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This letter reports new synchronization phenomena and mathematical modeling on a frustrated
system of living beings, or Japanese tree frogs (Hyla japonica). While an isolated male Japanese tree
frog calls nearly periodically, he can hear sounds including calls of other males. Therefore, spon-
taneous calling behavior of interacting males can be understood as a system of coupled oscillators.
We construct a simple but biologically reasonable model based on the experimental results of two
frogs, extend the model to a system of three frogs, and theoretically predict the occurrence of rich
synchronization phenomena, such as tri-phase synchronization and 1:2 anti-phase synchronization.
In addition, we experimentally verify the theoretical prediction by ethological experiments on calling
behavior of three frogs and time series analysis on recorded sound data. Note that calling behavior
of three male Japanese tree frogs is frustrated, because almost perfect anti-phase synchronization is
robustly observed in a system of two male frogs. Thus, nonlinear dynamics of the three-frogs system
should be far from trivial.

PACS numbers: 05.45.Xt, 87.23.-n

I. INTRODUCTION

Synchronization is ubiquitous in real systems, and has
been attracting a great deal of attention in physics as
well as in many other disciplines since the seminal work
on Huygens’ clocks [1]. In addition, theoretical studies re-
vealed plausible synchronization mechanisms for accom-
plishing cooperative phenomena in the real world, includ-
ing phase-oscillator models [1], a phase-reduction method
for a general class of noisy oscillators [2], feedback control
[3] and co-evolution of phases and coupling strengths [4]
in coupled oscillator systems, and a general chemotac-
tic model of oscillators [5]. However, those theoretical
studies mainly focused on in-phase synchronization, and
nonlinear dynamics of anti-phase synchronization in a
coupled system had not been sufficiently investigated [6].
In particular, anti-phase synchronization is widely ob-
served in acoustic communications by a pair of living be-
ings, including birds, mammals, crickets, and frogs [7–9];
such alternating calling behavior plays an important role
in their communications to transmit sound information
included in the interacting calling behavior by mutually
avoiding overlaps of their calls.

From theoretical points of view, anti-phase synchro-
nization between a pair raises an interesting fundamen-
tal problem in a coupled system with many oscillators
[6]; anti-phase synchronization between a pair cannot
be realized in every pair of three oscillators, because,
when two pairs of the three synchronize in anti-phase
respectively, the remaining third pair must synchronize
in-phase. Thus, such a system of more than two oscilla-

tors is generally frustrated. Note that a similar situation
of the frustration can be seen in antiferromagnetic spin-
systems [10]. From the viewpoint of frustration, however,
the coupled-oscillator systems show an important differ-
ence from the spin systems; while the state of a spin is
limited to up or down [10], that of a phase oscillator is
described with a phase variable θ ∈ S

1 [6, 9].

To clarify possibly complex behavior in such a frus-
trated system of coupled phase oscillators, it is reasonable
to first investigate the simplest case of the frustration.
In this paper, we theoretically and experimentally study
spontaneous calling behavior of three male Japanese tree
frogs Hyla japonica shown in Fig.1A [6, 9] as a frustrated
system of living beings, because our experimental obser-
vations revealed that, while a single male Japanese tree
frog calls nearly periodically, a couple of males generate
robust anti-phase synchronization [9] (see Figs.1B and
C).

The paper is organized as follows: in Sec.II, we con-
struct a possible phase oscillator model representing in-
teractive calling behavior by three frogs and theoretically
predict synchronization phenomena; in Sec.III, we em-
pirically verify the theoretical prediction shown in Sec.II
by ethological experiments and time series analysis; in
Sec.IV, we discuss the relationship between the model-
ing and experimental results, biological implications by
the model analysis, and possible biological meanings of
synchronized behavior by frogs.
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FIG. 1: (Color online) Calling behavior of one or two frogs. (A) Japanese tree frog Hyla japonica. (B) Periodic calling behavior
of a single male frog. (C) Anti-phase synchronization of two frogs. Figures 1B and C represent sound data of a single frog and
those of two frogs, respectively.

B CA
50cm 50cm

Frog A Frog B Frog C
Microphones

Data Recorder

1.0

1.0

1.0

0

0

0

-1.0

-1.0

-1.0
0 0.5 1.0

Time (sec)

A
m

pl
itu

de

Frog A

Frog B

Frog C

1.0

1.0

1.0

0

0

0

-1.0

-1.0

-1.0
0 0.5 1.0

Time (sec)

A
m

pl
itu

de

Frog A

Frog B

Frog C

FIG. 2: (Color online) Calling behavior of three frogs. (A) Schematic diagram describing the experimental situation; three frogs
were put in cages respectively, and set along a straight line at a distance of 50cm. Spontaneous calling behavior was recorded
by three microphones placed close to each frog. (B) Tri-phase synchronization of A→B→C; the three frogs A, B and C call
in turns with the phase difference of 2π/3. (C) 1:2 anti-phase synchronization of B vs AC; the two frogs A and C synchronize
in-phase of 0, and the remaining one of frog B synchronizes in anti-phase of π with the others. In Figs.2B and C, sound data
of respective frogs are separated by independent component analysis.

II. MATHEMATICAL MODELING

To predict possible synchronized behavior of three
Japanese tree frogs, we first construct a simple but bi-
ologically reasonable model based on the experimental
results of two frogs shown in Fig.1C that two frogs ro-
bustly synchronize in anti-phase [9]. Let us model calling
behavior of the two frogs α and β [1, 9], as follows:

dθα

dt
= ωα + K[sin(θα − θβ) − γ sin(2(θα − θβ))], (1)

dθβ

dt
= ωβ + K[sin(θβ − θα) − γ sin(2(θβ − θα))], (2)

where phases θα and θβ represent the call timings of the
frogs α and β (i.e., when θα = 0, we consider that the frog
α calls), ωα and ωβ are the natural frequencies of respec-
tive frogs (i.e., 2π/ωα and 2π/ωβ are the intrinsic inter-
call intervals [8]), K is the positive coupling strength
between the two frogs due to their acoustic communi-
cation, and γ is a positive parameter which represents
the effect of the second-order component in the interac-

tion term or changes the stability between the anti-phase
and in-phase states [9]. Our experimental observations
on interactive calling behavior of two frogs show that,
while anti-phase synchronization of two frogs is robustly
observed, in-phase synchronization is detected only tran-
siently [9]. Next, we introduce suitable parameter values
in Eqs.(1) and (2) to explain the experimental results
of two frogs. First, it is experimentally shown that the
intrinsic frequencies ωα and ωβ tend to take close val-
ues under the same experimental condition [9]. Hence,
we assume ωα = ωβ for the sake of simplicity. Note
that, under this first assumption, both anti-phase and
in-phase synchronization states, i.e., φ = π and φ = 0
with φ ≡ θα − θβ , become equilibrium points, namely
dφ
dt

∣∣
φ=π

= 0 and dφ
dt

∣∣
φ=0

= 0. In addition, γ is assumed
to take a positive value of less than 0.5. The linear sta-
bility of the anti-phase state and that of the in-phase
state can be analyzed by ∂

∂φ
dφ
dt

∣∣
φ=π

= −2K(1 + 2γ) and
∂

∂φ
dφ
dt

∣∣
φ=0

= 2K(1 − 2γ), respectively. When ωα = ωβ

and 0 ≤ γ < 0.5, the former is negative and the lat-
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ter positive. Therefore, under these two assumptions of
ωα = ωβ and 0 ≤ γ < 0.5, the experimental results on
a two-frogs system [9] is qualitatively explained; namely,
anti-phase synchronization of two frogs is represented as
a stable equilibrium, and the in-phase synchronization is
described as an unstable one.

Extending Eqs.(1) and (2) to a system of three cou-
pled oscillators, we model spontaneous calling behavior
of three frogs as follows:

dθi

dt
= ωi+

∑

j=A,B,C

Kij [sin(θi−θj)−γ sin(2(θi−θj))], (3)

where θi (i = A, B, C) represents the timing of successive
calls by the frog i, ωi is its intrinsic frequency, and Kij

is the positive coupling strength between the frogs i and
j with Kij = Kji [6]. Let us consider suitable parameter
values in Eq.(3) which qualitatively explain the exper-
imental situation shown in Fig.2A, and perform bifur-
cation analysis with bifurcation parameters γ and KAC

to theoretically predict possible synchronized calling be-
havior of three frogs. First, we assume ωA = ωB = ωC ,
for the same reason as in a system of two frogs. Sec-
ond, since male frogs interact through sounds, and the
distance between the frogs A and B is identical to that
between the frogs B and C in the experiments (See
Fig.2A), we assume that the adjacent pairs interact with
the same strength, i.e., KAB = KBC = 1.0, for simplicity.
Then, we vary bifurcation parameters γ and KAC within
0 ≤ γ < 0.5 and 0 ≤ KAC < 1.0, and calculate stable
phase differences of φAB ≡ θA − θB and φAC ≡ θA − θC .
The former assumption of 0 ≤ γ < 0.5 is consistent with
that in the model analysis on a two-frogs system. In ad-
dition, since the distance between the frogs A and C is
longer than that between the frogs A and B as shown in
Fig.2A, KAC is assumed to be less than KAB = 1.0.

Results of the bifurcation analysis are summarized in
Figs.3A and B. Note that, throughout the model analysis,
we set the error bound of π/6 for detection on synchro-
nization modes, the same as in the time series analysis
performed on experimental data where the phase differ-
ences between frogs (i.e., φAB and φAC) can fluctuate
even in almost synchronized states. As a result, it is theo-
retically predicted that, depending on values of KAC and
γ, two types of tri-phase synchronization (A→B→C and
A→C→B) and three types of 1:2 anti-phase synchroniza-
tion (A vs BC, B vs AC, and C vs AB) can be observed
under the experimental situation shown in Fig.2A. For
example, tri-phase synchronization of A→B→C means
φAB � 2π/3 and φAC � 4π/3; 1:2 anti-phase synchro-
nization of A vs BC means that, while the two oscillators
B and C synchronize in nearly in-phase, the remaining
one A synchronize in nearly anti-phase with B and C.
Details of the synchronization properties are explained
in caption of Fig.3A and B.

III. EXPERIMENTS

We experimentally verified the model prediction.
Spontaneous calling behavior of three male Japanese tree
frogs was recorded with microphones placed close to each
frog, as shown in Fig.2A. The experiments were carried
out totally 44times on May and June both in 2008 and
2009, and four trials where three frogs successively called
were obtained, corresponding to Data(1)–(4) in Fig.4B–
E and Table I. In those experiments, recording time for
each trial was about 4 hours. Recorded sound data were
analyzed to separate individual calling signals by the in-
dependent component analysis (ICA) [11]. During call-
ing behavior of three frogs, various types of synchroniza-
tion were robustly observed as typically shown in Figs.2B
and C (Listen also to supplementary sound files): the
first one in Fig.2B represents tri-phase synchronization
of A→B→C that the three frogs A, B and C called in
turns with the phase difference of almost 2π/3; the sec-
ond one in Fig.2C is 1:2 anti-phase synchronization of B
vs AC that two of the three frogs (Frogs A and C) syn-
chronized almost in-phase, while the remaining one (Frog
B) synchronized almost in anti-phase with the others.

Separated sound signals were analyzed to estimate the
phase differences of three frogs, i.e., φAB ≡ θA − θB

and φAC ≡ θA − θC , according to the methods shown
in Supplemental Materials [12]. Consequently, we sta-
bly observed various types of synchronized behavior and
switching phenomena as shown in Fig.4B–E, including
three types of 1:2 anti-phase synchronization (A vs BC, B
vs AC, and C vs AB) and two types of tri-phase synchro-
nization (A→B→C and A→C→B); Figure 4B represents
the occurrence of three types of 1:2 anti-phase synchro-
nization (A vs BC, B vs AC, and C vs AB), Figure 4C
represents that of mainly only one of the 1:2 anti-phase
synchronization (A vs BC), Figure 4D shows that of three
types of 1:2 anti-phase synchronization (A vs BC, B vs
AC, and C vs AB) and two types of tri-phase synchro-
nization (A→B→C and A→C→B), and Figure 4E shows
that of two types of tri-phase synchronization (A→B→C
and A→C→B) and one of the 1:2 anti-phase synchroniza-
tion (A vs BC). Moreover, pink lines in Fig.4B–E show
the existence of complex switching dynamics in this frogs’
system.

Moreover, we categorize obtained phase differences,
φAB and φAC , into synchronization modes to estimate
the stability or durations of respective modes as shown
in Table I (See also Supplemental Materials [12]). Dur-
ing calling behavior of two frogs, while anti-phase syn-
chronization is robustly observed, in-phase synchroniza-
tion is rarely detected. In addition, during total record-
ing time of three frogs, tri-phase synchronization and
1:2 anti-phase synchronization can be robustly observed
compared with the in-phase synchronization by all the
three frogs.
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FIG. 3: (Color) Bifurcation analysis on the model of Eq.(3), with the bifurcation parameters KAC and γ. (A) Phase diagram
of synchronization states on the KAC -γ plain. Here, we set the error bound of π/6 to detect synchronization modes and
compare with the experimental data. Region(I) depicted with blue dots represents parameter values at which the 1:2 anti-
phase synchronization of (φAB, φAC) � (π, 0) is stable, Region(II) with green dots is the multi-stable state for three types of
1:2 anti-phase synchronization (φAB , φAC) � (π, 0), (0, π) and (π, π), Region(III) with red dots is for two types of tri-phase
synchronization (φAB , φAC) � (2π/3, 4π/3) and (4π/3, 2π/3), Region(IV) with purple dots is for one of the 1:2 anti-phase
synchronization (φAB , φAC) � (π, 0) and two types of tri-phase synchronization, Region(V) with yellow dots is for three types
of 1:2 anti-phase synchronization and two types of tri-phase synchronization, Region(VI) with grey dots is for one of the 1:2
anti-phase synchronization (φAB , φAC) � (π, 0) and the synchronization states different from both tri-phase and 1:2 anti-phase
synchronization, and Region(VII) with black dots is for the synchronization states different from both tri-phase and 1:2 anti-
phase synchronization. Dotted lines give exact bifurcation sets obtained by the bifurcation stability analysis [6]. (C) Bifurcation
structure along KAC = 1.0 in Fig.3A, where the vertical axis represents a stable phase difference of φAB . While two types of
tri-phase synchronization with (φAB, φAC) = (2π/3, 4π/3) and (4π/3, 2π/3) are bistable in 0 ≤ γ < γ∗, two types of tri-phase
synchronization and three types of 1:2 anti-phase synchronization are multi-stable in γ∗ ≤ γ < 0.5 with γ∗ = 1/6; the former
state corresponds to Region(III) in Fig.3A, and the latter corresponds to Region(V).

IV. DISCUSSION

We show that mathematical modeling with Eq.(3)
qualitatively explains the experimental results on syn-
chronized calling behavior of three frogs summarized in
Fig.4B–E, assuming ωA = ωB = ωC and 0 ≤ γ < 0.5:
multi-stability between three types of 1:2 anti-phase syn-
chronization in Data(1), and stability of one of the 1:2
anti-phase synchronization (A vs BC) in Data(2), are
qualitatively described with Region(II) in Fig.3A; multi-
stability between two types of tri-phase synchroniza-
tion and three types of 1:2 anti-phase synchronization
in Data(3), and that between two types of tri-phase
synchronization and one of the 1:2 anti-phase synchro-
nization (A vs BC) in Data(4), are reproduced with
Region(V) in Fig.3A. Note that, although mathemati-
cal modeling in our previous study [6] gives the similar

framework with only the first order component in the in-
teraction terms of Eq.(3), that cannot explain the com-
plicated multi-stability as shown in Fig.4B–E with fixed
parameter values. Since an experimental condition in
respective trials is almost stationary, parameter values
in model analysis should be constant for describing each
data. In this sense, mathematical modeling with Eq.(3)
successfully explains complex synchronization phenom-
ena by three frogs compared with our previous study [6].
From the viewpoint of mathematical modeling, however,
it is an important future problem to clarify mechanisms
responsible for the transitive and switching phenomena
shown in Figs.4B–E, by considering effects such as back-
ground noise [2] and time delay [13] as well as those of
chaotic dynamics [14]; note that chaotic systems also gen-
erate anti-phase synchronization [15].

Then, let us discuss biological implications from the
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FIG. 4: (Color) Synchronization and switching-dynamics experimentally observed in a three-frogs system. (A) Definition
of synchronization states on the phase plain of φAB (the abscissa) and φAC (the ordinate), setting the error bound of π/6.
Regions of tri-phase synchronization, 1:2 anti-phase synchronization and in-phase synchronization are shown with red, green
and yellow, respectively. (B)–(E) Plots of the phase differences φAB and φAC obtained from four experimental trials. Note
that the phase plots shown by blue dots are localized not around the in-phase state but around the tri-phase and 1:2 anti-phase
states. Transitions between different states are indicated by pink lines.

model analysis. The important point is that tri-phase
synchronization of three frogs can be stably observed as
shown in Data(3) and (4) and qualitatively explained
with the model analysis by assuming the condition of
KAC � KAB = KBC such as Regions (III), (IV) and
(V) in Fig.3A. Since the coupling coefficient of Kij rep-
resents how strongly the frogs i and j interact, the con-
dition of KAC � KAB = KBC biologically implies that,
during interactive calling behavior of three frogs in the
straight setting of Fig.2A, everyone can equally recognize
the other two individuals and then tri-phase synchroniza-
tion is realized. It should be noted that the similar calling
property is reported in another species of frogs, Puerto
Rican tree frogs; a single frog avoids acoustic overlap with
two neighbors [16].

From an ethological point of view, it is important that
our experiment clearly shows the existence of complex
synchronized behavior by three male frogs to maintain
their mutual intercall intervals each other, i.e., the tri-
phase synchronization and 1:2 anti-phase synchroniza-

tion. Such alternating phenomena by three frogs would
be biologically meaningful both for males and females to
keep their own territories and localize calling males, the
same as discussed in our previous study on a two-frogs
system [9].

Acknowledgments

This work was supported by JSPS Grant-in-Aid
(Grant.No.20-608), JSPS Grant-in-Aid for Exploratory
Research, the JSPS FIRST Program, Honda Research
Institute Japan, Co.Ltd., and Global COE Program
in Division of Physics and Astronomy, Kyoto Univer-
sity. We would like to thank T.Ohta, Y.Kuramoto,
H.P.C.Robinson, H.Kitahata, Y.Kato, and T.Aoki, for
their fruitful discussions, and also wish to thank
K.Homma and A.Kitajima for their kind cooperation
with the field research.

[1] Y.Kuramoto, Chemical Oscillations, Waves, and Tur-
bulence. (Springer-Verlag., Berlin, 1984); A.T.Winfree,

J.Theoret.Biol 16, 15 (1967); A. Pikovsky, M. Rosen-



6

Data(1)
Total Anti-Sync Tri-Sync 1:2 Anti-Sync In-Sync

One Frog 173.1sec
Two Frogs 378.2sec 138.7sec (36.6%) 11.7sec (3.1%)
Three Frogs 660.8sec 34.7sec (5.2%) 64.0sec (9.6%) 0sec (0%)

Data(2)
Total Anti-Sync Tri-Sync 1:2 Anti-Sync In-Sync

One Frog 732.2sec
Two Frogs 1416.4sec 595.3sec (42.0%) 39.6sec (2.8%)
Three Frogs 298.3sec 15.5sec (5.2%) 60.4sec (20.2%) 2.5sec (0.8%)

Data(3)
Total Anti-Sync Tri-Sync 1:2 Anti-Sync In-Sync

One Frog 104.8sec
Two Frogs 1088.2sec 396.7sec (36.4%) 41.3sec (3.8%)
Three Frogs 1265.8sec 91.4sec (7.2%) 33.2sec (2.6%) 0sec (0%)

Data(4)
Total Anti-Sync Tri-Sync 1:2 Anti-Sync In-Sync

One Frog 101.7sec
Two Frogs 976.7sec 621.1sec (63.5%) 22.4sec (2.2%)
Three Frogs 350.6sec 52.8sec (15.0%) 4.2sec (1.1%) 0sec (0%)

TABLE I: Summary of synchronized behavior obtained from the experimental data of calling frogs. Total calling
durations of a single frog, two frogs and three frogs, and temporal sums of detected synchronization modes are shown for
four experimental trials (See Supplemental Materials [12]). As for calling of two frogs, anti-phase synchronization is robustly
observed, but in-phase synchronization is rarely detected. During calling of three frogs, tri-phase synchronization and 1:2
anti-phase synchronization can be stably observed compared with the in-phase synchronization.

blum, and J. Kurths, Synchronization: A universal con-
cept in nonlinear sciences. (Cambridge University Press,
Cambridge, 2001).

[2] J.N.Teramae, H.Nakao, and G.B.Ermentrout, Phys. Rev.
Lett. 102, 194102(1-4) (2009).

[3] I.Z.Kiss et al., Science 316, 1886 (2007).
[4] T.Aoki and T.Aoyagi, Phys. Rev. Lett. 102, 034101

(2009).
[5] D.Tanaka, Phys. Rev. Lett. 99, 134103 (2007).
[6] I.Aihara and K.Tsumoto, Mathematical Biosciences 214,

6 (2008).
[7] S.Yoshida and K.Okanoya, Cognitive Studies, 12(3), 153

(2005).
[8] K.D.Wells, The Ecology and Behavior of Amphibians.

(The University of Chicago Press, Chicago, 2007);
H.C.Gerhardt and F.Huber, Acoustic Communication in
Insects and Anurans. (The University of Chicago Press,

Chicago, 2002).
[9] I.Aihara, Phys. Rev. E 80, 011918 (2009).

[10] H.T.Diep, Frustrated Spin Systems. (World Scientific,
2005).

[11] A.Hyvarinen, J.Karhunen, and E.Oja, Independent Com-
ponent Analysis. (Wiley-Interscience, New York, 2001);
H.Sawada, R.Mukai, and S.Araki, IEICE transactions on
fundamentals of electronics, communications and com-
puter sciences, E86-A, 505 (2003).

[12] See Supplemental Materials at EPAPS.
[13] A.Takamatsu, T.Fujii, and I.Endo, Phys. Rev. Lett. 85,

2026 (2000).
[14] Y.Hirata et al., Chaos 20, 013117 (2010).
[15] L.-Y.Cao and Y.-C.Lai, Phys. Rev. E 58, 382 (1998).
[16] J.S.Brush and P.M.Narins, Anim. Behav. 37, 33 (1989).


