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Abstract
This paper addresses the problem of automatic recognition

of three simultaneous speeches with two microphones, that is,
that of sound source separation where the number of sound
sources is greater than that of microphones. The approach used
is the direction-pass filter, which is implemented by hypothet-
ical reasoning on the interaural phase difference (IPD) and in-
teraural intensity difference (IID). Auditory processing calcu-
lates IPD and IID for each subband, and generates hypotheses
for precalculated IPD and IID for every direction including one
obtained by visual processing. Then the system calculates the
belief factor of hypothesis by Dempster-Shafer theory and de-
termines the direction of each subband. Subbands of the spe-
cific direction are collected and then converted to a wave form
by inverse FFT. With 200 benchmarks of three simultaneous
utterances of Japanese words, the average 1-best and 10-best
recognition rates of extracted speeches are 60% and 81%, re-
spectively.

1. Introduction
“Listening to several things simultaneously”, or computational
auditory scene analysis (CASA) may be one of the next goals
to automatic speech recognition systems (ASR) which have
been widely available recently on personal computers [1, 15, 2].
Since we hear a mixture of sounds under real-world environ-
ments, CASA techniques are critical in applying ASR for such
applications.

This paper addresses the problem of separation and au-
tomatic recognition of three simultaneous speeches with two
microphones, partially because it models the recognition of
speeches in the presence of speech from interfering talkers, and
partially because the number of sound sources is greater than
that of microphones. Our approach is to use sound source sep-
aration as a hearing aid for ASR; that is, each speech stream
is extracted from a mixture of sound and then is recognized by
ASR.

According to the theory of beamforming, by using n mi-
crophones, n � 1 dead angles can be formulated [3]. If sound
sources are mutually independent, n sound sources can be sep-
arated by Independent Component Analysis (ICA) can separate
n sound sources by using n microphones [4, 5]. In real-world
environments, however, this is often the case that the number of
sound sources is greater than that of microphones, and that not
all sound sources are mutually independent.

Varga and Moore applied hidden Markov model decompo-
sition to the recognition of two simultaneous speeches with one
microphone. One speaker utters the isolated digits, while the

other a monosyllabic word [6]. This may be the first experiment
of recognition of simultaneous speeches, but the experiment is
rather simple and each speech was not separated.

Nakatani et al. developed the BiHBSS which separates
speech streams from binaural inputs [7]. It firsts extracts har-
monic fragments by using a harmonic structure as clue, and then
groups them according to the sound source direction and con-
tinuity of fundamental frequency. The direction is obtained by
calculating the interaural phase difference (IPD) and interaural
intensity difference (IID) between the corresponding harmonics
of the left and right channels. BiHBSS is applied to recogni-
tion of two simultaneous speeches to improve the recognition
performance [8].

Although such spatial information improves the accuracy
of sound source separation, there remains ambiguities because
the direction obtained by BiHBSS carries ambiguity of about
�10Æ. To overcome this kind of ambiguity in the sound source
direction, we exploit the integration of visual and auditory in-
formation, since the direction obtained by visual processing is
much more accurate [9].

At the same time, there are many research on integration
of visual, auditory, and other perceptive information. Most of
these studies basically use additional perceptive input in order to
provide clue to shift attention of other perceptive input. For ex-
ample, research of sound-driven gaze are addressing how sound
source can be used to control gaze to the object which gener-
ates sound [10, 11]. Bimodal speech recognition is exploited
by combining visual lipreading with acoustic speech recogni-
tion [12]. This system assumes only one speaker and does not
separate sound sources from a mixture of sounds.

In this paper, we present the design of a direction-pass filter
that separates sound signals originating from a specific direction
given by visual or auditory processing. The direction-pass filter
does not assume either that the number of sound sources is given
in advance and fixed during the processing, or that the position
of microphones is fixed. This feature is critical for applications
under dynamically changing environments.

2. Direction-Pass Filter
The direction-pass filter has two microphones and two cameras
embedded in the head of a robot. The block diagram of its pro-
cessing is shown in Fig. 1. The flow of information in the sys-
tem is sketched as follows:

1. Input signal is sampled by 12KHz as 16 bit data, and
analyzed by 1024-point Discrete Fourier Transformation
(DFT). Thus, the resolution of DFT is about 11 Hz.



 Eurospeech 2001 - Scandinavia

Left Channel

Right Channel

IPD

IID

Frequency
Analysis

Frequency

Calculation of
IPD and IID

0
30
60

-30
-60
-90

90

0
30
60

-30
-60
-90

90

IID IPDHRTF

0
30
60

-30
-60
-90

90

0
30
60

-30
-60
-90

90

ID
FT

Combining
IPD and IID

Matching

IPD

Probability
Calculation

IPD

IID IID

0
30
60

-30
-60
-90

90

0
30
60

-30
-60
-90

90
0

30
60

-30
-60
-90

90 90

60

-90

Direction
Pass Filter

0
30
60

-30
-60
-90

90D
FT

Separated
Sounds

Stereo
Vision

Direction

Each Subband

Figure 1: Block diagram of direction-pass filter which extracts sounds originating from the specific direction

2. Left and right channels of each point (subband of 11Hz)
are used to calculate the IPD, ��, and IID, �p. Please
note that the suffix indicating subband is not specified.

3. The hypotheses are generated by matching �� and �p

with the reference data of a specific direction or every
direction.

4. Satisfying subbands are collected to reconstruct a wave
form by Inverse DFT (IDFT).

2.1. Stereo Visual Processing

The visual processing calculates the direction by the common
matching in stereo vision based on the corner detection algo-
rithm [13]. It extracts a set of corners and edges, and then con-
structs a pair of graphs. A graph matching algorithm is used
to find corresponding left and right images to obtain the depth,
that is, the distance and direction.

From this direction, the corresponding IPD and IID are ex-
tracted from the database, which are calculated in advance from
the data of the head-related transfer function (HRTF). In this pa-
per, the HRFT is measured at every 10Æ in the horizontal plane.

2.2. Hypothetical Reasoning on the Direction

The integration system first generates hypotheses IPD and IID,
Phsh(�) and Inth(�) of the direction, � for each subband. The
suffix of subband is not specified due to readability. The dis-
tance of IPD hypothesis, Phsh(�), and the actual value ��, is
calculated as follows:

dp(�) = (Phsh(�)���)
2 (1)

Similarly, the distance of IID hypothesis, Inth(�) and �p,
is calculated as follows:

di(�) = (Inth(�)��p)
2 (2)

Then, two belief factors are calculated from the distances
using probability density function as shown in Eq. (3), instead
of taking the minimum value of dP (�) and dI(�).

Pk(�) =

Z dk(�)�mp
s=n

�1

1p
2�

e
� 1

2
x2

dx (3)

where k indicates p (for IPD) or i (for IID). m and s is the
average and variance of dk(�), respectively. n is the number of
candidates of direction. In this paper, only each 10Æ is measured
and thus n = 36.

Next, a combined belief factor of IID and IPD is defined by
using Dempster-Shafer theory as is shown in Eq. (4).

Pp+i(�) = Pp(�)Pi(�) + (1� Pp(�))Pi(�)

+Pp(�)(1� Pi(�)) (4)

Finally, � with the maximum Pp+i is selected as the sound
source direction. This is the way how to determine the direction
of each subband.

2.3. Reconstruction of Singals by Subband Selection

When the direction � is given, the system determines that the
subband originates from � if Pp+i(�) is greater than 0.7. The
value of this constant is empirically determined. The system
collects satsifying subbands and converts them to a wave form
by applying Inverse DFT.

Usually, the direction is given by visual processing. In
some cases where such information is not available due to oc-
clusion, the direction is determined solely by auditory process-
ing. That’s why this complicated way of determining the sound
source direction and extracting sounds originating the specific
direction is adopted.

3. Experiments
3.1. Benchmark Sounds

The task is to separate simultaneous three sound sources us-
ing direction-pass filter defined by the previous section. The
benchmark sound set consists of 200 mixture of three concur-
rent utterances of Japanese words, which is used for the eval-
uation of sound source separation and recognition. Although
a small set of benchmarks were actually recorded in an ane-
choic room, most mixture of sounds were created analytically
by using HRTF. Of course, we confirmed that the synthesized
and actually recorded data don’t cause a significant difference
in speech recognition performance [16].

1. All speakers are located at about 1.5 meters from the pair
of microphones installed on a dummy head.

2. The first speaker is a woman located at 30Æ to the left
from the center (-30Æ).

3. The second speaker is a man located in the center.

4. The third speaker is a woman located at 30Æ to the right
from the center.

5. The order of utterance is from left to right with about
150ms delay. This delay is inserted so that the mixture
of sounds was to be recognized without separation.
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Figure 2: [Experiment 1] Comparison of 1-best/10-best recog-
nition rates by four systems

Each separated speech stream is recognized by a Hidden
Markov Model based automatic speech recognition system [14].
The parameters of HMM were trained by a set of 5,240 words
uttered by five speakers. More precisely, each training data is
analytically converted to five directions, �60Æ, �30Æ, and 0Æ,
by using HRTF. The training data is disjoint from the utterances
included in the above benchmarks.

3.2. Systems to be Compared

The performance of sound source separation is compared
among the following four systems.

Proposed Direction-pass filter with the direction given by Vi-
sion.

HBSS (Harmonic Based Stream Segregation System) sepa-
rates sound streams by spectral subtraction and by using
harmonic structures as clue [15].

BiHBSS Binaural HBSS disambiguates the crossing of har-
monic structures by using the direction of sound sources
obtained by IPD and IID [16].

ICA&BiHBSS Independent Component Analysis system
called “on-line blind source separation” [5] is combined
with BiHBSS. BiHBSS extracts only one sound streams
and the remaining signals are given to ICA system, be-
cause the remaining signals are expeccted to consist of
two sound sources [17].

HBSS takes monaural inputs, while the other three systems take
binaural inputs.

3.3. Experiment 1: Recognition of Three Simultaneous
Speeches

In Experiment 1, 200 benchmarks are separated by direction-
pass Filter with Vision, HBSS, BiHBSS, and ICA&BiHBSS.
Then, separated speeches are recognized by automatic speech
recognition system. The 1-best and 10-best recognition rates
for each speaker are shown in Fig. 2.

The proposed system shows the best performance. The
recognition rates for the first speaker are almost the same as
those for a single speaker. Those for the third speaker are better
than for the second speaker unlike the other three systems. This
reason will be investigated by Experiment 3.
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� �   10-Best average by Proposed
� �   1-Best average by BiHBSS
� �   10-Best average by BiHBSS
� �   1-Best average by HBSS
� �   10-Best average by HBSS

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|0.0

|10.0

|20.0

|30.0

|40.0

|50.0

|60.0

|70.0

|80.0

|90.0

|100.0

|110.0

R
ec

o
g

n
it

io
n

 R
at

e 
(%

)

Azimuth θ













�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

�

Figure 3: [Experiment 2] Influence of speakers nearness on the
average 1-best/10-best recognition rates

The second best system is ICA&BiHBSS. The recogni-
tion rates for the first speaker are the same in BiHBSS and
ICA&BiHBSS. However, those for the other speakers are much
improved, because the remaining signals given to the ICA are
distorted due to spectral subtraction in BiHBSS. By compar-
ing the performance of HBSS and BiHBSS, the effect of sound
source direction, or monaural vs binaural, is apparent.

3.4. Experiment 2: Robustness against Closer Speakers

In Experiment 2, we investigate the robustness of the three
speech stream separation systems, direction-pass filter with vi-
sion, BiHBSS, and HBSS, against closer speakers by chang-
ing the directions of each speaker. The azimuth between the
first and second speakers and that between the second and third
speakers are the same, say ”�”. We measured the 1-best and
10-best recognition for 10Æ, 20Æ, 30Æ, and 60Æ.

The result of recognition rates by proposed system, HBSS,
and BiHBSS is shown in Fig. 3. Recognition rates saturate
around the azimuth of more than 30Æ. For the azimuth of 10Æ

and 20Æ, recognition rates for the second (center) speaker are
quite poor compared with the other speakers (this data is not
shown in Fig. 3).

3.5. Experiment 3: Sensitivity to the Direction

In Experiment 3, the sensitivity to the direction in the direction-
pass filter is investigated by specifying different directions. The
direction given to the system varies by 10Æ from 60Æ to the left
to 60Æ to the right from the center.

The 1-best and 10-best recognition rates of separated sound
for every 10Æ azimuth are shown in Fig. 4. The correct azimuth
for this benchmark is 30Æ to the left (specified by -30Æ in Fig. 4),
0Æ, and 30Æ to the right. For these correct azimuths, recognition
rates are reduced significantly. The sensitivity of recognition
rates to the accuracy of the sound source depends on how other
speakers are close to. That’s why the curve of recognition rates
for the center speaker is the steepest in Fig. 4.

This experiment proves that if the correct direction of the
speaker is available, separated speech is of a high quality at
least from the viewpoint of automatic speech recognition. In
addition, the recognition rates is quite sensible to the accuracy
of the sound source direction if speech is interfered by closer
speakers.
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Figure 4: [Experiment 3] 1-best and 10-best recognition rates
of direction-pass filter with a given direction

While binaural microphone provides direction information
at certain accuracy, it is not enough to separate sound source in
realistic situations. There are inherent difficulties in obtaining
accurate direction by solely auditory processing. Thus, visual
directional information is essential in the proposed system.

4. Conclusion
In this paper, we presented the design of direction-pass filter
based on HRTF and reported the recognition performance of
three simultaneous speeches. As far as the sound sources are at
least at the angle of more than 30Æ, any number of sound sources
up to 12 can be separated by the proposed system. The major
contribution of this work is that the effect of visual information
in improving sound stream separation was made clear. While
many research has been performed on integration of visual and
auditory inputs, this may be the first study to clearly demon-
strate that information from a sensory input (e.g. vision) affects
processing quality of other sensory inputs (e.g. audition).

The remaining work includes real-time processing for
direction-pass filter and stereo vision, and real-world applica-
tions where HRTF may change drastically. We are currently
attacking real-time processing with promising results [18].
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