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ABSTRACT

In this paper, we present a method of integrating auditory
and visual perception for mobile robot for RoboCup. When
humanoid robots are fielded for soccer game, they need to
quickly react to the environment using all possible sensory
inputs. While current robots heavily depends on visual
inputs, auditory inputs actually play significant role in
detecting events where visual inputs are not available, such
as side and behind the face direction. Sound of other players
kicking the ball, and shouting of teammates are critical cues
for sophisticated teamwork play, such as offside trap. This
paper presents integration of auditory and visual perception
for identifying sound sources and separating sounds at high
accuracy using both auditory and visual inputs.

1 INTRODUCTION

Sound plays important roles in real-world soccer games,
even if a soccer field is extremely noisy. It is often the case
that communication by voice is critical in key plays: At
a hero interview after a game, he/she said “Since I heard
my teammate’s voice requesting my pass, I made a pass
to an open space to which, I supposed, he would run and
he made a goal.” However, sound or voice has not been
utilized in mobile robots. In RoboCup real robot league,
small size or middle size, vision and tactile information are
fully exploited, but auditory information is not used.

Sound is gathering attention as important media for
multi-modal communications, but is less utilized as input
media than characters or images. One reason is the lack
of a general approach to recognize auditory events from
a mixture of sounds. Usually, people hear a mixture of
sounds, not a single sound. People with normal hearing can
separate sounds from the mixture and focus on a particular
voice or sound in a noisy environment. This capability is
known as the cocktail party effect[1].

Perceptual separation of sounds, called auditory scene
analysis, has been studied by psychoacoustic and psy-
chophysical researchers for more than forty years. Al-
though many observations have been analyzed and reported
[2], it is only recently that researchers have begun to use
computer modeling of auditory scene analysis.

This emerging research area is called computational
auditory scene analysis (CASA)[3, 4, 5, 6], and its goal is
the understanding of an arbitrary sound mixture including
non-speech sounds and music. Computers need to be able

to decide which parts of a mixed acoustic signal are relevant
to a particular purpose – which part should be interpreted as
speech, for example, and which should be interpreted as a
door closing, an air conditioner humming, or another person
interrupting. CASA focuses on the computer modeling and
implementation for the understanding of acoustic events.

To recognize scene around us, we must be able to
identify which set of perceptive input (sounds, pixels, etc)
constitutes an object or an event. To understand what is
in the visual scene, people (or a machine) should be able
to distinguish a set of pixels which constitutes a specific
object from those that are not a part of it. In Computational
Auditory Scene Analysis, sound shall be separated into
auditory streams each of which corresponds to specific
auditory event [2, 4, 5, 6].

In this paper, we argue that integration of auditory
and visual perception is significant in intelligent robotics
communities, report the current status of the research and
presents the research issues.

2 WHY IS SOUND NEEDED?

In this section, we argue why sound is needed in the context
of RoboCup, in particular, simulator League, real robot
league, and rescue.

RoboCup Simulator League Since simulator league tries
to capture every aspect of human highest-level soccer, it
models auditory and visual sensory information. RoboCup
simulator league consists of soccer server and 22 soccer
clients (players). Every communication, even between
teammates, should be done via soccer server.

(1) Vision: Soccer server gives visual information to each
client as a message of see.

(2) Audition: A player can try to send a message to other
players by submitting a command say.

A message originated from a player is delivered to all
teammates that exist within the range of voice commu-
nication by the form of hear. A message from the
referee is delivered to all the players.

Soccer server also supports communication between coach
and teammates. All messages from the coach is delivered
to all teammates, since the purpose of coach is to control a
training session.



RoboCup Real Robot Leagues In RoboCup small-size
league and middle-size league, vision is the primary sensory
information, with tactile or sonar being used as a supple-
mentary sensory information. Sonar uses sounds, but is not
considered as auditory sensory systems, because it does not
hear environmental sounds.

Since a robot player moves, visual and auditory sensory
systems are quite difficult to process. Since the soccer field
is flat, mobility in RoboCup causes local cameras equipped
with a robot moves horizontally. Therefore, adjustment of
visual information is needed. This is the same for auditory
sensory systems.

Additional difficulties are introduced by the mobility.
When a robot moves, it is driven by motors and driving
mechanism makes sounds. The auditory sensory systems
should discriminate driving sounds it makes from those that
other robots make.

Some simple ideas to use auditory sensory systems may
be listed as follows:

(1) When a robot player hears the whistle human referee
blows, it stops the game and gets ready for restart by
itself.

(2) Human coach instructs a robot player or all robot players
by a simple voice command. Auditory communication
gives an additional communication channel between
the controller and robots. This is important, because
wireless communication systems sometimes failed in
transmitting a command to a robot in big RoboCup
matches.

RoboCup Humanoid Challenge The ultimate goal of
RoboCup Initiative is proposed as follows [7]:

By 2050, a team of fully autonomous humanoid
robot soccer players shall win the soccer game,
comply with the official rule of the FIFA, against
the winner of the most recent World Cup.

Kitano and Asada insisted the importance of sensory
systems, and presented the research issues from the follow-
ing aspects:

(1) Vision — 3-D representation and real-time processing,

(2) Auditory Systems — Speech understanding and com-
putational auditory scene analysis,

(3) Other Sensing Systems — tactile systems such as touch,
and force/torque

(4) Sensor Fusion — robust multi-sonsory systems and
real-time processing,

(5) Sensory-Motor Integration — concept formation in as-
sociating sensory inputs and motor commands.

At the AAAI-96, the panel entitled “Challenge Problems
for Artificial Intelligence’, Brooks proposed two problems
concerning sounds [8]:

� Challenge 1: Speech understanding systems that are
based on different principles other than hidden Markov
models.

� Challenge 2: Noise understanding systems.

Although CASA shares the above interests, its ultimate
goals go further; understanding general acoustic signals
such as voiced speech, music and/or other sounds from
real-world environments.

Speech enhancementis essential to enable automatic
speech recognition to work in such environments. Conven-
tional approaches to speech enhancement are classified as
noise reduction, speaker adaptation, and other robustness
techniques [9]. Speech stream separation is a novel ap-
proach to speech enhancement, and works as the front-end
system for automatic speech recognition just as hearing aids
for hearing impaired people.

Okuno et al. proposed the problem of Understand-
ing Three Simultaneous Speechesas a challenge problem
for Artificial Intelligence, in particular, for CASA [10].
Since psychoacoustic studies have recently showed that hu-
man cannot listen to more than two things simultaneously
[11], CASA research would make computer audition more
powerful than human audition.

RoboCup Rescue Challenge RoboCup Rescue is pro-
posed as the second domain of RoboCup Initiative [12].
Disaster rescue is one of the most serious social challenges,
because it involves a huge number of heterogeneous agents
in dangerous environments. Kitano et al. argue that
RoboCup Rescue is very important in large scale multi-
agent domains and focus on search and rescue strategies.
They do not discuss on sensory systems explicitly, but
apparently new sensory systems should be designed and
developed. Sense of smell or auditory systems is an impor-
tant candidate to allocate victims under collaped houses by
searching faint sounds they create.

In addition to new sensory systems, integration of
sensory systems and motor controls is essential. When a
robot enters a dameged house and tries to remove debris
under which victims are supposed to be buried, it hears a
strange noise made by his behavior. In this case, the robot
should identify the cause of the noise and infer what will
happen if it continues his jobs. If it infers that the house
will be destroyed, it should stop his jobs immediately. Or
if the sound is victims’ voice, he may try to communicate
with them.

Needless to say, research issues presented in RoboCup
Humanoid Challenge also apply Rescue Challenge [7].

3 WHY IS INTEGRATION NEEDED?

In real soccer games, players shout to communicate with
other players on their position, demands, alerts, opponent’s
moves, etc. A simple shouting is often used to notify
player’s position when the player is outside of the visual
field of the other player. In this case, quick identification
of direction of sound source is essential. In other cases,



a player may shout to alert the opponent’s movement and
demend for specific actions such as pass the ball, so that
understanding what was said is critical. These cases take
place not as an isolated action, but they could happen all at
once, hence sounds are possible overlapped. While sound
source allocation has substantial ambiguity, it need to be
integrated with vision system. For example, suppose a
player has a ball, and the the player intends to pass a ball
to someone in the back who is currently not in the visual
field. A teammate who is in that position to receive a ball
may shout to the player who has a ball to alert the position
and demand for a pass. The player with a ball recognizes
the approximate location of the teammate, but not exact
enough to send an accurate pass. The player then must
quickly rotate face or body to capture the teammate in the
visual field. Then, two players all of sudden come into the
visual field. One is ready to receive a pass, and the other
is not. Auditory information now has to be merged with
visual information to quickly identify which one of two
players is willing to accept the pass. It will cause potential
mis-pass or intercept if the player sends a pass to the other
player who is not ready to accept the pass. He may be in the
move to run into an open space, so that the other teammate
can quickly pass a ball to him.

While this is a simple example, it illustrates the case
where the use of both auditory and visual information are
necessary to carry out basic behaviors in soccer, and that the
integration, not a separate processing, is essential to carry
out the task.

In order to carry out such a task, we need to establish a
method to integrate auditory and visual information. There-
fore, in this paper, we exemplify a simple example of sound
source separation and direction identification with auditory
and vision integration. Preliminary experiments are shown
on the effects of increasing modalities in separating sound
streams from a mixture of sounds. The modalities to be
checked is monaural sounds, binaural (a pair of stereo
microphones embedded in a dummy head), and vision.

3.1 Separation by Harmonics

Nakatani et al. developed a harmonic stream separation
system called HBSS (Harmonic-Based Stream Segregation)
[5, 13], because harmonics is mathematically defined and
thus easy to formulate the processing.

HBSS extracts harmonic stream fragments from a mix-
ture of sounds by using multi-agent system. It uses three
kinds of agent; the event detector, the generator, and tracers.
The event detector subtracts predicted inputs from actual
input by spectral subtraction [14] and gives residue to the
generator. The generator generates a tracer if residue con-
tains harmonics. Each tracer extracts a harmonic stream
fragment with the fundamental frequency specified by the
generator and predicts the next input by consulting the
actual next input.

HBSS uses the following equations as the model of a
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(b) Harmonic streams separated by HBSS
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(c) Harmonic streams separated by Bi-HBSS

Figure 1: Separation of woman’s and man’s utterances from
a mixed sound. The upper curve of fundamental frequency
f0 is woman’s utterance, and the lower man’s. HBSS
(Monaural) fails in separation where woman’s f0 and man’s
f1 are crossing.

harmonic fragment:

H(t) =
X

k=0

Ak(t) sin(�k(t)); (1)

�̇(t) = 2�fk(t); (fk(t) ' (k + 1)�f0(t)); (2)

whereH(t) is the waveform at time t, andAn(t), sin(�n(t)),
�n(t), and fn(t), respectively, are the amplitude, waveform,
phase, and frequency (Hz) of the n-th harmonic component.

Extracted harmonic stream fragments are, then, grouped
according to the continuity of fundamental frequencies.

HBSS is flexible in the sense that it does not assume
the number of sound sources and extracts harmonic stream
fragments well. Figure 1 shows the result of experiments
on harmonic stream separation from a mixture of man’s and
woman’s utterances both saying “aiueo” (Japanese vowels,
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(a) Harmonic streams separated by HBSS
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(b) Harmonic streams separated by Bi-HBSS

Figure 2: Effects of Sound Source Direction: The difficulty
in separation resides in the crossing of two fundamental
frequencies. HBSS separates a longer stream and a short
one shown in (a). Bi-HBSS separates two streams well as
is shown in (b).

of course, harmonics). The input is shown in Fig. 1 (a) and
fundamental frequency (f0) of separated harmonic streams
are shown in Fig. 1 (b).

However, the grouping of harmonic stream fragments
may fail in some cases. For example, consider the case
that two harmonic streams cross (see Fig. 2 (b)). HBSS
cannot discriminate whether two harmonic streams really
cross or they come closer and then go apart, since it uses
only harmonics as a clue of sound source separation.

3.2 Separation by Harmonics and Direction

The use of sound source direction is proposed to overcome
this problem, and Bi-HBSS (Binaural HBSS) is developed
by Nakatani et al. [5, 15]. That is, the input is changed
from monaural to binaural. Binaural input is a variation
of stereo input, but a pair of microphone is embedded in
a dummy head. Since the shape of a dummy head affects
sounds, the interaural intensity difference is enhanced more
than that for stereo microphones.

Sound source direction is determined by calculating
the Interaural Time (or phase) Difference (ITD) and the
Interaural Intensity Difference (IID) between the left and
right channels. Usually ITD and IID are easier to calculate
from binaural sounds than from stereo sounds [16].

Bi-HBSS uses a pair of HBSS to extract harmonic
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Figure 3: Improvement of Error reduction rates for the
1-best/10-best recognition of each speech by incorporating
more modalities.

stream fragments for the left and right channels, respec-
tively. The interaural coordinator adjusts information on
harmonic structure extracted by the both HBSS. Then,
sound source direction is determined by calculating ITD
and IID between a pair of harmonic stream fragments. The
sound source direction is fed back to the interaural coor-
dinator to refine harmonic structure of harmonic stream
fragment. Finally, harmonic stream fragments are grouped
according to its sound source direction. Thus the problem
depicted in Fig. 2 (a) is resolved (see Fig. 2 (b)).

Thus, increasing modality with sound source direction
improve the performance of harmonic stream separation.

3.3 Separation by Harmonics, Direction, Visual Direc-
tion

To evaluate the performance of separation, AI chal-
lenge “Understanding three simultaneous speeches” [10]
is attacked. Three people from different directions utter a
Japanese word simultaneously. Benchmark set consists of
200 mixtures of three Japanese words uttered by different
women. The second speaker utters a Japanese word 150 ms
later after the first speaker, and the third speaker utters 150
ms later after the second speaker. This is because a mixture
of sounds may be recognized by speech recognition system.

Since a Japanese word consists of a sequence of vowel,
consonant, and vowel, speech stream is reconstructed by
using harmonic streams for harmonic parts and substituting
residue for non-harmonic parts [17, 18]. The idea of residue
substitution is similar to the psychophysical observation
known as auditory induction[19]. It is a phenomenon that
human listeners can perceptually restore a missing sound
component if it is very brief and masked by appropriate
sounds.

Separated speech is tried to recognize by automatic
speech recognition system, HMM-LR [20], which is based
on hidden Markov model of each phonetic transition. The
parameters of HMM-LR are trained by a set of 5,240 words
uttered by five speakers. Of course, training data and



benchmark data are disjoint.
The performance of segregation is measured by error

reduction ratesfor the 1-best and 10-best recognition [21].
Error reduction rate for the n best, Rn

sep, in per cent is
calculated as follows:

Rn
sep =

An
sep �An

mix

An
org �An

mix

� 100:

where An is a n-best accuracy of recognition, and suffix
org, mix, and sep stand for the single unmixed original
sounds, mixed sounds, and separated sounds, respectively.
By HMM-LR, 1-best and 10-best accuracy of recognition
for unmixed utterance is about 70% and 96%, respectively.
1-best and 10-best accuracy of recognition for mixed utter-
ances is at most 5%.

Error reduction rates by speech stream separation com-
bined with HBSS and Bi-HBSS is depicted in Fig.3. By
Bi-HBSS, 55% of recognition errors are recovered, but is
not satisfactory result.

One of reason why recognition errors are not recovered
well is that the accuracy of sound direction is �10� to
obtain a stable separation of harmonic stream fragments.

Nakagawa et al. obtained the sound source direction by
vision instead of the above methods. Since such a direction
is accurate, sound source separation is performed by the
direction filter, which uses the recalculated ITD and IID.
Error reduction rates obtained by using visual direction is
shown in Fig.3. By combining vision, most errors are
reduced. Of course, if there are several sound sources at
the same direction, this method won’t work.

3.4 Visual Tracking with Auditory Direction

Visual information helps auditory sensory systems to im-
prove the performance of sound source separation. This is
also true for the opposite.

Nakagawa et al. reported the results of experiments
to use the direction of sound source to narrow the search
region of visual tracking [21]. Although visual processing
consists of very simple color matching algorithm, it can
track three speakers well.

In the current experiments, we are developing a tracking
system whose capabilities include the followings:

(1) Someone shouts behind a robot, the robot looks back at
it and starts its tracking.

(2) A robot player loses a ball. When the whistle is blown
by the refree to restart the game, the robot player detects
the direction of sound source, that is, the refree; it
rotates toward its direction; and then it looks for a ball
and resumes the tracking of the ball.

(3) A robot player tracks a ball, and then it loses the ball
because the ball moves behind other robots. However,
the robot hears the sound of rolling that the ball makes,
it guesses where the ball will reappear, and prepares to
resume the tracking.

These capabilities require auditory and visual processing as
well as inference mechanism to understand what happens
and to do planning for appropriate behaviors.

4 DISCUSSION

The previous section shows that increasing modalities may
improve the performance of sound source separation or
visual tracking. There are several observations concerning
these preliminary experiments.

(1) The assumptions that each sound source separation
system work well differ:

� HBSS assumes that overlapping fundamental fre-
quencies are rare.

� Bi-HBSS assumes that overlapping fundamental
frequencies from the same direction with some
ambiguities are rare.

� Visual information and directional filter assumes
that sound sources from the same accurate direc-
tion are rare.

Since these assumptions do not always hold, we have
to combine appropriate methods that fit the current
situations. To control dynamic selection of appropri-
ate methods needs the general representation of each
method for meta control. This may need a general
control framework such as blackboard based systems or
subsumption architectures.

(2) In soccer games, teammates are fixed and thus model-
based sound source separation is promising. That is, the
system acquires the characteristics of each teammate
and builds mechanism of speaker identification.

(3) In soccer games, the variety of messages delivered be-
tween teamate players are relatived limited. Therefore,
speech understanding systems with a limited number of
vocabulary may work well even under noisy environ-
ments.

(4) Sensor fusion is needed as Kitano et al. already pointed
out [22, 23, 24]. The actual issue is driving source
of sensor fusion. One of candidates is media streams.
Auditory streams and visual streams may be integrated
to represent a media stream that captures various aspects
of events.

(5) Real-Time Processing is mandatory. Compared with
vision, auditory processing is quite slow. Digital Signal
Processor (DSP) may be needed to speed up primitives
in sound source separation.

(6) As the capability of CPU increases, more information
is needed to understand events more precisely. This is
a spiral of needs and seeds. Therefore, we need the
mechanism to trade off the requirements and computing
resources.



5 CONCLUSION

In this paper, we argue that auditory information is important
in RoboCup and discuss some possible ways to utilize it.
Since each sensory system is not enough for real-time
processing, sensor fusion is essential in perception-motor
control.

We thank Tomohiro Nakatani of NTT-East Multimedia
Business Headquarters for his help with HBSS and Bi-
HBSS. We also thank members of J-Star99, Fuminori
Yamazaki and Jun Homma, for their valuable discussions.
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