }, are

estimated by minimizing the following evaluation function.

J(µ[j]) = J(W [j+1]) − J(W [j]) ∝ J(W [j+1]) (19)

= −

L
∑

i=1

E[log pi(s
[j+1]
i (t))] − log |det W [j+1]

u (0)| (20)

≈ −
L

∑

i=1

E[log pi(s
[j+1]
i (t))] (21)

Here, we assumed that log |det W [j+1]
u (0)| is very small

compared with the 1st term in Eq. (20) because of the effect
of spatial sphering [8]. This approximation enables us to
minimize each −E[log pi(s

[j+1]
i (t))] independently instead

of minimizing J(µ). However, as Eq. (21) has many param-
eters to be estimated, this results in a high computational
cost. We have to reduce the number of parameters by setting
some assumptions or models about µ[j]. After this, we will
focus on the i-th estimated source, ŝi.

B. Piecewise Linear Modeling of Step-size
Let us assume that the i-th element’s step-size parameters

for the observed term, µ
[j]
i,u(n), and the known source term,

µ
[j]
i,u(m), are almost the same in terms of the number of
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delayed frames, i.e., µ
[j]
i (n) = µ

[j]
i,u(n) = µ

[j]
i,r(n). By

denoting the i-th element of y
[j]
u and y

[j]
u as y

[j]
i,u and y

[j]
i,r,

respectively, Eq.(17) can be reduced to

ŝ
[j+1]
i (t) = ŝ

[j]
i +

N
∑

n=0

µ
[j]
i (n)

(

y
[j]
i,u(t − n)+y

[j]
i,r(t − n)

)

(22)

= ŝ
[j]
i +

N
∑

n=0

µ
[j]
i (n)y

[j]
i (t − n), (23)

where y
[j]
i (t − n) = y

[j]
i,u(t − n) + y

[j]
i,r(t − n).

We approximate µi(n) as a piecewise linear function
divided into P ranges, and we define it as

µ
[j]
i (n) =







µ
[j]
i,p+

n−Bp

Bp+1−Bp

(µ
[j]
i,p+1−µ

[j]
i,p),

(Bp ≤ n < Bp+1)
0, otherwise

(24)

where µ
[j]
i,p and µ

[j]
i,p+1 are the edge points in the p-th range

[Bp Bp+1) of n. We assume that the edge of final piecewise
P is 0, that is, µ

[j]
i,P = 0. In this model, the number of

parameters to be estimated reduces into P . This model is
illustrated in Fig. 4.

With this piecewise linear model, the 2nd term in Eq.(23)
is rewritten as

N
∑

n=0

µ
[j]
i (n)y

[j]
i (t − n) =

P−1
∑

p=0

Bp+1−1
∑

n=Bp

(

µ
[j]
i,p +

n − Bp

Bp+1 − Bp
(µ

[j]
i,p+1 − µ

[j]
i,p)

)

y
[j]
i (t−n). (25)

By summarizing the terms for µ
[j]
i,p and expressing its coef-

ficient as Yi(t, p), we modify the equation as

ŝ
[j+1]
i (t) = ŝ

[j]
i +

P−1
∑

p=0

µ
[j]
i,pYi(t, p), (26)

or the matrix representation:
(

ŝ
[j+1]
i (t)
Y i(t)

)

=

(

1 µ
[j]T
i

0 I

) (

ŝ
[j]
i (t)

Y i(t)

)

, (27)

µ
[j]
i = [µ

[j]
i,0, ..., µ

[j]
i,P−1]

T , (28)
Y i(t) = [Yi(t, 0), ..., Yi(t, P − 1)]T . (29)

Since we use the same evaluation function, J , of MCSB-
ICA, the adaptive step-size problem equals the semi-blind
ICA problem with the P dimensions. The calculation cost
of this adaptation is not high because P is much smaller
than that of Eq. (4). Note that a Weiner filter is estimated
definitely as an optimal filter in terms of the second order
statistics with a Gaussian approximation of φ(x). However,
this filter causes a few performance degradation.

C. Adaptation of Step-size with Sub-ICA Filter
The update rules for µ

[j]
i from the l-th iteration to (l+1)-th

are

µ
[j,l+1]
i = µ

[j,l]
i − γE[Re[φ(ŝ

[j+1]
i )Y i(t)]], (30)

)(nµ

n0

)(nµ

n0

pµ

1+pµ

pB 1+pB
Original function Piecewise linear function

p-th range

total P pieces

Fig. 4. Piecewise linear approximation of µ(n)

where γ is a step-size parameter, and Re[x] denotes the real
part of x. We need to set two parameters, γ and P in this
adaptation.

We can use many techniques to accelerate the convergence
speed, such as KL-transformation. Here, we use the sphering
of Y i(t) and it is transformed by the next rule:

P i(t) = V iY i(t), (31)
V i = EiΛ

−1/2
i ET

i , (32)

where Ei and Λi are the eigenvector matrix and eigenvalue
diagonal matrix of Ri = E[Re[Y i(t)Y

H
i (t)]]. All Y i(t) in

Eqs. (27)–(30) are substituted into P i(t). Here, the step-size
in Eq. (18) is modified to µ

[j]
i V i.

In practice, we do not wait until µ
[j]
i converges at the

j-th iteration of W and we can stop the iteration of µ
[j]
i

at q times. This is because this adaptation is one part of
estimating W , and we can reuse µ

[j]
i as the initial value

of µ
[j+1]
i at the (j +1)-th iteration. To schedule step-size

parameter γ at the j-th iteration, we employ the annealing
method as,

γ[j] = αγ/j + βγ , (33)

where αγ and βγ are constant parameters.

D. Comparison of Calculation Costs
Our adaptive method needs O(LP 2) at each iteration of

W . If it takes p1 iterations for estimating W and q1 times
for µi, the total cost becomes p1(L

2(N + M) + q1(LP 2)).
The processing time ratio (PTR) between our method and the
standard method with p2 iterations can be roughly evaluated
as

PTR ∝
p1(L

2(N + M) + q1(LP 2))

p2(L2(N + M))
(34)

=

(

1 +
q1P

2

L(N + M)

)

p1

p2
. (35)

These equations mean that our method is efficient with large
N and M with many microphones, L. However, our method
is not efficient with short filter lengths and small numbers of
microphones. Whether our method works efficiently or not
depends on the trade-off between the cost of adaptation and
the scale of the system.
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TABLE I
CONFIGURATION FOR DATA AND SEPARATION

Impulse response 16 kHz sampling
Reverberation time (RT20) 240 msec and 670 msec

Distance and direction 1.5 m and 0
◦, 45

◦, 90
◦, −45

◦, −90
◦

Number of microphones Two (embedded in ASIMO’s head)
STFT analysis Hanning: 64 msec and shift: 24 msec

Input wave data [-1.0 1.0] normalized

TABLE II
CONFIGURATION FOR SPEECH RECOGNITION

Test set 200 sentences
Training set 200 people (150 sentences each)

Acoustic model PTM-Triphone: 3-state, HMM
Language model Statistical, vocabulary size of 20 k
Speech analysis Hanning: 32 msec and shift: 10 msec

Features MFCC 25 dim. (12+∆12+∆Pow)

IV. EXPERIMENTS
A. Experimental Settings

The impulse responses for speech data were recorded at
16 kHz in two different rooms,

Env. I): A normal room (RT20=240 msec), and
Env. II): A hall-like room (RT20=670 msec).

Here, RT20 means the reverberation time. The first room was
4.2 m × 7.0 m and the second was 7.55 m × 9.55 m. The
speaker was 1.5 m apart from a microphone mounted on the
head of Honda ASIMO, and the angles between the speaker
and the front of ASIMO were five patterns of 0, 45, 90, -45,
-90 degrees. We also recorded the impulse response from the
robot’s speech in each environment. All data (16 bits, PCM)
were normalized to [−1.0 1.0].

We used 200 Japanese sentences for the user’s and
robot’s speech, and they were convoluted in the corre-
sponding recorded impulse responses. Julius1 was used for
HMM-based ASR with the statistical language model. Mel-
frequency cepstral coefficients (MFCC) (12+∆12+∆Pow)
were obtained after STFT with a window size of 512 points
and a shift size of 160 points for the speech features, and we
then applied Cepstral Mean Normalization. A triphone-based
acoustic model (three-state and four-mixture) was trained
with 150 sentences of clean speech uttered by 200 male
and female speakers (word-closed). The statistical language
model consisted of 20,000 words, which were extracted
from newspapers. The other experimental conditions are
summarized in Tables I and II.

B. Evaluation Criteria
We carried out two experiments in each environments.

Exp. A): Dereverberation efficiency, and
Exp. B): Dereverberation and echo cancellation efficiency.
Word correctness (WC) and the number of iteration were
evaluated. Note that the sounds only included the user’s
speech in Exp. A (non-barge-in), and they include the
user’s and robot’s speech in Exp. B (barge-in). All data
were used to estimate the matrices W 1u, W 2u and W r

(batch-processing). Two microphones were used in these
experiments. We also evaluated the PTR in both experiments.

C. Compared Methods and Separation Parameters
The same parameters for STFT were chosen, and the

window size was 1, 024 points (64 msec) which is sub-
optimal size [7], and its shift-size was 384 points (24 msec).
The frame interval parameter d is 2, and the filter length,

1http://julius.sourceforge.jp/

N = M , was 9 in Env. I and 23 in Env. II. The scaling and
permutation problems are solved by the method mentioned
in [1].

We compared three methods under all experimental con-
ditions:

1) Our method: Ours,
2) Fixed one step-size: FIX, and
3) Annealing-based step-size: AN (Eq. (13)).

The parameters for our method were αγ = 0.2, and βγ =
5.0e−3. Dimension P of the piecewise linear function were
2, 1, and 0. We set (B0, B1, B2) = (0, 4, N) for P = 2,
and (B0, B1) = (0, N) for P = 1. Here, P = 0 means
that we use the same adapted step-size for every µ(n). The
maximum number of iteration of the sub-ICA filter was set
to three. Three kinds of exponential parameters were used
for the annealing-based method, λ = 1.0, 0.9, and 0.8. The
other common parameters for this method were α = 6.0e−1

and β = 5.0e−3. We tried three parameters for fixed step-
sizes of, µ = 0.1, 0.05, and 0.01.

V. RESULTS
Figures 5 and 6 present the position-averaged results for

Exp. A, and Figs. 7 and 8 present those for Exp. B. The WC
of clean speech is about 93%.

We can see that a large step-size (FIX2: µ = 1.0E−1)
converges fast with the fixed step-size method, and per-
formance is worse than that with a small step-size (FIX1:
µ = 5.0E−2). However, FIX1 converges slowly and this
means that a fixed step-size can not achieve the separation
performance and convergence speed. We skip the result of
µ = 1.0E−2 because its convergence speed is too slow.

The annealing methods outperformed the fixed step-size
methods in all experiments. We showed only the result of
λ = 0.9 (AN) because its averaged performance is better
than that of others.

Our method, especially P = 2 and P = 1, outperformed
all other methods in almost all situations. Since the result of
P = 0 means the performance with one adapted step-size,
we showed the importance both of the adaptation and the
piece-wise linear model of the step-size.

Table III lists the PTR in Exp. A and Exp. B. As mentioned
in Section III-D, PTR improved from 2.0 to 1.4 in the
environment with a long reverberation and the known source
signal. This means that our method should improve WC
with half or two thirds the number of iterations of the
other methods. This seemed to be achieved in Fig. 6–8
because the “Cross-point” in Figs. represents the number of
iterations which our method needs to perform as well as other
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Fig. 5. Results of Exp.A in Env.I
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Fig. 6. Results of Exp.A in Env.II
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Fig. 7. Results of Exp.B in Env.I
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Fig. 8. Results of Exp.B in Env.II

TABLE III
PROCESSING TIME RATIO (PTR)

Configuration PTR inverse PTR
Exp.A, N=9 1.983 0.504

Exp.A, N=23 1.564 0.609
Exp.B, N=9 1.727 0.579
Exp.B, N=23 1.406 0.711

method with 30 iterations. In addition, the real-time factor
( processing time

data duration ) with 16 iterations in Exp. B and Env. II was
less than 1.0 in our environment.

We concluded that our method accomplished the adapta-
tion of step-sizes and the computational efficiency in almost
all situations, excepting in the low reverberation situation
without a known source.

VI. CONCLUSION AND FUTURE WORK
We developed a robot audition system that enabled barge-

in for smooth speech interaction. To speed up the conver-
gence of MCSB-ICA, we used three techniques: 1) recursive
expression of the separation process, 2) a piecewise linear
model of the step-size of the separation filter, and 3) adaptive
step-size parameter with a sub-ICA filter. The experimental
results demonstrated the effectiveness of our methods.

In the future, we intend to work on an incremental
separation scheme of MCSB-ICA because this ICA includes
delay time signals unlike conventional frequency-domain
ICA. We also intend to evaluate MCSB-ICA as a blind source
separation method. We also need to integrate MCSB-ICA
with other methods to enable real-time processing for robot
audition.
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