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Abstract. Perception for humanoid should be active, e.g., by moving its body or by controlling parameters of
sensors such as cameras or microphones, to perceive environments better. Active vision is one of the common
capabilities of a humanoid. Active perception usually causes sounds of actuators, such sounds make audition
processing more difficult. A conventional solution of this problem in audition processing is the “stop-perceive-
act” principle; that is, humanoid keeps still to listen to sounds, extracts features from input sounds, and makes
a plan to act.
In this paper, we propose active auditionto overcome the shortage of the “stop-perceive-act” principle. Its main
issues contain (1) the suppression of internal sounds caused by actuators to enhance external sounds in input
sounds; (2) sound source separation from a mixture of sounds, since input sounds do not consist of a single
sound source; (3) sensor fusion because sound source separation is an ill-posed problem.
A cover of a humanoid is used to suppress its internal sounds to enhance outer sounds. Usually sound source
separation assumes the influence of a humanoid head, or a Head-Related Transfer Function(HRTF), which
is measured in an anechoic room for many distinct spatial positions. However, this is time-consuming and in
addition, the HRTF needs to be remeasured when acoustic environments change. Therefore, we present a new
method based on the epipolar geometrywhich does not use any HRTF.
We present an active audition system for humanoid robot “SIG the humanoid”. The audition system of a hu-
manoid requires localization of sound sources and identification of meanings of the sound in the auditory scene.
The active audition reported in this paper focuses on improved sound source tracking by integrating audition,
vision, and motor movements. Given the multiple sound sources in the auditory scene, SIGactively moves its
head to improve localization by aligning microphones orthogonal to the sound source and by capturing the
possible sound sources by vision. However, such an active head movement inevitably creates motor noise. The
system must adaptively cancel motor noise using motor control signals. The experimental result demonstrates
that the active audition by integration of audition, vision, and motor control enables sound source tracking in
variety of conditions.

1 Introduction

The goal of the research reported in this paper is to establish a technique of multi-modal integration for improving
perception capabilities. We use an upper-torso humanoid robot as a platform of the research, because we believe
that multi-modality of perception and high degree-of-freedom is essential to simulate intelligent behavior. Among
various perception channels, this paper reports active audition that integrates audition with vision and motor con-
trol.

Active perception is an important research topic that signifies coupling of perception and behavior. A lot of
research has been carried out in the area of active vision, because it will provide a framework for obtaining neces-
sary additional information by coupling vision with behaviors, such as control of optical parameters or actuating
camera mount positions. For example, an observer controls the geometry parameters of the sensory apparatus in
order to improve the quality of the perceptual processing [1]. Such activities include moving a camera or cameras
(vergence), changing focus, zooming in or out, changing camera resolution, widening or narrowing iris and so on.
Therefore, active vision system is always coupled with servo-motor system, which means that active vision system
is in general associated with motor noise.

The concept of active perception can be extended to audition, too. Binaural researches report that we can
localize sounds using not only Head-Related Transfer Function(HRTF) but subtle changes of Interaural Time /
Phase Difference(ITD / IPD) caused by continuously head movements. Their experiments show that it is difficult
to localize sound sources especially in front when we completely stop, that is, we can not use information of the
ITD/IPD changes. This claims that motion is indispensable to understand and simulate human audition. Actually,
this kind of knowledge is utilized to synthesize 3D surround sounds in virtual reality field.
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Audition is also always active since people hear a mixture of sounds and focus on some parts of input. Usually,
people with normal hearing can separate sounds from a mixture of sounds and focus on a particular voice or sound
even in a noisy environment. This capability is known as the cocktail party effect. While traditionally, auditory
research has been focusing on human speech understanding, understanding auditory scene in general is receiv-
ing increasing attention. Computational Auditory Scene Analysis (CASA) studies a general framework of sound
processing and understanding [5, 7, 17, 21]. Its goal is to understand an arbitrary sound mixture including speech,
non-speech sounds, and music in various acoustic environment. It requires not only understanding of meaning of
specific sound, but also identification of spatial relationship of sound sources, so that sound landscapes of the envi-
ronment can be understood. This leads to the need of active audition that has capability of dynamically focusing on
specific sound in a mixture of sounds, and actively controlling motor systems to obtain further information using
audition, vision, and other perceptions.

1.1 Audition for Humanoids in Daily Environments

Our ultimate goal is to deploy our robot in daily environments. For audition, this requires the following issues to
be resolved:

– Ability to localize sound sources in unknown acoustic environment.
– Ability to actively move its body to obtain further information from audition, vision, and other perceptions.
– Ability to separate and identify sound sources even in motion.
– Ability to continuously perform auditory scene analysis under noisy environment, where noise comes from

both environment and motor noise of robot itself.

First of all, deployment to the real world means that the acoustic features of the environment is not known in
advance. In the current computational audition model, the HRTF was measured in the specific room environment,
and measurement has to be repeated if the system is installed at different room. It is infeasible for any practical
system to require such extensive measurement of the operating space. Thus, audition system without HRTF is
an essential requirement for practical systems. The system reported in this paper implements epipolar geometry-
based sound source localization that eliminates the need for HRTF. The use of epipolar geometry for audition
is advantageous when combined with stereo vision systems because many stereo vision systems use epipolar
geometry for visual object localization.

Second, active audition that couples audition, vision, and motor control system is critical. Active audition can
be implemented in various aspects. Take the most visible example, the system should be able to dynamically align
microphone positions against sound sources to obtain better resolution. Consider that a humanoid has a pair of
microphones. Given the multiple sound sources in the auditory scene, the humanoid should actively move its head
to improve localization (getting the direction of a sound source) by aligning microphones orthogonal to the sound
source. Aligning a pair of microphones orthogonal to the sound source has several advantages:

– Each channel receives the sound from the sound source at the same time.
– It is rather easy to extract sounds originating from the center by comparing subbands in each channel.
– The problem of front-behind sound from such sound source can be solved by using direction-sensitive micro-

phones.
– The sensitivity of direction in processing sounds is expected to be higher along the center line, because sound

direction is represented by a sinefunction.
– Zooming of audition can be implemented by using nondirectional and direction-sensitive microphones.

Therefore, gaze stabilizationfor microphones is very important to keep the same position relative to a target sound
source.

Active audition requires movement of the components that mounts microphone units. In many cases, such a
mount is actuated by motors that create considerable noise. In a complex robotic system, such as humanoid, motor
noise is complex and often irregular because numbers of motors may be involved in the head and body movement.
Removing motor noise from auditory system requires information on what kind of movement the robot is making in
real-time. In other words, motor control signals need to be integrated as one of the perception channels. If dynamic
noise canceling of motor noise fails, one may end-up using “stop-perceive-act” principle reluctantly, so that the
audition system can receive sound without motor noise. To avoid using such an implementation, we implemented
an adaptive noise canceling scheme that uses motor control signal to anticipate and cancel motor noise.

For humanoid audition, active audition and the CASA approach is essential. In this paper, we investigate a
new sound processing algorithm based on epipolar geometry without using HRTF, and internal sound suppression
algorithms.
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As a testbed of integration of perceptual information to control motor of high degree of freedom (DOF), we
designed a humanoid robot (hereafter, referred as SIG) with the following components [12]:

– 4 DOFs of body driven by 4 DC motors — Its mechanical structure is shown in Fig. 1b. Each DC motor is
controlled by a potentiometer.

– A pair of CCD cameras of Sony EVI-G20 for visual stereo input — Each camera has 3 DOFs, that is, pan, tilt
and zoom. Focus is automatically adjusted. The offset of camera position can be obtained from each camera
(Fig. 1b).

– Two pairs of nondirectional microphones (Sony ECM-77S) (Fig. 1c). One pair of microphones are installed
at the ear position of the head to gather sounds from the external world. Each microphone is shielded by the
cover to prevent from capturing internal noises. The other pair of microphones are installed very close to the
corresponding microphone to gather sounds from the internal world.

– A cover of the body (Fig. 1a) reduces sounds to be emitted to external environments, which is expected to
reduce the complexity of sound processing.

The paper is organized as follows: In Section 2, humanoid audition is discussed from the viewpoints of compu-
tational auditory scene analysis for humanoid. Section 3 presents the problems of active perception and proposes
new sound source separation. Last two sections give discussion and conclusions.

2 New Issues of Humanoid Audition

This section describes our motivation of humanoid audition and some related work. We assume that a humanoid or
robot will move even while it is listening to some sounds. Most robots equipped with microphones developed so
far process sounds without motion [10, 14, 23]. This “stop-perceive-act” strategy, or hearing without movements,
should be conquered for real-world applications. For this purpose, hearing with robot movements imposes us
various new and interesting aspects of existing problems.

The main problems with humanoid audition during motion includes understanding general sounds, sensor
fusion, active audition, and internal sound suppression.

2.1 General Sound Understanding

Since computational auditory scene analysis (CASA) research investigates a general model of sound understand-
ing, input sound is a mixture of sounds, not a sound of single source. One of the main research topics of CASA
is sound stream separation, a process that separates sound streams that have consistent acoustic attributes from a
mixture of sounds. Three main issues in sound stream separation are



1. Acoustic features used as clues of separation,
2. Real-time and incremental separation, and
3. Information fusion — discussed separately.

In extracting acoustic attributes, some systems assume the humans auditory model of primary processing and
simulate the processing of cocklear mechanism [5, 22]. Brown and Cooke designed and implemented a system that
builds various auditory maps for sound input and integrates them to separate speech from input sounds [5].

Nakatani et al.used harmonic structures as the clue of separation and developed a monaural-based harmonic
stream separation system, called HBSS [17]. HBSS is modeled by a multi-agent system and extracts harmonic
structures incrementally. They extended HBSS to use binaural (stereo microphone embedded in a dummy head)
sounds and developed a binaural-based harmonic stream separation system, called Bi-HBSS [18]. Bi-HBSS uses
harmonic structures and the direction of sound sources as clues of separation. Okuno et al. extended Bi-HBSS to
separate speech streams, and uses the resulting system as a front end for automatic speech recognition [20].

2.2 Sensor Fusion for Sound Stream Separation

Separation of sound streams from perceptive input is a nontrivial task due to ambiguities of interpretation on which
elements of perceptive input belong to which stream [16]. For example, when two independent sound sources
generate two sound streams that are crossing in the frequency region, there may be two possibilities; crossing each
other, or approaching and departing. The key idea of Bi-HBSS is to exploit spatial information by using a binaural
input.

Staying within a single modality, it is very difficult to attain high performance of sound stream separation.
For example, Bi-HBSS finds a pair of harmonic structures extracted by left and right channels similar to stereo
matching in vision where camera are aligned on a rig, and calculates the ITD / IPD, and/or the IID / IAD ( Interaural
Intensity / Amplitude Difference) to obtain the direction of sound source. The mapping from ITD, IPD, IID and
IAD to the direction of sound source and vice versa is based on the HRTF associated to binaural microphones.
Finally Bi-HBSS separates sound streams by using harmonic structure and sound source direction.

The error in direction determined by Bi-HBSS is about�10Æ, which is similar to that of a human, i.e. �8Æ [6].
However, this is too coarse to separate sound streams from a mixture of sounds.

Nakagawa et al.improved the accuracy of the sound source direction by using the direction extracted by image
processing, because the direction by vision is more accurate [16]. By using an accurate direction, each sound
stream is extracted by using a direction-pass filter. In fact, by integrating visual and auditory information, they
succeeded to separate three sound sources from a mixture of sounds by two microphones. They also reported how
the accuracy of sound stream separation measured by automatic speech recognition is improved by adding more
modalities, from monaural input, binaural input, and binaural input with visual information.

Some critical problems with Bi-HBSS and their work for real-world applications are summarized as follows:

1. HRTF is needed for identifying the direction. It is time-consuming to measure an HRTF, and it is usually
measured in an anechoic room. Since it depends on auditory environments, re-measurement or adaptation is
needed to apply it to other environments.

2. HRTF is needed for creating a direction-pass filter. Their direction-pass filter needs HRTFs to compose.
Since an HRTF is usually measured in discreteazimuth and elevation, it is difficult to implement sound tracking
for continuous movement of sound sources.

Therefore, a new method without using HRTF should be invented for localization (sound source direction)
and direction (by using a direction-pass filter). We will propose a new auditory localization based on the epipolar
geometry.

2.3 Sound Source Localization

Some robots developed so far had a capability of sound source localization. Huang et al.developed a robot that had
three microphones [10]. Three microphones are installed vertically on the top of the robot, composing a triangle.
Comparing the input power of microphones, two microphones that have more power than the other are selected and
the sound source direction is calculated. By selecting two microphones from three, they solved the problem that
two microphones cannot determine the place of sound source in front or backward. By identifying the direction
of sound source from a mixture of an original sound and its echoes, the robot turns the body towards the sound
source.



Humanoids of Waseda University can localize a sound source by using two microphones [14, 23]. These hu-
manoids localize a sound source by calculating IID or IPD with HRTF. These robot can neither separate even a
sound stream nor localize more than one sound source. The Cog humanoid of MIT has a pair of omni-directional
microphones embedded in simplified pinnae [3, 11]. In the Cog, auditory localization is trained by visual informa-
tion. This approach does not use HRTF, but assumes a single sound source. To summarize, both approaches lack
for the CASA viewpoints.

2.4 Active Audition

A humanoid should be active in the sense that it tries to do some activity to improve perceptual processing. Such
activity includes to change the position of cameras and microphones by motor control.

When a humanoid hears sound by facing the sound source in the center of the pair of microphones, ITD and
IID is almost zero if the pair of microphones are correctly calibrated. In addition, sound intensity of both channels
becomes stronger, because the ear cover makes a omni-directional microphone directional. Given the multiple
sound sources in the auditory scene, a humanoid actively moves its head to improve localization by aligning
microphones orthogonal to the sound source and by capturing the possible sound sources by vision.

However, a new problem occurs because gaze stabilization is attained by visual servo or auditory servo. Sounds
are generated by motor rotation, gears, belts and ball bearings. Since these internal sound sources are much closer
than other external sources, even if the absolute power of sounds is much lower, input sounds are strongly influ-
enced. This is also the case for the SONY AIBO entertainment robot; AIBO is equipped with a microphone, but
internal noise mainly caused by a cooling fan is too large to utilize sounds.

2.5 Internal Sound Suppression

Since active perception causes sounds by the movement of various movable parts, internal sound suppression is
critical to enhance external sounds (see Fig. 2). A cover of humanoid body reduces sounds of motors emitted to the
external world by separating internal and external world of the humanoid. Such a cover is, thus expected to reduce
the complexity of sound processing caused by motor sounds. Since most robots developed so far do not have a
cover, auditory processing cannot become first-class perception of a humanoid.

Internal sound suppression may be attained by one or a combination of the following methodologies:

1. noise cancellation,
2. independent component analysis (ICA),
3. case-based suppression,
4. model-based suppression, and
5. learning and adaptation.

To record sounds for case-based and model-based suppression, each sound should be labeled appropriately. We
use data consisting of time and motor control commands as label for sound. In the next section, we will explain
how these methods are utilized in our active audition system.

3 Active Audition System

An active audition system consists of two components; internal sound suppression, and sound stream separation.

3.1 Internal Sound Suppression System

Internal sounds of SIGare caused mainly by the followings:

– Camera motors — sounds of movement are quiet enough to ignore, but sounds of standby is loud (about 3.7
dB).

– Body motors — sounds of standby and movement are loud (about 5.6 dB and 23 dB, respectively).

Comparison of noise cancellation by adaptive filtering, ICA, case-based suppression and model-based sup-
pression, we concluded that only adaptive filters work well. Four microphones are not enough for ICA to separate
internal sounds. It is difficult to construct case or model-based cancellation because the same movement generates
a lot of different sounds. And even if constructed, case-based and model-based suppression would affect the phase
of original inputs, which causes errors of IPD.



cover

pan-tilt-zoom camera

suppress suppress

internal microphone

external microphone

Fig. 2. Internal and external microphones for internal sound suppression

First, we designed an adaptive filter, which is often used as a filter for active noise control[19, 8], by a FIR
(Finite Impulse Response) digital filter of order 100, because FIR filter is a linear phase filter. This property
is essential to localize the sound source by IID/IAD or ITD/IPD. The coefficients of the FIR adaptive filter is
calculated by least-mean-square (LMS) algorithm.

We tried to suppress motor noises by the adaptive filter. Figs. 3a and 3b show spectrograms of sound captured
by humanoid internal and external microphones, respectively. Both figures have peaks in frequencies of 500 and
600Hz which are originating from external sound sources. And burst noises by motors are observed in each figure
because the humanoid rotates from 2 to 4 seconds. Fig. 4 show the result of noise suppression by the adaptive
filter. It was expected that only sounds with 500 and 600Hz are left in Fig. 4. Indeed, camera noises with frequency
around 16KHz are suppressed relatively well, but Fig. 4 shows as follows:

– Burst noises are still remained.
– Sounds of 500 and 600Hz from external sources are also suppressed with noises.

Thus, it is difficult to suppress internal motor noises by the adaptive filter. This insufficient suppression makes
poor localization compared to results of localization without internal sound suppression. The reason why internal
motor noise suppression fails is as follows:

1. Adaptive filter is unsuitable for abrupt noises such as burst noises because of generating an estimated value
from past values of the number of the filter order.

2. The system can not assume that internal microphones capture only motor noises such as most applications
of active noise control because external sounds leak into inside cover through gaps and joints between cover
components.

3. Some errors occur in noise estimation by the adaptive filter. These errors badly affect the noise suppression.
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Instead, our adaptive filter uses heuristics with internal microphones, which specifies the condition to cut off
burst noise mainly caused by motors. For example, sounds at stoppers, by friction between cable and body, creaks
at joints of cover parts may occur. The heuristics orders that localization by sound or direction-pass filter ignore a
subband if the following conditions hold:

1. The power of internal sounds is much stronger than that of external sounds.
2. Twenty adjacent subbands have strong power (30 dB).
3. A motor motion is being processed.

3.2 Sound Stream Separation by Localization

We design a new direction-pass filter with a direction which is calculated by epipolar geometry.
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Localization by Vision using Epipolar Geometry Consider a simple stereo camera setting where two cameras
have the same focal length, their light axes are in parallel, and their image planes are on the same plane (see Fig. 5a).



We define the world coordinate (X;Y; Z) and each local coordinate. Suppose that a space point P (X;Y; Z) is
projected on each camera’s image plane, (xl; yl) and (xr; yr). The following relations hold [9]:

X =
b(xl + xr)

2d
; Y =

b(yl + yr)

2d
; Z =

bf

d

where f is the focal length of each camera’s lens and b is the baseline. Disparity d is defined as d = xl � xr.
The current implementation of common matching in SIG is performed by using corner detection algorithm

[13]. It extracts a set of corners and edges then constructs a pair of graphs. A matching algorithm is used to find
corresponding left and right image to obtain depth.

Since the relation yl = yr also holds under the above setting, a pair of matching points in each image plane
can be easily sought. However, for general setting of camera positions, matching is much more difficult and time-
consuming. Usually, a matching point in the other image plane exists on the epipolar line which is a bisecting line
made by the epipolar plane and the image plane.

Localization by Audition using Epipolar Geometry Auditory system extracts the direction by using epipo-
lar geometry. First, it extract peaks by using FFT (Fast Fourier Transformation) for each subband, 47Hz in our
implementation, and then calculates the IPD.

Let Sp(r) and Sp(l) be the right and left channel spectrum obtained by FFT at the same time tick. Then, the
IPD 4' is calculated as follows:

4' = tan�1

�
=[Sp(r)(fp)]

<[Sp(r)(fp)]

�
� tan�1

�
=[Sp(l)(fp)]

<[Sp(l)(fp)]

�

where fp is a peak frequency on the spectrum, <[Sp] and =[Sp] are the real and imaginary part of the spectrum
Sp. The angle � is calculated by the following equation:

cos � =
v

2�fpb
4'

where v is the velocity of sound. For the moment, the velocity of sound is fixed to 340m/sec and remains the same
even if the temperature changes.

This peak extraction method works at 48 KHz sampling rate and calculates FFT for 1,024 points, but runs
much faster than Bi-HBSS (12 KHz sampling rate with HRTF) and extracted peaks are more accurate [15].
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Fig. 6.A spectral peak by Fourier Transformation

Pitch Extraction Pitches are extracted by a kind of spectral subtraction [2]. It uses peak approximation method
based on characteristics of FFT and window function. Consider that the peak [!2; y2] is detected, and the values of
both neighbors are [!1; y1] and [!3; y3] as shown in Fig. 6. Then, the true peak [!0; y0] is estimated as follows:
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!0 is estimated as Equation (1). And the phase and amplitude of the true peak y0 are estimated as Equations
(2) and (3), respectively.

Because the above equations require relatively the small number of calculation, our method can run faster. And
it can extract more accurate pitches because the approximation is suitable to the frequency analysis methods, that
is, the FFT and hanning window. For example, in comparison with Bi-HBSS [18], which is known as a sound
source separation system using a pitch extraction method by spectral subtraction based on harmonic structures, our
method needs only 1=200 of amount of calculation per a peak [15].

New Direction-Pass Filter using Epipolar Geometry As mentioned earlier, HRTFs are usually not available in
real-world environments, because it changes when a new furniture is installed, a new object comes in the room,
or humidity of the room changes. In addition, HRTFs should be interpolated for auditory localization of a moving
sound source, because HRTFs are measured for discrete positions. Therefore, a new method must be invented. Our
method is based on the direction-pass filter with epipolar geometry.

As opposed to localization by audition, the direction-pass filter selects subbands that satisfies the IPD of the
specified direction. The detailed algorithm is describes as follows:

1. The specified direction � is converted to �' for each subband (47 Hz).
2. Extract peaks and calculated IPD, �'0.
3. If IPD satisfies the specified condition, namely, �'0 = �', then collect the subband.
4. Construct a wave consisting of collected subbands.

By using the relative position between camera centers and microphones, it is easy to convert from epipolar
plane of vision to that of audition (see Fig. 5b). In SIG, the baselines for vision and audition are in parallel.

Therefore, whenever a sound source is localized by epipolar geometry in vision, it can be converted easily into
the angle � as described in the following equation:

cos � =
P �Mr

jP jjMrj
=
P �Cr

jP jjCrj
:

Localization by Servo-Motor System The head direction is obtained from potentiometers in the servo-motor
system. Hereafter, it is referred as the head direction by motor control. Head direction by potentiometers is quite
accurate by the servo-motor control mechanism. If only the horizontal rotation motor is used, horizontal direction
of the head is obtained accurately, about �1Æ. By combining visual localization and the head direction, SIGcan
determine the position in world coordinates.

Accuracy of Localization Accuracy of extracted directions by three sensors: vision, audition, and motor control is
measured. The results for the current implementation are�1Æ,�10Æ,�15Æ, for vision, motor control, and audition,
respectively.

Therefore, the precedence of information fusion on direction is determined as below:

vision > motor control > audition
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Sensor Integrated SystemThe system contains a perception system that integrates sound, vision, and motor
control (Fig. 7). The association module maintains the consistency between information extracted by image pro-
cessing, sound processing and motor control subsystems. For the moment, association includes the correspondence
between images and sounds for a sound source; loud speakers are the only sound sources, which can generate sound
of any frequency. Focus of attention and action selection modules are described in [13].

4 Experiment — Motion Tracking by Three Kinds of Sensors

In this section, we will demonstrate how vision, audition and head direction by potentiometers compensate each
missing information to localize sound sources while SIGrotates to see an unknown object.

Scenario: There are two sound sources: two B&W Noutilus 805 loud speakers located in a room of 10 square
meters. The room where the system is installed is a conventional residential apartment facing a road with busy
traffic, and exposed to various daily life noise. The sound environment is not at all controlled for experiment to
ensure feasibility of the approach in daily life.

One sound source A (Speaker A) plays a monotone sound of 500 Hz. The other sound source B (Speaker B)
plays a monotone sound of 600 Hz. A is located in front of SIG (5 Æ left of the initial head direction) and B is
located 69Æ to the left. The distances from SIG to both sound sources are about 210cm. Since the visual field of
camera is only 45Æ in horizontal angle, SIGcannot see B at the initial head direction, because B is located at 70Æ

left to the head direction, thus it is outside of the visual fields of the cameras. Fig. 8 shows this situation.

1. A plays a sound at 5Æ left of the initial head direction.
2. SIGassociates the visual object with the sound, because their extracted directions are the same.
3. Then, B plays a sound about 3 seconds later. At this moment, B is outside of the visual field of the SIG. Since

the direction of the sound source can be extracted only by audition, SIGcannot associate anything to the sound.
4. SIGturns toward the direction of the unseen sound source B using the direction obtained by audition.
5. SIGfinds a new object B, and associates the visual object with the sound.

Four kinds of benchmark sounds are examined; fast (68.8 degree/sec) and slow (14.9 degree/sec) SIGmove-
ments ,which need 0.14 and 0.18 seconds to reach stable velocity from stationary state respectively. Weak signals
(similar power to internal standby sounds, which makes signal to noise ratio 0dB) and strong signals (about 50 dB).
Spectrogram of each input is shown in Fig. 10. Motion tracking by vision and audition, and motion information
are evaluated.
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Fig. 9. Tracking by moving head
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Fig. 10.Spectrogram of input sounds
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Fig. 11.Localization without heuristics of suppression
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Fig. 12.Localization by vision and audition
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Fig. 13.Localization for strong signal



Results: Results of the experiment were very promising. First, accurate sound source localization was accom-
plished without using the HRTF.

Table 1 shows errors in localization before and after the rotation. The errors can be estimated using accurate
direction information described in Fig. 8. The errors are about 13.7 Æ on average, and the maximum is 28.4 Æ. The
errors are acceptable. The reasons are as follows:

– This experiment is done not in simulated environment, but in the residential room where HRTF measured in
an anechoic room is hardly of use.

– The error of Bi-HBSS in simulated environment is �10Æ. Our localization method has the accuracy to be
compared with it on average ( 13.7Æ ).

– The accuracy in localization of sound sources from the front of SIG( around 0Æ ) is equal or superior to that
in Bi-HBSS as shown in average errors of “speaker A(initial state)” and “speaker B(final state)” in 1. This
means our method is more sensitive in front because of less distortion of sound signals by the head. Moreover,
the necessity of aligning microphones orthogonal to the sound source is emphasized.

In motion, motor noises disturb accurate localization. Nevertheless, the use of epipolar geometry for audition
was proven to be very effective. The velocity of rotation can be regarded as almost constant because it needs
at most 0.17 seconds to reach stable velocity from stationary state. For this reason, the direction in humanoid
coordinate should change linearly in motion. In Fig. reffig:localization-wo-suppression and 13, time series data
for estimated sound source direction using epipolar based non-HRTF method is plotted with an ego-centric polar
coordinate where 0Æ is the direction dead front of the head, minus is right of the head direction. Actually, the results
of localization with such linearity in motion are shown.

The effect of adaptive noise canceling is clearly shown. Fig. 11 shows estimated sound source directions with-
out motor noise suppression. Sound direction estimation is seriously hampered when the head is moving (around
time 5 - 6 seconds). The spectrogram (Fig. 10) clearly indicate extensive motor noise. When the robot is constantly
moving to track moving sound sources or to move itself for a certain position, the robot continues to generate such
a noise that makes audition almost impossible to use for perception.

The effects of internal sound suppression by heuristics are shown in Fig. 12, and 13. The time series of esti-
mated sound source directions for weak and strong signals localized by vision and audition are shown. Dotted lines
mean the localization results by vision / vision and motor control in Fig. 12 and 13. The localization information is
more accurate than that obtained by audition because the error in vision is within�1 Æ. The information by vision
can be applied to auditory processing such as direction-pass filters to improve sound source separation. However,
SIGcannot attain such accurate localization information between vertical dotted lines because both speakers are
out of sight and any clue for localization by vision would not be found. In such cases, localization information by
audition can compensate for missing information caused by narrow visual fields and occluded sound sources.

Furthermore, such accurate localization by audition makes association between audition and vision possible.
While SIGis moving, sound source B comes into its visual field. The association module checks the consistency of
localization by vision and audition. If the discovered loud speaker does not play sounds, inconsistency occurs and
the visual system would resume its search finding an object producing sound. If association succeeds, B’s position
in world coordinates is calculated by using motor information and the position in humanoid coordinates obtained
by vision.

Experimental results indicate that position estimation by audition and vision can create consistent association
even under the condition that the robot is constantly moving and generating motor noise. It should be refined that
sound source localization by audition in the experiment uses epipolar geometry for audition, and do not use HRTF.
Thus, we can simply field the robot in unknown acoustic environment and localize sound sources.

Direction Fig. 11 a) Fig. 11 b) Fig. 13 a) Fig. 13 b) Average
obtained by Fig.8 Result Error Result Error Result Error Result Error error

Speaker A (initial state) 74.0 98.0�3.4 28.4 98.0�3.4 28.4 84.5�1.5 12.0 84.5�1.5 12.0 20.2
Speaker B (initial state) 5.0 8.5�1.7 5.2 6.7�9.8 11.5 1.0�6.6 10.6 0.0�6.0 11.0 9.6
Speaker A (final state) -4.0 -12.9�6.0 14.9-12.7�2.5 11.2-10.2�1.5 7.7 -10.2�1.5 7.7 10.4
Speaker B (final state) -73.0 -80.0�4.2 11.2-82.0�2.5 11.5-53.0�2.5 22.5-63.7�5.0 14.3 14.9
Average error — — 14.9 — 15.7 — 13.2 — 11.3 13.7

Table 1.Errors in localization (degree)



5 Discussion and Future Work

1. The experiment demonstrates the feasibility of the proposed humanoid audition in real-world environments.
Since there are a lot of non-desired sounds, caused by traffic, people outside the test-room, and of course in-
ternal sounds, the CASA assumption that input sounds consist of a mixture of sounds is essential in real-world
environments. Similar work by [16] was done in a simulated acoustic environment, but it may fail in local-
ization and sound stream separation in real-world environments. Most robots capable of auditory localization
developed so far assume a single sound source.

2. Epipolar geometry gives a way to unify visual and auditory processing, in particular localization and sound
stream separation. This approach can dispense with HRTFs. As far as we know, no other systems can do it.
Most robots capable of auditory localization developed so far use HRTFs explicitly or implicitly, and may fail
in identifying some spatial directions or tracking moving sound sources.

3. The cover of the humanoid is very important to separate its internal and external worlds. However, we’ve
realized that resonance within a cover is not negligible. Therefore, its inside material design is important.

4. Social interaction realized by utilizing body movements extensively makes auditory processing more difficult.
The Cog Project focuses on social interaction, but this influence on auditory processing has not been mentioned
[4]. A cover of the humanoid will play an important role in reducing sounds caused by motor movements
emitted toward outside the body as well as in giving a friendly outlook to human.

Future Work Active perception needs self recognition. The problem of acquiring the concept of self recognition
in robotics has been pointed out by many people. For audition, handling of internal sounds made by itself is a
research area of modeling of self. Other future work includes more tests for feasibility and robustness, real-time
processing of vision and auditory processing, internal sound suppression by independent component analysis,
addition of more sensor information, and applications.

6 Conclusions

In this paper, we present active audition for humanoid which includes internal sound suppression, a new method
for auditory localization, and a new method for separating sound sources from a mixture of sounds. The key idea is
to use epipolar geometry to calculate the sound source direction and to integrate vision and audition in localization
and sound stream separation. This method does not use HRTF (Head-Related Transfer Function) which is a main
obstacle in applying auditory processing to real-world environments. We demonstrate the feasibility of motion
tracking by integrating vision, audition and motion information. The important research topic now is to explore
possible interaction of multiple sensory inputs which affects quality (accuracy, computational costs, etc) of the
process, and to identify fundamental principles for intelligence.
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