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Abstract

This paper presents an intelligence model for conversational service robots. It employs

modules called experts, each of which is specialized to execute certain kinds of tasks such as

performing physical behaviors and engaging in dialogues. Some of the experts take charge

in understanding human utterances and deciding robot utterances or actions. The model

enables switching and canceling tasks based on recognized human intentions, as well as

parallel execution of several tasks. This model specifies the interface that an expert must

have, and any kind of expert can be employed if it conforms to the interface. This feature

makes the model extensible.
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1 Introduction

As much attention is recently paid to autonomous robot and animation agent tech-

nology, spoken dialogue is expected to be a natural interface between humans and

robots/agents. Our ambition is to establish a general model for the symbol-level

dialogue and behavior controller of robots/agents that can engage in dialogue with

humans to understand their requests and give useful information as well as perform

desired behaviors. Although we are trying to build a model that can be used for

both robots and animation agents, in this paper we only use the word robots for

simplicity. In addition to avoid confusion with entertainment robots, we call robots

that we try to build conversational service robots. They have conversation func-

tions for understanding human requests and providing useful information, not just

for chatting. Their dialogue and behavior controller receives output from sensor in-

terpreters such as a speech recognizer, and is responsible for selecting utterances

and physical actions to perform.

We focus on several features which we think are crucial for the usability of such

robots. Since there are many kinds of tasks, they must allow various kinds of con-

trol strategies, such as hierarchical planning, reactive planning, and frame-based di-

alogue control. They also need to execute multiple tasks in parallel such as moving

and engaging in dialogues when possible. Moreover, they must be able to handle

human interruptions to the action and utterances the robots are executing. Although

a number of models for conversational robots have been proposed so far, no model

has all of these properties.

This paper presents a novel model for the behavior and dialogue controller in con-

versational service robots. It is called RIME (Robot Intelligence based on Multi-

ple Experts). RIME utilizes components called experts, which are specialized for

performing certain kinds of tasks by performing physical actions and engaging in

dialogues in certain domains. The task that each expert can execute may be simple,

but RIME-based robots can execute complicated tasks, which may include both

physical behavior and spoken dialogues, by sequentially activating experts.

The rest of the paper is organized as follows. Section 2 describes requirements

for the behavior and dialogue controller in conversational service robots. Then we

mention previous work in Section 3. Next we describe our ideas in Section 4 and ex-

plain the details of RIME in Section 5. Then Sections 6 and 7 respectively describe

the current implementation of RIME and present a process example of an appli-

cation system. Section 8 discusses the similarities and differences between RIME

and previous robot intelligence models before concluding this paper by mentioning

future work in Section 9.
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2 Requirements for Conversational Robot Intelligence Model

There are many features that need to be achieved for building conversational robots

working for various tasks. Among them, this paper focuses on achieving the follow-

ing features, which we believe are crucial for the better usability of conversational

robots.

• Integration of dialogues and physical actions

Robots need to execute tasks by integrating dialogues and physical actions.

For example, to explain an object, a robot must be able to go close to the object

and then verbally explain the object through dialogue.

• Handling multiple task domains

Since robots are usually expected to perform multiple kinds of tasks, they need

to work in multiple domains and switch domains according to user utterances. In

addition, even while engaging in a dialogue in one domain, robots have to switch

the domain when humans want to change to another task. If this is not possible,

it will be stuck in one domain, and the dialogue cannot proceed.

• Interruption handling

It is especially crucial for human-robot interaction to be able to handle users’

interrupting utterances while speaking or performing tasks. This is because robots

are expected to be human-friendly and the constraint that turn-taking must be or-

derly is not desirable.

• Parallel task execution

Robots are expected to be able to execute multiple tasks in parallel when pos-

sible. For example, robots should be able to engage in a dialogue while moving.

• Extensibility

Since robots can be used for a variety of tasks, various dialogue and task

planning strategies should be able to be incorporated. For example, it should

be possible to employ frame-based dialogue control for some kinds of tasks and

plan-based dialogue control for other kinds of tasks.

Building an extensible intelligence model achieving all of the above-mentioned

properties is not simple. For example, the robot must determine whether a user

utterance is either an interruption to the robot’s utterance or physical action, a new

utterance in the current dialogue domain, a request to move to another dialogue

domain, or an attempt to initiate a new dialogue while the agent is performing a

physical action.

Note that we focus only on human utterances as inputs, and that we do not deal with

other kinds of inputs such as gesture recognition results and emotion estimation

results, although we consider that dealing with such inputs is also important.
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3 Previous Work

Although a number of models for conversational robots, agents, and spoken di-

alogue systems have been proposed, and they satisfy some of the above require-

ments. However, no model has all of the above properties.

As for the integration of dialogues and physical actions, some work tried to incorpo-

rate spoken dialogue system technology and service robots [2–7]. They combined

simple speech understanding and standard dialogue management functions with

service robots, so their systems separately plan dialogues and physical behaviors,

and it is not easy to execute tasks by integrating dialogues and physical actions.

Handling multiple task domains has been tried in the context of spoken dialogue

systems. Lin et al. [8] proposed an architecture of multi-domain spoken dialogue

system, which employs distributed modules called agents, each of which is respon-

sible for engaging in dialogue in a certain domain. A user utterance is classified

into one of the domains and it is handled by the agent in the domain. Hartikainen et

al. also presents system architecture for handling multiple domains [9]. O’Neill et

al. [10] proposed to incorporate object-oriented programming framework to facil-

itate to build such agents (They call them experts). Since these pieces of work are

not intended to be incorporated into robots, they do not provide ways to integrate

physical behavior controllers and handle interruptions.

The WITAS system [11] can manage dialogues in multiple domains by maintain-

ing data called a dialogue move tree. Although it can dynamically switch dialogue

domains based on human utterances, the dialogue state in each domain needs to

be represented in the dialogue move trees, thus, it is not easy to incorporate a va-

riety of tasks which may require very different control strategies and internal state

representations.

A robot named jijo-2 [12] can perform tasks that require physical actions such

as delivery as well as engage in task-oriented dialogues in several task domains

such as telling office members’ current locations and route directions. It can switch

dialogue domains and stop navigation based on human utterances. Although it

achieves high functionality in robot conversation, it has limitations in that the di-

alogue management strategies are fixed and it is not easy to add various kinds of

dialogue domains and tasks requiring physical behaviors.

4 Basic Ideas

This section describes the basic ideas to build a dialogue and behavior controller

that satisfies the requirements listed in Section 2. Our approach is to combine sys-
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tems dedicated to small tasks. To combine them, we extract the symbol-level di-

alogue and behavior controller in such systems as experts, and employ modules

for coordinating them. Other modules, such as speech recognizers, speech synthe-

sizers, and hardware controllers are shared by those experts. A small number of

experts are activated at the same time and are responsible for understanding hu-

man utterances and selecting actions. Such experts are called being in charge. Each

expert has knowledge for utterance understanding and action selection.

This approach makes it possible to achieve the requirements. Integration of dia-

logue and physical actions is possible by sequentially activating experts dedicated

for dialogue tasks and physical behavior tasks. Engaging in multi-domain dialogues

becomes possible by employing experts for dialogues in different domains. Dia-

logue domains can be dynamically switched by changing the dialogue expert being

in charge according to the human utterance understanding result. Interruption utter-

ances are handled by the expert that selected the action being executed. Each expert

needs to have knowledge on what type of utterances are interruptions and how to

handle interruptions. Parallel task execution is possible by allowing multiple ex-

perts to take charge at the same time. By checking the properties in the experts,

the system can determine which two experts cannot take charge at the same time.

For example, we can design experts so that if two experts have “physical” property,

they do not take charge at the same time (This will be described in Section 5.3.2).

Finally, it is extensible because any kind of expert can be employed if they have

a small number of mandatory accessing methods, which will be explained in Sec-

tion 5.3.3.

This approach shares the fundamental ideas with the multi-domain spoken dialogue

system models (e.g., [10,8]), but it is extended in many aspects, for interruption

handling and parallel task executions.

5 RIME: Dialogue and Behavior Control Utilizing Multiple Experts

This section describes the details of RIME, our model for conversational service

robots.

5.1 Robot Intelligence Architecture

Conversational service robots are dedicated to performing service tasks in a specific

environment such as in a house and in an office. For example, they are supposed to

clean up rooms, collect garbage, and provide weather information. They must be

able to engage in dialogues with humans to understand their requests to perform

tasks and provide them with some necessary information.
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Fig. 1. Architecture for Conversational Service Robots

Fig. 1 depicts our underlying architecture for robot software. At the top level is

the behavior and dialogue control subsystem, on which this paper focuses. It re-

ceives recognition results and their confidence scores from several kinds of recog-

nizers, such as speech recognizers, image recognizers, multimodal recognizers, and

other sensor interpreters. Multiple speech recognizers can be employed for recog-

nizing the same speech with different acoustic and language models. At appropriate

times, it outputs multimodal actions which may include texts to speak (e.g. “hello,

I am a robot”) and symbolic representations of physical actions (e.g. “gesture

hello” and “approach john”). They can also be commands to stop a phys-

ical action being executed or utterance being spoken. They are sent to the action

executor which controls modules such as the hardware controller and the speech

synthesizer. The action executor can execute more than one action at one time if

they do not conflict with each other. For example, while speaking, if it receives

a new action containing only physical action, it can start executing the physical

action. This enables parallel task execution described later. The action executor re-

turns the execution report to the behavior and dialogue control subsystem when the

execution of one action finishes.

5.2 Overview of RIME

RIME is a model for the dialogue and behavior controller. As mentioned earlier,

RIME employs modules called experts which are specialized for performing cer-

tain kinds of tasks by performing physical actions and engaging in dialogues in

certain domains. An expert is a kind of object in the object-oriented programming

framework. Each expert has its own internal state, which includes the results of

user intention understanding, the dialogue history, and status of task execution. It

has methods to access its internal states, such as one for understanding user utter-

ances and one for selecting robot actions. Here, an action is a multimodal robot

command which includes a text to speak and/or a physical action command. Meth-

ods of experts can access a common database called global context to store and
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Fig. 2. Change in Primitive Tasks and Experts in the Example

utilize information across domains.

In this paper, we call tasks performed by one expert primitive tasks. Experts should

be prepared for each primitive task type. For example, if there is an expert for a

primitive task type telling someone’s extension number, telling person A’s extension

number is a primitive task. By performing a series of primitive tasks, a complicated

task can be performed.

Let us consider an example that person B asks the robot to call A (Fig. 2). When B

speaks to the robot, all the experts try to understand the utterance. Based on those

results, an expert for understanding messaging becomes in charge. It controls the

dialogue with the human unless he/she changes the topic. After some exchanges

of utterances, it understands B’s request which is set as the goal. Then it plans a

primitive task sequence, approaching A, and telling A that he/she is being called.

Then an expert for moving becomes in charge. It not only performs moving but

also accepts human utterances. If the person who asked to call A tells the robot to

cancel the call, it stops moving and goes back. When the robot reaches A, an expert

for providing messages becomes in charge and it tells A that he/she is being called

by B.

A primitive task type can be a different notion from a dialogue domain [10,8].

For example, understanding a request for telling an extension number and telling

the requested information number can be different primitive task types, while they

would be treated in the same domain in the previous multi-domain dialogue models.

This is because request understanding and information providing require different

dialogue control strategies [13].

There are other modules for coordinating these experts. The understander is con-

nected to speech recognizers and dispatches the speech recognition results to each

expert and selects the most appropriate expert to handle the speech recognition re-

sults. The action selector asks the selected expert to decide actions to perform, then

it sends the actions to the action executor, from which it receives the execution re-
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ports. The task planner receives tasks requested by users from experts, and decides

which expert should take charge when the robot is performing a task. Fig. 3 depicts

the module architecture of RIME.

Conversational robots can be developed based on RIME by creating experts and a

task planner, then preparing speech recognizers and an action executor.

5.3 Experts

5.3.1 Internal State

Each expert holds information on the progress of the primitive task. They are classi-

fied into task-type-independent information and task-type-dependent information.

Task-type-independent information includes information such as which action in

this primitive task is being performed, and whether the previous robot action fin-

ished. The contents and the data structure for the task-type-dependent information,

such as the user intention understanding results and the dialogue history, can be de-

termined by the system developer and they can be changed depending on the type

of primitive tasks.

5.3.2 Expert Classification

Experts are classified in two ways. First there are system-initiative task experts and

user-initiative task experts. In this paper, initiative of a task means who can initiate

the task. For example, the task “understanding a request for weather initiative” is

a user-initiative task, and the task “providing weather information” is an system-

initiative task.
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Second, in RIME, executing multiple tasks in parallel becomes possible by making

multiple experts take charge. Experts therefore need to have features for deciding

which experts can be in charge simultaneously. For example, if there are two fea-

tures verbal and physical, which indicate that the expert execute tasks respectively

by dialogue and physical actions, two experts both having the verbal feature cannot

take charge simultaneously.

5.3.3 Interface of Experts

Each expert must support several methods for accessing its internal state. Those

methods are also classified into task-type-dependent ones and task-type-independent

ones. The task-type-independent methods are for accessing task-type-independent

information mentioned above.

Below we explain some of the task-type-dependent methods, which can be imple-

mented by system developers.

• The initialize method is called when the expert is first created.

• The understand method updates the information state based on the user speech

recognition results, using domain-dependent sentence patterns for utterance un-

derstanding. This method returns a score which indicates the plausibility the user

utterance should be dealt with by the expert. Since this paper focuses on the sys-

tem architecture, not the detailed design of each expert, how each expert com-

putes the score is out of the scope of this paper. However, we think that previously

proposed domain selection methods are useful and can be incorporated into ex-

perts in our framework. For example, methods that use the results and scores of

domain-dependent speech understanding [14,15] and methods that incorporate

contextual information [16,10,17,18] are considered to be effective.

• The unselected-hook method cancels the change in its internal state caused by

the previous call of the understand method when the expert is not selected.

• The select-action method outputs one action based on the content of the inter-

nal state. The action may be an empty action. Actions can have several kinds

of properties concerning control. For example, the “wait” property means that

the system waits for a human utterance after the execution of the action, and the

“finish” property means that the primitive task can be considered finished after

the action is executed. In the case of experts for request understanding, the un-

derstood request is sent to the task planner as a new task at the same time. If the

action to return is a prompt utterance to the user, it has the “wait” property. If the

expert’s primitive task is found completed, the action has the “finish” property.

• The action-success-hook/action-failure-hook methods are called when it receives

the execution report of the action selected by this expert. This enables experts to

work depending on actions’ success and failure.

• The detect-interruption method determines if the previous user utterance is an

interruption to the action being performed when this expert is being in charge,
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and the handle-interruption method returns the action to be performed after an

interruption is detected.

5.4 Processes of Coordinating Modules

Here we explain the algorithms for the understander, the action selector, and the

task planner.

5.4.1 Understander

Each time the understander receives a user speech recognition result, it performs

the following process.

First it dispatches the speech recognition result to the experts in charge and the

user-initiative experts with their understand methods, which then return the scores

mentioned above. The expert that returns the highest score is selected as the expert

to take charge. Next, it calls the unselected-hook methods of the experts that are

not selected. If the selected expert is not in charge, it tells the task planner that the

expert is selected as the user-initiative expert to take charge. If the selected expert

is in charge, it calls the detect-interruption method of the expert. If true is returned,

it raises a flag to indicate an interruption utterance was detected, and otherwise, it

raises a flag to indicate a non-interruption utterance was detected.

The understander classifies user utterances into three categories using experts’ knowl-

edge: interruptions to the current action, new utterances in the current dialogue do-

main, and requests to move to another dialogue domain. The classification result is

used by the action selector.

5.4.2 Action Selector

The action selector repeats the following process for each expert being in charge in

a short cycle.

(1) If the expert’s flag to indicate that an interruption was detected is up, it calls

the expert’s handle-interruption method, and it then sends the returned action

to the action executor.

(2) Else if the expert detects the execution of an action finished, it does the fol-

lowing:

(a) If the previous action is successfully finished, it calls the expert’s action-

success-hook method, otherwise, it calls its action-failure-hook method.

(b) (1) If the previous action has the “wait” property, it raises the expert’s flag

to wait for a user utterance. (2) Else if the previous action has the “finish”
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property, it tells the task planner that the expert finished its primitive task.

(3) Otherwise, it calls the expert’s select-action method, and then sends

the returned action to the action executor.

(3) Else if an action of this expert is being performed, it does nothing.

(4) Else if the expert’s flag to wait for a user utterance is up, it does the following:

(1) If the expert’s flag to indicate that a non-interruption utterance was de-

tected is up, it calls the expert’s select-action method, and sends the returned

action to the action executor. (2) Else it does nothing.

(5) Else, it calls the expert’s select-action method, and then sends the returned

action to the action executor.

If a non-interruption user utterance in the domain of the expert in charge is found

while an action of that expert is being performed, the understanding result in the

expert is changed but the robot does not execute any action. Thus it is possible

to change the way to react to a user utterance by distinguishing interruptions and

non-interruptions. For example, let us consider the case where an expert for un-

derstanding requests in the weather information domain is in charge and the robot

is speaking “Would you like to know tomorrow’s weather for Tokyo?”. If the hu-

man user says “no, today” while the robot is speaking and this matches an inter-

ruption utterance pattern, this will be regarded as an interruption and the handle-

interruption method will be invoked. On the other hand, if he/she says “yes” and

this does not match any of the interruption utterance patterns, this will be handled

as a non-interruption utterance.

5.4.3 Task Planner

The task planner is responsible for deciding which experts take charge and which

experts do not. It sometimes make an expert take charge by setting a primitive task,

and sometimes it discharges an expert to cancel the execution of its primitive task.

To make such decisions, it receives from the other modules the following pieces of

information.

• It receives from the understander information on which expert is selected to un-

derstand a new utterance.

• It receives from an expert being in charge information on the finish of the prim-

itive task. It comes with information on success or failure and the reason for

failure when the primitive task failed.

• It receives new tasks from the experts that understand human requests.

In addition, it can consult the global context to access the information shared by

the experts and the task planner.

We assume that the algorithm of task planning is given by system developers. Al-

though some efforts on building task planning modules that achieve tasks in dy-
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namically changing environments (e.g. [19]), it is still difficult to build a planner

which can automatically decide an optimal strategy.

Currently we employ an algorithm that uses an agenda to contain tasks to execute.

It repeats the following process in a short cycle. (1) If it finds an expert that suc-

cessfully finished its primitive task and there are remaining primitive tasks for the

task, it tries to make an expert take charge for executing its subsequent primitive

task. (2) If a new user-initiative expert is selected by the understander, it makes the

expert take charge. At the same time, if some of the experts in charge have a conflict

with the new expert, those are discharged. Here, it checks conflicts between experts

using their features mentioned in Section 5.3.2. In addition, one expert cannot take

charge for two tasks simultaneously. This is also considered as a conflict. (3) If

the agenda is not empty, it decomposes a task in the agenda into primitive tasks,

and makes the corresponding experts take charge if there is no conflicting expert in

charge. In the above process, parallel task execution is made possible because more

than one expert can take charge simultaneously.

The task planner needs to be further extended by the system developers by design-

ing the decision strategies such as how to decompose a task into a primitive task

sequence and which expert should take charge when two experts have conflicts.

6 Implementation

We have implemented RIME as a toolkit called RIME-TK for building a dialogue

and behavior control subsystem. RIME-TK provides a hierarchy of expert tem-

plates [10] so that system developers can easily create new experts. For example,

a template for the frame-based request understanding dialogue experts is provided.

Experts can be implemented using Java. The current implementation provides tem-

plates of experts so that it becomes easy to create new experts in specific domains.

For example, the templates for the frame-based dialogue management [20,21] are

prepared for request understanding. The understand method in some templates em-

ploys finite-state-transducer-based language understanding. Developers of experts

can configure the language understanding component by preparing a set of utter-

ance patterns and keyword lists as in spoken dialogue system toolkits [22]. Below

are examples.

utterance patterns:

action-type: question-weather

Tell me the weather in *city* *day*

I’d like to know *day*’s weather in *city*

action-type: refer-city

It’s *city*

keywords:

12



class: *day*

today, tomorrow

class: *city*

tokyo, kyoto

For language generation, a template-based generation mechanism is prepared.

The understander is connected to a speech recognizer Julius/Julian [23], which can

employ either statistical or network-grammar-based language models, although it

is possible to employ other speech recognizers and sensor interpreters.

The action selector is connected to an action executor which can control a text-to-

speech system and a 120cm tall humanoid robot. For moving in the room where

we demonstrate the system, the current system utilizes ultrasonic tags to locate hu-

mans, the humanoid robot, and obstacles such as tables and chairs [24]. For speech

input and output, currently we use microphones and speakers directly connected to

computers. For a text-to-speech system we use NTT-IT Corp.’s FineVoice.

The current version of RIME-TK provides a simple task planner template. It always

adds a new task on the top of the agenda. When possible, it decomposes the first

task into primitive tasks, and tries to sequentially execute those primitive tasks.

The difference between RIME-TK and previously built toolkits for building spoken

and multimodal dialogue systems such as VoiceXML browsers [25], XISL [26],

CSLU Toolkit [27], and SpeechBuilder [22] is that the dialogue strategy is fixed in

systems built using these toolkits, while our toolkit provides functions to integrate

different kinds of dialogue strategies. By creating experts having the same func-

tionalities with these toolkits, we can build a RIME-based system that subsumes

those toolkits.

7 Process Examples

Here we explain how a RIME-based robotic system works through example in-

teractions between a user and an example robotic system. The robot is supposed

to work at a reception, and can perform several small tasks such as providing ex-

tension numbers and guide guests to several places near the reception such as a

meeting room and a restroom. Some experts in the system are listed in Table 1.

When a user says to the robot “where is the meeting room?” and the speech recog-

nizer correctly recognizes it, the understander calls the understand method of the

user-initiative experts with its speech recognition results. Each user-initiative ex-

pert tries to understand with their own task-dependent knowledge. It computes the

score that the understand method returns using the hand-crafted rules that employ

speech recognition confidences, dialogue context, and information on whether lan-
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Human: "Where is the meeting 
room?"

Robot: "Would you like to know 
where the meeting room is?"

Human: ":yes."

Human: "Tell me A's extension 
number."

Robot: "Please come this way."
(start moving)

Robot: "A's extension number is 
1234."

Robot: (stop moving)
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for A's ext. number
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show the 
way
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Fig. 4. Expert Selection in the Parallel Task Execution Example
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Fig. 5. Sequence Diagram for the Process Example
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Table 1

Experts in the Example Robotic System

ID task type initiative feature

A understanding weather information requests user verbal

B providing weather information system verbal

C understanding extension number requests user verbal

D providing extension numbers system verbal

E understanding requests for guiding to places user verbal

F moving to show the way system physical

G explaining places system verbal

guage understanding results are obtained. We also plan to incorporate a machine-

learning-based domain estimation method [17,18]. Since this utterance matches

one of the sentence patterns in Expert E in Table 1, it returns the highest score,

and it becomes the expert to take charge. Then the task planner makes the expert

take charge. The action selector calls Expert E’s select-action method. If the confi-

dence of the recognition result is not high enough, it returns an action to say “would

you like to know where the meeting room is?” with “wait” property to the action

selector. The action selector sends this action to the action executor, and when it

receives the report on the action’s success, it raises Expert E’s flag to wait for a

user utterance. Then the user says “yes” which is correctly recognized, the recog-

nition result is sent to all user-initiative task experts and the expert in charge. This

matches all experts’ utterance patterns, but the expert in charge returns the highest

score. Then the action selector calls the expert’s select-action method. Since the

understanding result is confirmed, the expert sends a new task to guide the user

to the meeting room, and returns an empty action with “finish” property. The task

planner decomposes the task into two primitive tasks, moving to show the way to

the meeting room, and telling where the meeting room is, and makes Expert F take

charge. Then the action selector calls its select-action method, which then returns a

physical action to move to show the way to the meeting room. Thus, the robot can

understand user requests and execute requested tasks.

While the robot is moving to show the way to the meeting room, if the user says

“stop”, this is sent to all user-initiative task experts and the experts in charge, that

is, Expert F. This utterance matches one of the patterns in Expert F, and it matches

one of its patterns of interruptions to the action being performed. Then the under-

stander raises a flag to indicate that an interruption utterance has been detected.

Then the action selector calls the expert’s handle-interruption method. It tells the

task planner to cancel the current task, and returns a “stop” action to the action se-

lector. Then the robot moving is interrupted. Even if the action being performed is

not a physical action but an utterance, the process for handling interruptions would

be the same.
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If the user utterance is not “stop” but “tell me person A’s extension number”, Expert

C is selected to take charge. The task planner checks if this conflicts with the current

expert, Expert F. Since there is no conflict, Expert C also takes charge. The action

selector accesses both experts and executes two tasks in parallel. Fig. 4 illustrates

this process. In addition, Fig. 5 is a sequence diagram for the portion of this process

(from human utterance “yes” to robot utterance “A’s extension number is 1234.”).

It shows the communications among the processes and experts.

The above examples show that RIME-based systems can handle interruptions and

execute tasks in parallel. Through the development of several systems based on

RIME, we confirmed that the algorithms for the modules in RIME work correctly.

For example, we have built a robotic system that understands requests for doing a

presentation and performs it using a projector screen [28] and we have a system

that can engage in both task-oriented dialogues and non-task oriented dialogues

[29]. We have also developed a RIME-based system that can learn location names

by building an expert that can learn a new name and remember it together with the

physical location information [30].

8 Discussion

RIME can be considered as a kind of multi-agent-based architecture for asyn-

chronous control [31,11,32], since several modules running in parallel communi-

cate with each other. Indeed, RIME can be implemented using a distributed soft-

ware development platform such as the Open-Agent Architecture as [11]. However,

RIME is different from previous architecture in that it employs distributed task-

dependent experts that contain task execution information. This makes the control

structure clear and extensible. Here we compare our model with the previous archi-

tecture for robot intelligence.

First, multi-agent architecture employs distributed agents working in parallel. Since

RIME employs several modules such as the understanding module and the action

selection module working in parallel, it can be considered as one of the multi-agent

models. Experts can also be built as different process modules. However, previ-

ously built robot intelligence models based on the multi-agent model controlled

physical actions and dialogues in different agents. Such systems need a lot of com-

munication between agents when the task to execute needs both physical actions

and dialogues, and it is not easy to design the knowledge for executing such tasks.

Since experts in RIME can have all of the required knowledge for executing tasks,

it is easy to design it.

It is also worth comparing RIME with hybrid reactive/deliberative architecture

(e.g., [33,34]), which employs multiple levels of planning. As mentioned earlier, the

dialogue and behavior control subsystem, which RIME models, is at the top level
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of the robot intelligence architecture. In addition, RIME has two levels, the task

planning level and the action selection level. Therefore our robot intelligence ar-

chitecture has several levels. However, RIME does not limit the planning strategies

for each expert and task planning. Both deliberative planning and reactive planning

as well as other types of planning can be employed. Rather, our focus is put on how

to coordinate different types of planning.

It is possible to consider a model that has only task experts, which outputs an ac-

tion according to their degrees of activation, and does not have any coordination

modules such as the task planner and the action selector in RIME. It is not easy,

however, to design such experts and the activation strategy so that the resulting

agent achieve complicated tasks.

9 Concluding Remarks

This paper presented RIME, a model for conversational robot development. It fa-

cilitates building conversational robots that achieve various crucial features, such

as interruption handling and parallel task execution. It is implemented as a toolkit

called RIME-TK, with which developers can build robots that can engage in a va-

riety of tasks by implementing experts utilizing various kinds of spoken language

technologies that conform to the RIME interface.

Since this paper focuses on not technologies to improve the performances of con-

versational robots but their model, it does not provide performance evaluation re-

sults of experimental application systems. The performance of the application sys-

tems can be improved without basing them on RIME. Establishing simple and mod-

ular models leads to reducing the cost of application development and scaling up

the complexity of the application system. The contribution of this paper is provid-

ing one of such models so that many application developers can refer to it.

Developing RIME-based robotic systems requires expertise in spoken dialogue

technology, although several templates for experts and task planners are prepared.

Future work includes improving RIME-TK so that non-experts can create experts

and configure the task planner.

One issue we need to consider when we build a RIME-based system is the granu-

larity of experts, that is, how we design a set of primitive task types. If we employ

very small task types as primitive task types, task planning will be complicated,

and if we employ large and complicated task types as primitive task types, it will

be difficult to execute multiple tasks in parallel. Currently we do not have a clear

criterion, and establishing it is a future work.

The algorithms for dialogue management and task planning used in the experts
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in our current implementation are simple. It would be effective to incorporate re-

cently developed techniques such as reinforcement-learning-based dialogue man-

agement [35] and strategies for avoiding unnecessary confirmation requests [36].

We need, however, to make it clear how to incorporate them into conversational

service robotic systems which are more complicated than single domain spoken di-

alogue systems. We as well need to explore a systematic way to construct rules for

task domain selection and rules for out-of-domain utterance detection. Our future

work also includes enabling a robot to schedule tasks when humans ask it multiple

tasks.

Developing a dialogue and behavior controller of conversational robots and agents

that work for any kind of task in real environments is still far from our current

technology. However, RIME makes it possible to easily expand the variation of

tasks by combining experts. We believe that this is a crucial step in improving

conversational robot/agent technology.
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