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for Robot Scene Understanding
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Introduction

Robots need a rich, multi-modal representation of
the world from which to learn in a generalized man-
ner. Indeed, we now have at our disposal methods for
sensing geometric, visual and auditory information,
all spatialized in the same global reference frame and
bound together through techniques such as SLAM [1].
For humans, those modalities are the dominant forms
of information. Robots should also take advantage
of these tools for moving around in and interacting
with the physical world (geometry), recognizing com-
mon objects (vision), and communicating with hu-
mans (audition).

All of these sources of information need to be linked
together in space and in time. In this paper, we de-
scribe a geometric mesh which can be used as the
base layer onto which we can attach other informa-
tion, such as color, texture, and sound. Our ultimate
goal is to use this multi-modal scene representation as
a new primitive data type, replacing raw video images
or range scans as a basis for recognition.

Our main source of information is the relatively new
technology of Time-of-Flight (ToF) cameras. These
optical cameras measure the depth of each pixel, and
combined with a traditional color camera, this type of
sensor provides Red-Green-Blue-Depth (RGBD) im-
ages at high frequencies. With the mass-produced Mi-
crosoft Kinect introduced in late 2010, 30Hz 640 % 480
RGB images are available for less than $200. This
source of information, while not exempt of problems,
is what the stereo vision community has been striving
to obtain for years.

As a sensor itself, time-of-flight technology has sev-
eral advantages and disadvantages. At around 10
frames per second, it is possible to collect 3D data
of a scene much faster than a pan-tilt laser scan (such
as used in [2]). This increase in speed is significant
especially for scene reconstruction for mobile robots,
which cannot wait the 5-10s required to obtain one
3D scan from a laser, or the long processing time of
more elaborate batch reconstruction methods such as
the Poisson reconstruction algorithm introduced by
Kazhan and Hoppe [3]. The major drawback of TOF
technology is its high frame-to-frame noise, especially
off reflective surfaces. It is this unreliability that we
attack in this paper, to improve the TOF sensor’s
utility for robotics, vision, and other fields.

In the following sections, we describe a new
method to transform TOF data into a probabilis-
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Fig.1: Overview of update quantities.

tically smoothed polygonal mesh. We first explain
how the robot could internally represent its surround-
ings as a mesh representation. Then we describe a
method for maintaining this mesh in an online man-
ner, through triangulation of point estimates and con-
verging to stable values through maximum likelihood
estimation.

1. Probabilistic Polygonal Mesh

Let us suppose we receive 2.5D scans at a sequence
of discrete times T' = (¢1,...,t,). Foreach timet € T,
the scan of height and width (h,w) € N? is a pair
S; = (O, P;) € R3 x M, ,(R3); the first element O,
is the position of the optical center of the range imag-
ing device at time ¢, as shown in Fig. 1. The second
element P, is the matrix of point estimates at time ¢,
in the form of a matrix of 3D points. We will note
Dhw = {1,...,h} x {1,...,w} the pixel domain of
width w and height h. P; can be obtained from a
matrix of distances by using the optical model of the
ranging device to obtain, for each pixel, the point re-
sult of the translation of Oy, along the optical line-
of-sight to the pixel, by the measured distance (pixel
value).

Our goal is to build, for each time ¢ € T, a surface
reconstruction of the environment FE;, using only .S;
and F;_1. We choose to represent surfaces by tri-
angular meshes, for their relative simplicity of im-
plementation, the large body of existing algorithms,
and hardware support, including efficient rendering
with texturing. We define a triangular mesh as a
pair M = (V,F) € R® x N3, where the first ele-
ment V is the set of vertices, and the second F is
a set of triplets of indices into V;; that is, each triplet
f € F represents the triangle AV (1)Vi,(5)Vas(r)
(where 7; is an informal notation for the surjective
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canonical projection of a 3-tuple into its i-th compo-
nent). Accordingly we have E; = (V4, F), and will
note S(F;) the surface represented by E;, that is:
{P € R?: Hf e F,,P e AVm(f)Vm(f)VﬂS_(f)}. How-
ever, to compute the environment surface FE; incre-
mentally from E; 1, we wish to introduce a measure
of probabilistic uncertainty in the surface representa-
tion.

1-1 Data structure

To this effect, we introduce an augmented mesh
structure we call a Probabilistic Polygonal Mesh
(PPM), constisting of a mesh each vertex of which
is associated with a measure of probabilistic cer-
tainty. Thus, for each time ¢t € T, E; is a triplet
(Vi, Fy, 3) € R? x N3 x R, where the first two ele-
ments define the mesh, and the third element ¥ is a
tuple of real numbers with same arity as V;.

For an index ¢ € {1,...,|V;|}, m:i(F}) is an approxi-
mation of the local Gaussian variance of the belief (ie.
uncertainty) in the current surface reconstruction Ey,
in the neighborhood of 7;(V4).

1-2 Probabilistic belief

Indeed, PPMs are meant to represent the belief of
a robot that each point in space is occupied. At time
t € T, this belief is a probability distribution B;(P) :
R3 — [0,1] with [[[Bi(P)dP = 1.
R3

To define this probability distribution from E;, we
use an auxiliary function ¢(P; F;) that associates any
point P on the surface of F; to the barycentric in-
terpolation of the variances of the vertices of the face
containing P.

For any three points Py, Py, P3 € V4, the barycentric
coefficients A1, A2, A3 € R of a point P € AP, P, P53 are
the solution to the equation P = Zle N; P;. Note
that the solution is unique and always exists pro-
vided P;, P, and Ps are distinct and not colinear,
as this makes it a system of 3 independent equations
in 3 unknowns. The barycentric interpolation of the
variances o1, 02,03 at points Py, Py, P3 respectively of
PPM E, is given by the function ¢(.; E;) defined by
G(P; Br) = Y0y Nioi. .

The un-normalized belief B; is then given by:

mean

—_—
argmin(||z, P||2),
2€S(Ey)

E=N<P;

variance

¢ (argminﬂx,PHQ);Et) > (1)
2€S(E:)

The normalized belief B; is obtained by normalizing

By: B(P) = %. B, is a parametric proba-
R3

bility distribution with parameters given as the ver-

tices, triangles and variances (Vi, Fy, 3;) of a PPM, for
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which the value of each point in space is defined as the
value of a single Gaussian that depends on the closest
point on the PPM’s surface. Connex, C*° class sub-
sets of space are defined by the same Gaussian, par-
titioning space along either lines orthogonal to S(E})
(all the points in the subset have the same closest
point of S(E;) on the inside of a triangle), or wedges
rooted on a vertex in V; (all points in the subset have
the same closest point, a vertex in V4).

B: can be informally thought of as a distribution
over space that has a constant maximum along the
2D manifold that is S(F;), and diffuses into space
following Gaussian distributions whose variances are
interpolated from the PPM vertex variances 3; at the
site of the closest points on S(Ey).

2. PPM building

We now turn to the incremental construction of the
(Et)ter by presenting a recursive procedure to build
and update E; from E;_1. At the first time step tq,
we start with an empty mesh Fy = (0,0,0). The
rest of this section describes the recursion step at an
arbitrary time step t € T'.

2-1 Ray casting

We start by casting a ray from the optical center
O; through each estimate in the points matrix
P, and checking for the first intersection, if any,
with S(E;—1) (see Fig. 1 to visualize). Formally,
for each pixel (z,y) € Dy, if we note Ii(z,y) =

{P ERY:INER, P=0, + )\OtPt(x,y)} NS(E_1)

ral

the set of all intgrsections of the ray with

the PPM, we compute the closest intersection

Ii(z,y) = argmin (||P — O¢|2), which may be of
Peli(z,y)

cardinality 0 (no intersection) or 1 (the closest of at

least one intersection).

This is used to partition P, in 2 sets ]3t and ]3,5
which contain, respectively, all points that had an
intersection in the ray-casting step, and had none.
Thus P, = {Py(z,y) € P, : |I(2,y)| =1} and P, =
{P,(x,y) € P, : [I;(z,y)| = 0}. Intuitively, P, is the
set of points of the environment that have not yet
been observed, and conversely for ]3t

2-2 Triangulation

The triangulation procedure incrementally builds a
mesh from an empty start, by creating new connected
components when parts of the environment are newly
observed, as shown in Fig. 1, “newly inserted mea-
surements”.

We consider a set of candidate triangles C}, ob-
tained by applying a 2-triangle-per-pixel pattern to
P, (see Fig. 1); the set of candidates is given by
Cr = {AP(z,y)Pi(z,y + Pz + Ly) : (z,y) €
Dh—l,w—l} U {APt(x+1v y)Pt(‘T, y+1)Pt(x+1a y+1) :
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(z,y) € Dp_1,w-1}. We chose this pattern for no
other reason than simplicity.

As with Py, we partition the candidate triangles C
in 2 sets Cy and Cy, which contain, respectively, the
candidate triangles with at least one vertex in ﬁt, and
those with none (ie. all 3 vertices in P;). Intuitively,
6‘; is the portion of the environment that has not yet
been observed and we can triangulate.

For each triangle candidate AC1C2C5 € a we
thus compute its normal 7, by taking the cross
product of 2 of its edges; to guarantee the normal
is oriented towards the sensor, we compute 77 =
Pi(x,y)Pi(z,y + 1) x P(x,y)P(z + 1,y) for triangles
of the form AP (z,y)Pi(z,y+1)P:(x+1,y), and @7 =
Pt(x7y+ 1)Pt(x+ lay+ 1) X Pt(w7y+ 1)Pt(x+ Ly)
for triangles of the form AP;(x,y + 1)Pi(z + 1,y +
VP« + 1,y).

The angle of incidence ¢ is then taken as ¢ =

i) Zf:l w :
arccos <|ﬁ|2 . 3_)> As discussed above,
Iy, CiO¢ll2
we now add the triangle AC,C>C3 to F; if and only
if its angle of incidence is less than a maximum angle

of incidence ty,4z, that is if we have ¢ < t,,44-

3. PPM updating

Estimates whose ray intersected the existing mesh
are not triangulated, but used for update, noted by
“existing PPM” in Fig. 1. This is done through an
iterative procedure that sequentially considers each
point in the set of intersecting points 1315 The idea
here is that P brings new information about a small
region of the environment’s surface that was already
mapped in E;_1, and that we should locally integrate
this information to create the updated surface recon-
struction E;.In the rest of this section, we will describe
this procedure for an arbitrary estimate point P € ]3t
with pixel coordinates (z,y) € Dp -

Let us assume the range imaging sensor follows
a zero-mean Gaussian stochastic observation model;
that is, for a real distance to the surface d, it can be
modeled by a random variable O ~ N (d, o), where
o is the sensor variance. We can estimate the real
distance d from a sequence of samples by creating a
Maximum-Likelihood (ML) estimator: assuming in-
dependent estimates, the ML estimator of d is the
expected value E[O] = d.

3-1 Vertex weighting

An new estimate will update a vertex proportion-
ally to two values: 1) the relative distance to the
nearest vertex and 2) the resolution of the camera
at that point. This “relative angular distance” is a
ratio v € [0,1] we call angular gain which depends
on the angle a = ZVO.P and the angular resolu-
tion of the range imaging sensor p, and is defined by
v = 1—min(a/p,1). For example p = 0.24° for
the SwissRanger SR4000 camera. ~ is a gain in the
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sense it is a number between 0 and 1 used to mod-
ulate how much an estimate will be incorporated as
a new estimate for a vertex. The difference between
the expected distance and the sampled measurement
is used to compute what we call the innovation vec-

tor I, which is given by I= (@ — OI(x, y)) %
(where the over-bar denotes an algebraic distance).
This innovation vector is used to move the vertex to
its new position.

3-2 Maximum-likelihood estimation

To carry out the ML averaging, we wish to avoid
storing the history of innovation vectors and angu-
lar gains for each vertex in the PPM, as the num-
ber of vertices may rise into the hundreds of thou-
sands. We thus turn to implementing an online-ML
scheme at low cost by exploiting the recursive identity
X, = Z:‘L:l a;ix; = Xpo1 + =—— (ﬂl‘n - Xn_1)

. aitan
[6]. Indeed, this identity enables us to update the
weighted average of a sequence of values (7;)icq1,....n}
with weights (a;)icq1,....n}, from only the previous on-
line average (X, 1) and summed weights (Z?:_ll a;),
and the latest weight (a,) and value ().

In our case, we apply this scheme on a succession

of values given by the history of innovation vectors

(T;) , and weights given by the history of an-
i€{l,...,n}

gular gains (7;)ie{1,...,.n}- We do this by maintaining
for each vertex, on top of the running average position
V', a number we call the effective number of observa-
tions I', = 0 | . When a vertex is first created,
it is not updated but added as part of a new triangle,
and thus needs special initialization I'y = v, = 1.

The update of V,,_; when estimating the latest in-
novation vector E: and angular gain ~,, is then given
by:

n__7, 2)

Wy =Voor + =1,
! anl +’yn

Note that for an effective number of observations
I', we can retrieve the variance oy of the probabilistic
belief described in section 1-2 for vertex V', by using

the sensor variance ¢ (introduced in section 3.), taking
1 r

2 o2
v o

4. Implementation

We implemented our PPM algorithm on our
custom-made mobile robot named Kappa, which is
equipped with a Swiss Ranger TOF camera as a dis-
tance sensor (see Fig. 2). The code is written as
a C+4 ROS node for portability to other systems.
Mesh processing was performed on an off-board com-
puter with two Intel Xeon Quadcores 2.4 GHz, though
no parallel processing was used in particular for multi-
core optimization. This is notable, as the presented
algorithm relies on parallelizable ray-casting and in-
cremental update. We used an enriched version of
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Fig.2: Experimental setup, with robot facing white wall.

the CGAL polyhedron class for mesh representa-
tion, with an AABB tree to optimize the ray tracing
step. The source code is open source and available
as a Mercurial repository at http://winnie kuis.kyoto-
u.ac.jp/~kenzo/kappa/source.

5. Evaluation

Our main purpose is 3D surface reconstruction from
a set of 3D range images. A 3D range image can
be regarded to a point cloud by ignoring the optical
center and considering the 3D point associated with
each pixel.

5-1 Experimental setup

In our experiment, we placed a white wall approx-
imately 1.3 m away from the robot, and faced the
TOF camera towards it such that the image filled the
sensor’s field of view entirely. The robot remained
still during the entire experiment. Our goal here is to
measure how planar the PPM model becomes, versus
how planar the raw data is.

We recorded 200 frames of TOF camera images,
and tested the two methods as follows: 1) extract the
mesh generated by raw point cloud data or the PPM
2) fit a plane to the vertices of the mesh using lin-
ear least squares 3) extract the correlation coefficient
between the mesh and the plane.

5-2 Results

The results are plotted in Fig. 3. The higher the co-
efficient, the better the mesh fits the plane. Note the
quick increase and stability of the PPM correlation
over the lower and more erratic precision of the raw
point clouds. Using this simple reconstruction metric
we can observe that within about 5-6 frames (approx-
imately 2s), the mesh accuracy stabilizes; this is with
our unparallelized implementation. In addition, the
PPM accuracy is higher than that of the raw data at
all times. A real world example can be seen in Fig.
4. A more thorough evaluation would consist of more
complex, real environments with metrics such as one
presented in [7].
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Fig.3: Comparison of raw data (in red) and PPM (in blue)
over time, showing better accuracy and stability of our method
for all time frames.

Fig.4: Example of PPM built from a real world scene.

6. Future work

There is still much work to be done in order for the
PPM to be used for mobile robot scene reconstruction.
We plan to merge data from multiple viewpoints using
ICP, for example to recreate a 3D object online. In
case of dynamic data such as moving humans, we also
need to add a hole-punching step to remove improb-
able data when newer data becomes available. Once
the geometric mapping is complete, the addition of
color data, texture, and sound is of high priority.
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