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Abstract

This paper presents a real-time auditory and vi-
sual tracking of multiple objects for humanoid un-
der real-world environments. Real-time processing
is crucial for sensorimotor tasks in tracking, and
multiple-object tracking is crucial for real-world
applications. Multiple sound source tracking needs
perception of a mixture of sounds and cancella-
tion of motor noises caused by body movements.
However its real-time processing has not been re-
ported yet. Real-time tracking is attained by fus-
ing information obtained by sound source local-
ization, multiple face recognition, speaker track-
ing, focus of attention control, and motor con-
trol. Auditory streams with sound source direc-
tion are extracted by active audition system with
motor noise cancellation capability from 48 KHz
sampling sounds. Visual streams with face ID
and 3D-position are extracted by combining skin-
color extraction, correlation-based matching, and
multiple-scale image generation from a single cam-
era. These auditory and visual streams are asso-
ciated by comparing the spatial location, and as-
sociated streams are used to control focus of at-
tention. Auditory, visual, and association process-
ing are performed asynchronously on different PC’s
connected by TCP/IP network. The resulting sys-
tem implemented on an upper-torso humanoid can
track multiple objects with the delay of 200 msec,
which is forced by visual tracking and network la-
tency.

1 Introduction
Humanoids and entertainment robots or at least mobile robots
have attracted a lot of attention last year, e.g., at IEEE/RSJ
First Humanoids-2000 conference, and are expected to play
a role of human partners in the 21st century. Let us imagine
the situation autonomous robots are used in social and home
environment, such as a pet robot at living room, a service
robot for office, or a robot serving people at a party. The robot
shall identify people in the room, pay attention to their voice
and look at them to identify visually, and associate voice and
visual images, so that highly robust event identification can

be accomplished. These are minimum requirements for social
interaction[Brookset al., 1998].

Some robots are equipped with improved robot-human in-
terface. Jijo-2 [Asoh et al., 1997] can recognize a phrase
command by speech-recognition system;AMELLA [Waldherr
et al., 1998] can recognize pose and motion gestures.Kismet
of MIT AI Lab [Breazeal and Scassellati, 1999] can recognize
speeches by speech-recognition system and express various
kinds of sensation.Hadaly of Waseda University[Matsusaka
et al., 1999] can localize the speaker as well as recognize
speeches by speech-recognition system.

However, the technologies developed so far are still imma-
ture; in particular, auditory processing and integrated percep-
tion among vision, audition, and motor control. At robotic
conferences such as IROS, SMC, and ICRA as well as AI-
related conferences, there were at most one or two papers re-
lated to auditory processing1, and most papers on robot per-
ception is limited to vision-only and vision with ultrasonic,
infra-red or laser range finders. This is unfortunate because
integrated processing of auditory and visual processing com-
bined with appropriate motor control is essential in social in-
teraction of robot systems.

For auditory and visual tracking, Nakadaiet al. presented
the active audition for humanoids to improve sound source
tracking by integrating audition, vision, and motor controls
[Nakadaiet al., 2000]. An active audition system is imple-
mented in a upper-torso humanoid to demonstrate that the
humanoid actively moves its head to improve localization by
aligning microphones orthogonal to the sound source and by
capturing the possible sound sources by vision. Although
such an active head movement inevitably creates motor noise,
the system adaptively cancels motor noise using motor con-
trol signals. The experimental result demonstrates that the
active audition by integration of audition, vision, and mo-
tor control enables sound source tracking in variety of con-
ditions. One of crucial problems is a lack of real-time pro-
cessing.

Matsuyamaet al. presented an architecture for asyn-
chronous coordination of sensorimotor control[Matsuyama
et al., 2000] so that the camera moves smoothly to track the

1Auditory processing shall be distinguished from speech recog-
nition. Auditory processing (auditory scene analysis) aims at sepa-
ration and understanding of multiple sound streams, such as human
speech, environmental noise, music, etc.



object in real-time. This architecture, calleddynamic mem-
ory, is general, but they use it only for vision-based motor
control. Shaferet al. presented the software architecture of
sensor fusion for an autonomous mobile robot[Shaferet al.,
1986]. The architecture is based on a parallel blackboard sys-
tem, and the sensors include vision, range finder, but not mi-
crophones. It exploits global consistency regarding position
and orientation of the vehicle and sensors. Murphy presented
the sensor fusion system for mobile robots called the Sen-
sor Fusion Effects (SFX) architecture, which is based on the
uncertainty management system by Dempster-Shafer theory
[Murphy, 1998].

Other robots with microphones as ears for sound source
localization or sound source separation have attained little in
auditory tracking.Kismet has a pair of omni-directional mi-
crophones outside the simplified pinnae[Breazeal and Scas-
sellati, 1999]. Since it is designed for one-to-one commu-
nication and its research focuses on social interaction based
on visual attention, the auditory tracking has not been im-
plemented so far.Hadaly uses a microphone array to per-
form sound source localization, but the microphone array is
mounted in the body and its absolute position is fixed during
head movements[Matsusakaet al., 1999]. In the both cases,
sound source separation is not exploited and a microphone
for speech recognition is attached to the speaker.

In the research of computational auditory scene analysis
(CASA) to understand a mixture of sounds, real-time pro-
cessing is one of the main problems in applying CASA to
real-world applications[Rosenthal and Okuno, 1998]. Real-
time processing is important to take appropriate actions in
daily environments where many people, robots and objects
exist. Auditory and visual tracking by Nakadaiet al. accepts
sounds in daily environment, but does not run in real-time
[Nakadaiet al., 2000]. Another auditory and visual tracking
by Nakagawaet al. does not run in real-time[Nakagawaet
al., 1999].

Two major issues that have not been done in the past are
attacked in this paper, that is, association of multiple auditory
and visual streams, and real-time processing of integrated au-
ditory and visual scene analysis.

The rest of the paper is organized as follows: Section 2
explains the robot hardware which is used as a testbed and
presents the issues in real-time tracking. Section 3 describes
the design of the system and the details of each module are
described in Section 4. Section 5 demonstrates and evaluates
the performance of the system. Section 6 discusses the obser-
vations of the experiments and future work and concludes the
paper.

2 Issues in Real-Time Tracking
2.1 Robot Hardware
As a testbed of real-time multiple-object tracking, we use a
upper-torso humanoid calledSIG shown in Fig. 1[Nakadaiet
al., 2000]. The cover of the mechanics is made of FRP and
discriminates internal and external world acoustically.SIG
has two microphones at the left and right ear positions to cap-
ture external sounds from outside of the body, and two mi-
crophones within the body to capture internal sounds mainly

Figure 1: Humanoid,SIG

caused by motor movements. All the microphones are omni-
directional microphones of Sony ECM-77S.SIG’s body has
four DOFs (degree of freedom), each of which is a DC motor
controlled by a potentiometer.SIG is equipped with a pair of
CCD cameras of Sony EVI-G20, but the current vision mod-
ule uses only one camera.

2.2 Task and Issues
The task in this paper is to track multiple objects in real-time
with two kinds of sensors, a camera and two microphones,
and one actuator to rotate the body. Some important issues in
this task are:
� Robustness in visual stream extraction (temporal se-

quences of face localization and face identification)
against non-uniform environments due to lighting con-
ditions or moving humans.

� Robustness in auditory stream extraction (temporal se-
quence of sound source localization and sound source
separation) against dynamic environments because ob-
jects (people) move and the humanoid also moves.

� Association of visual and auditory streams by face iden-
tification and sound source localization to compensate
missing or ambiguous data. Common representation for
both auditory and visual feature extractions is needed.

� Focus of attention control based on association to con-
trol actuators.

� Trade-off of processing speed vs quality of feature ex-
tractions for real-time processing.

� Method of synchronization between asynchronous audi-
tory and visual processing that have different processing
speeds. The frame rate of vision is 30 Hz, while the sam-
pling rate of sound is 48 KHz. Therefore, asynchronous
processing is essential to exploit the full range of con-
currency.

3 Design of the System
From the viewpoint of functionality, the whole system can
be decomposed into five layers —SIG Device Layer, Pro-
cess Layer, Feature Layer, Event Layer, and Stream Layer
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Figure 2: Modules and Layers of the System

(see Fig. 3) . From the viewpoint of implementation, the
whole system consists of six asynchronous modules — Au-
dition, Vision, Association, Focus-of-Attention, Motor Control,
and Viewer. This relation between two viewpoints is depicted
in Fig. 2. Since Vision module utilizes the full power of
Pentium-III 733 MHz CPU, the whole system is organized
in the form of distributed processing with three Linux nodes
based on Pentium-III with RedHat Linux 6.2J. The first node
with 600 MHz is for Audition, the second node with 733 MHz
for Vision, and the third with 450 MHz for the rest. They are
connected by TCP/IP over Fast Ethernet 100Base-TX.

The estimated processing time of each module executed on
a node is summarized below:

� Vision – 200 msec for face localization and identifica-
tion,

� Audition — 40 msec for sound source localization,

� Motor Control — 100 msec

� Network latency — up to 200 msec

Therefore, we set the goal that the response time of the system
should be 200 msec of delay.

Audition and Vision generate an event by feature extraction
and organize a stream as a temporal sequence of events. Motor
Control also generates an event of motion. Association fuses
these events to make a higher level representation. This fu-
sion associates auditory and visual streams to make an asso-
ciated stream. Focus-of-Attention makes a planning of SIG’s
movement based on the status of streams, that is, whether they
are associated or not.

Motor Control is activated by Focus-of-Attention module
and generates PWM (Pulse Width Modulation) signals to DC
motors. It also sends a motor event consisting of motor di-
rection (azimuth of the midsagittal plain) to Association mod-
ule. Viewer shows the status of auditory, visual and associated
streams in the radar and scrolling windows (see screen shots
shown in Fig. 5). Some modules are explained in details in
the next section.

4 Details of Each Module
4.1 Active Audition Module
Sound localization for a robot or an embedded system is usu-
ally solved by using interaural phase difference (IPD) and in-
teraural intensity difference (IID). These values are calculated
by using Head-Related Transfer Function (HRTF). However,
HRTF depends on the shape of head and it also changes as
environments change. For real-world applications, sound lo-
calization without HRTF is preferable. Nakadai et al. pro-
posed the method based on the auditory epipolar geometry,
an extension of epipolar geometry in stereo vision to audition
[Nakadai et al., 2000]. They also proposed active audition
for sensorimotor task with canceling motor and mechanical
noises. However, they failed in doing the jobs in real-time,
because they stuck to pure-tone processing. In this paper, we
extend their approach (1) by exploiting the harmonic structure
to extract peaks precisely and (2) by solving the uncertainty
in sound source localization by Dempster-Shafer theory.

Audition module equipped with active audition is depicted
in Fig. 3. The input signal, a mixture of sounds originating
from different directions, is sampled with sampling frequency



Table 1: Belief Factor of IID, BFIDD(�)

� 90Æ � 35Æ 30Æ � �30Æ �35Æ � �90Æ
+ 0.35 0.5 0.65

I - 0.65 0.5 0.35

of 48 KHz and 16-bit quantization, and its spectrogram is cal-
culated by Fast Fourier Transforms (FFT). Audition extracts
pitches (fundamental frequency, F0), separates and localizes
sound sources.

Peak Extraction and Sound Source Separation: First a
peak is extracted by a band-pass filter, which passes a fre-
quency between 90 Hz and 3 KHz if its power is a local max-
imum and more than the threshold. This threshold is auto-
matically determined by the stable auditory conditions of the
room. Then, extracted peaks are clustered according to har-
monicity. A frequency of Fn is grouped as an overtone (in-
teger multiple) of F0 if the relation j Fn

F0
� bFn

F0
cj � 0:06

holds. The constant, 0.06, is determined by trial and error.
By applying Inverse FFT to a set of peaks in harmonicity, a
harmonic sound is separated from a mixture of sounds.

Sound Source Localization: Once a harmonic structure is
obtained, the direction of sound source is calculated by hypo-
thetical reasoning for IPD (Interaural Phase Difference) and
IID (Interaural Intensity Difference). The azimuth (horizontal
direction) is quantized and represented by every 5Æ discrete
value in the range of �90Æ. The front direction of SIG is 0Æ.

From the extracted harmonic structure of left and right
channels, a pair of harmonic structures is obtained. Then the
IPD, Ps, is calculated. Auditory Epipolar Geometry gener-
ates a hypothesis of IPD Ph for each 5Æ candidate, � [Nakadai
et al., 2001]. Since the IPD is ambiguous for frequencies of
more than 1200 Hz, the distance, d(�), in IPD between the
data and a hypothesis is defined as follows:

d(�) =
1

nf<1200Hz

1200HzX
f=F0

(Ph(�; f)� Ps(f))
2

f
(1)

Where nf<1200Hz is the number of overtones of which fre-
quency is less than 1200 Hz.

The similar relation may hold for IID, but our experience
with IID proves that it can discriminate at most the side, that
is, left or right. Suppose that Is(f) is the IID for peak fre-

quency f . If the value of I =
P3000Hz

f=1200Hz Is(f) is non-
negative, the direction is decides as left, otherwise as right:

Integration of IPD and IID by Dempster-Shafer theory
To determine the sound source direction, the belief factors of
IPD and IID are calculated and then integrated by Dempster-
Shafer theory. The belief factor of IPD, BF IPD, is calculated
by using probability density function defined by Eq. (2).

BFIPD(�) =

Z d(�)�mp
s

n

�1

1p
2�

exp

�
�x2

2

�
dx (2)

where m and s are the average and variance of d(�), respec-
tively. n is the number of d.

The belief factor of IID, BFIID(�) is defined by Table 1.
Then, belief factors of IPD and IID, BFIPD and BFIID, are

integrated using Dempster-Shafer theory as defined in Eq. (3).

BFIPD+IID(�) = BFIPD(�)BFIID(�)+�
1�BFIPD(�)

�
BFIID(�) +BFIPD(�)

�
1�BFIID(�)

�
(3)

� for the maximum BFIPD+IID is treated as the sound source
direction of the harmonics. Finally, Audition sends an audi-
tory event consisting of pitch (F0) and a list of 20-best direc-
tions (�) with reliability factor for each harmonics.

4.2 Real-Time Multiple Face Tracking
Multiple face detection and identification suffers more
severely from frequent changes in the size, direction and
brightness of face. To cope with this problem, Hidai et al.
combines skin-color extraction, correlation based matching,
and multiple scale images generation [Hidai et al., 2000].

The requirements on multiple face tracking are the capabil-
ity of discriminating face data of the same face ID from others
and on-line learning. The first requirement is a class concept.
Turk et al. proposed the eigenface matching technique as a
kind of subspace method [Turk and Pentland, 1991]. A sub-
space for discrimination is created by Principal Component
Analysis (PCA). PCA, however, does not provide the means
to group a data according to its face ID, since such an ID
cannot be generated by PCA. Thus, the subspace obtained by
PCA is not always suitable to distinguish such classes.

On the other hand, Liner Discriminant Analysis (LDA) can
create an optimal subspace to distinguish classes. Therefore,
we use Online LDA [Hiraoka et al., 2000]. In addition, this
method continuously updates a subspace on demand with a
small amount of computation.

The face identification module (see Fig. 2) projects each
extracted face into the discrimination space, and calculates
its distance d to each registered face. Since this distance de-
pends on the degree (L, the number of registered faces) of dis-
crimination space, it is converted to a parameter-independent
probability Pv as follows.

Pv = �

�
1

2
;
d2

2

�
=

Z
1

d2

2

e�t t
L

2�1dt (4)

The face localization module converts a face position in
2-D image plane into 3-D world coordinate. Suppose that
a face is w � w pixels located in (x, y) in the image plane,
whose width and height areX and Y , respectively (see screen
shots shown in Fig. 5). Then the face position in the world
coordinate is obtained in terms of distance r, azimuth � and
elevation � by the following equations.

r =
C1

w
; � = sin�1

 
x� X

2

C2 r

!
; � = sin�1

 
Y
2
� y

C2 r

!

where C1 and C2 are constants defined by the size of the im-
age plane and the image angle of the camera.

Finally, Vision module sends a visual event consisting of a
list of 5-best Face ID (Name) with its reliability and position
(distance r, azimuth � and elevation �) for each face.
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4.3 Stream Formation and Association
Association module forms auditory streams from auditory
events and visual streams from visual events, and associates a
pair of auditory and visual streams to create a higher level
stream, which is called an associated stream (see Fig. 2).
The flow of processing in stream formation and association
is summarized as follows (Figs. 4(a)-(d)):

1. Events from Audition, Vision and Motor modules are
stored in the short-term memory.

2. Direction information of events is converted into the ab-
solute coordinate to treat them in the common coordi-
nate.

3. Events are grouped into an auditory or a visual stream
according to a temporal sequence of events.

4. Streams are synchronized by every 100 msec to calculate
the distance between streams.

5. An auditory and a visual stream which are close for
more than a constant time are associated as an associ-
ated stream.

First, events are stored in the short-term memory and kept
only for 2 seconds to attain incremental and real-time pro-
cessing. In Fig. 4(a), where S
, V
 and M
 represent events
created by Audition, Vision and Motor modules, respectively.
Each module creates events at its own cycle, e.g. 40 msec
for audition, 200 msec for vision and 100 msec for motion.
Then, motor events are synchronized with auditory and vi-
sual events. To put it concretely, a motor direction when an
auditory or a visual event appeared is estimated from motor
events in the short-term memory. A motor event with the
estimated motor direction is shown as M . Because visual
events from Vision module and auditory events from Audition
module are represented in robot coordinate, the directions of
these events are converted to ones in the absolute coordinate
by using estimated motor direction. These are represented as
S or V in Fig. 4(a). This synchronization process runs with

a delay of 200 msec as mentioned in Sec. 3.
Auditory and visual streams are formed in Fig. 4(b). X-

axis indicates elapsed time from right to left, and Y-axis in-
dicates azimuth in the absolute coordinate. Thin lines with
small filled circles and a thick line with small rectangles rep-
resent auditory streams and a single visual stream. An audi-
tory event is connected to the nearest auditory stream within
the range of �10Æ and with common F0. A visual event is
connected to the nearest visual stream within 40 cm and with
a common face ID. In either case, if there are multiple can-
didates, the most reliable one is selected. If any appropriate
stream is found, such an event becomes a new stream. In
case that no event is connected to an existing stream, such a
stream remains alive for up to 500 msec. The system cannot
detect an auditory or a visual event when a person stops talk-
ing and looks away for a moment. This margin of 500 msec
is prepared to continue streams in case of the missing event
extraction. After 500 msec of keep-alive state, the stream ter-
minates.

When the distance between an auditory and a visual stream
is close for more than a constant time, they are regarded as



streams originating from the same object and integrated into
an associated stream, which is a higher layer representation of
a stream shown in Fig. 2. Because auditory and visual streams
consist of events with 40 msec and 200 msec cycles, respec-
tively, it is difficult to evaluate the distance between these
two streams without synchronization. Then, they are syn-
chronized with the same cycle, 100 msec. Fig. 4(c) illustrates
synchronized streams as lines with large circles and rectan-
gles. If an event is not available in this case, linear regression
is used for interpolation in the same way as synchronization
with motor events.

An auditory and a visual streams are associated if their di-
rection difference is within the range of �10Æ and this situa-
tion continues for more than 50% of the 1 sec period shown
in Fig. 4(d).

The visual direction is usually used for the direction of the
associated stream because visual information is more accu-
rate. However, when a tracking person is occluded, the sys-
tem cannot use visual information. In this case, auditory in-
formation is used for the associated stream. This suggests an
advantage of integration of audition and vision, i.e. auditory
information is efficient not only for pre-attentive uses such as
a trigger of attention but also for compensations of missing
or ambiguous information as this case. If either auditory or
visual event has not been found for more than 3 sec, such an
associated stream is deassociated and only existing auditory
or visual stream remains. If the auditory and visual direction
difference has been more than 30Æ for 3 sec, such an associ-
ated stream is deassociated to two separate streams.

4.4 Focus of Attention Control
SIG should pay attention for sounds from unseen objects to
get further information. When such a sound does not exist,
faces with sound, i.e. talking people, should have high pri-
ority because they are attractive even for human perception.
The principle of focus-of-attention control hereby is as fol-
lows:

1. An auditory stream has the highest priority,

2. an associated stream has the second priority, and

3. a visual stream has the third priority.

The algorithm of focus-of-attention control is sketched by
using an example shown in Fig. 5, which depicts how audi-
tory and visual streams are generated and associated.

1. Focus of attention changes to a new association stream.
[t1 and t8 of Fig. 5].

2. If one of the visual and auditory stream of an associated
stream terminates due to occlusion, disappearance, or
end of speech, association continues [t4 to t5 of Fig. 5].

3. If this state continues for a particular time, say 3 seconds,
the focus of attention may change.

(a) Focus of attention changes to one of associated
streams.

(b) If no associated stream is found, focus of attention
changes to one of auditory streams. [t6 of Fig. 5].

(c) Otherwise, focus of attention changes to one of vi-
sual streams.

4. In turning the body to associate the auditory stream to
visual one, focus of attention keeps the same even if a
new associated stream is generated.

5 Experiments and Evaluation
A 40-second scenario shown in Fig. 5 is used as a benchmark.
The performance of integrated auditory and visual tracking is
shown in Fig. 5, which shows that focus of attention changes
twice. In the first half of the scenario up to t = 26 sec, two
speakers are apart, while in the second half they are close
and viewed in the same camera view field. In both cases, the
system can track the speakers well.

The direction of SIG’s body is depicted in Fig. 6, which
shows that the motor control succeeds in giving correct PWM
motor commands. To sum up, sensorimotor task in single-
and multi-speaker tracking is well accomplished.

The performance of visual tracking is shown in Fig. 7. This
timechart is generated by collecting the first candidate from
the internal states of Vision module. Therefore, the motor
movement is the same as the above. In the first half of the
scenario, occlusion causes a gap of visual streams between t4
and t5. From t6 to t7, no person can be seen due to the limited
range of camera view field. Fig. 5 proves that occlusion and
out-of-sight can be easily recovered by associated streams.

The performance of auditory tracking is shown in Fig. 8,
which is generated in the same manner as Fig. 7. The Audition
module can separate two auditory streams correctly from t 3
to t = 23 sec, and t9 to t10, but generate erroneous streams
around t8 and t9. In addition, the directions of two speakers
are not so correct from t = 11 sec (t5) to t = 17 sec, because
Mr. A moves and SIG tracks him by rotating its body. That is,
the reverberation (echo) due to this moving talker and motor
noise deteriorates the quality of sound source localization.

5.1 Limitations on the Proposed System
The room used in this experiment is about 3m in width and
length and 2m in height, and sound absorbing materials are
attached on walls, ceiling and floor. It is not anechoic, but
has reverberation time of 0.1 sec. Because the value in a nor-
mal speech studio of the equivalent size is about 0.2 sec, the
room has less reverberation. Acoustic conditions, however,
depends on objects in the room. When we put a plastic parti-
tion of 1.5 m � 1.5 m with strong reverberation in the room,
the correctness of sound source localization is reduced re-
markably.

The background noise level of the room is 30 dBA on aver-
age. This is measured with the filter by A weighting, similar
to human auditory characteristic. The value of 30 dBA corre-
sponds to the noise level of a room in a quiet residence. We
confirmed that the current system works well up to 40 dBA
of background noise level, but we have not checked above
40 dBA.

The room has six halogen lights with adjustment function
of the intensity on the ceiling. The range of the light intensity
is from 0 to 50 lux. Because the light intensity from 300 to
1500 lux is recommended for a normal office by JIS (Japanese
Industrial Standard), even the maximum light intensity of the
room is weak. Our face extraction and recognition method
works well under the condition of more than 5 lux. Visual
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processing is robust against the change of light intensity. In
this experiment, the light intensity in the room is 50 lux.

Other benchmarks such as crossing of moving talkers,
moving talkers without seeing any talkers, and alternative
talking of four speakers prove that the resulting system suc-
ceeds in real-time sensorimotor tasks of tracking 2.

2Since the work is related to the real-time processing, the
readers may be suggested to visit the following Web site:
http://www.symbio.jst.go.jp/SIG/

6 Conclusion and Future Work
The key idea of real-time tracking is “For each processing,
take it easy, and ambiguities will be resolved with the help of
others.” This idea is obtained by the scrutiny of the behavior
of each component of implementations of Nakadai et al.’s
work [Nakadai et al., 2000]. We do not stick to pure tones, but
utilize the collective behavior of harmonic sounds; we prefer
frequency resolution over the time resolution by increasing
the points of FFT. We give up the precise face localization
and identification. Instead, we associate auditory, visual, and
motor direction information to localize the sound sources.



Some technical future work includes learning the adap-
tive association of different or dynamic environments. Since
lighting conditions and reverberation (echo) change dras-
tically in such environments, Vision and Audition modules
should adjust their parameters on demand. In addition, As-
sociation should adapt its parameters for stream forming and
association. Baysian algorithm for resolving ambiguities in
stream forming and association is a promising technique. An-
other future work is incorporating stereo vision. Even in a
static environment robust auditory processing such as sound
source separation and localization would be useful when a
room is noisier, has objects with strong reverberation, or has
many people.

We believe that our result would open a new era of
sound processing, in particular, cocktail party computer or
“Shotoku-Taishi” computer that can listen to several things at
once.

Auditory and visual tracking should be incorporated in a
total system with robot-human interface. We have already
built such a system comprising speech recognition, speaker
identification, and speech synthesis based on the proposed
system. Once the application is fixed, the top-down stream
separation may be exploited. Some information that forces
top-down stream separation includes speaker identification.
The speaker information may reduce the search space of face
recognition and speech recognition. For example, let us con-
sider that crossing of two talking persons. In this case, the
system may miss judging that they are approaching and then
receding because speaker IDs are lacking. Thus, speaker
identification can reduce this kind of ambiguity. Its design
and implementation will be reported by a separate paper,
since this paper focuses on the real-time processing.
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