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Abstract| Robot audition in real-world should cope
with motor and other noises caused by the robot's own

movements in addition to environmental noises and re-
verberation. This paper reports how auditory process-

ing is improved by audio-visual integration with active
movements. The key idea resides in hierarchical inte-
gration of auditory and visual streams to disambiguate

auditory or visual processing. The system runs in real-
time by using distributed processing on 4 PCs con-
nected by Gigabit Ethernet. The system implemented

in a upper-torso humanoid tracks multiple talkers and
extracts speech from a mixture of sounds. The per-

formance of epipolar geometry based sound source lo-
calization and sound source separation by active and
adaptive direction-pass �ltering is also reported.

Keywords| robot audition, audio-visual integration,
multiple speaker tracking, sound source localization,

sound source separation

I. Introduction

Robust perception is essential to robots for rich and
intelligent social interaction. This robustness should
be attained by integration of multi-modal sensory in-
put, because a single sensory input carries inevitable
ambiguities. Among various perception channels, ac-
tive perception is one of promising techniques to im-
prove perception. In vision, active vision is proposed
to control camera parameters to attain better visual
perception, and a lot of research on active vision has
been performed [1]. The concept of \active" should be
extended to other media.
Active audition is also proposed to control micro-

phone parameters to attain better auditory perception
[2]. Although sound is the most important medium
for human communication and life, only a little at-
tention is paid to it in robotics. This is partially be-
cause the research on social interaction of robots has
started only recently [3]. IROS 2001 is the �rst major
robotics conference that has a session on \Sound and
Speech". Most work reported so far, however, has not
used robot's ears (microphones) for social interaction
with humans.
The di�culties in robot audition, in particular, ac-

tive audition, reside in sound source separation under

real world environments. Active perception, audition
or vision, involves motor movements, which make au-
ditory processing more di�cult. Therefore, one ap-
proach to avoid this problem is to adopt the \stop-
hear-act" principle; that is, a robot stops to hear. An-
other approach is to use a microphone attached near
the mouth of each speaker for automatic speech recog-
nition. The latter examples include Kismet of the MIT
AI Lab [4] and ROBITA of Waseda University [5].

The technical issues in sound source separation dur-
ing movement include active noise cancellation, adap-
tation to dynamic environment, and sound source sep-
aration itself. Since the current technology of beam
forming for microphone arrays assumes that the micro-
phone array should be �xed, mobile robots equipped
with a microphone array on them cannot meet the
above requirements. Independent Component Analy-
sis (ICA) has recently been a popular technique for
sound source separation [6]. It can handle reverbera-
tion of a room to some extent, but in ICA, the maxi-
mum number of sound sources is limited to the num-
ber of microphones. This assumption usually does not
hold in the real world. In addition, motor noise can-
cellation in motion as well as dynamic environmen-
tal change by active motion makes the performance of
ICA poorer.

Computational auditory scene analysis (CASA)
studies a general framework of sound processing and
understanding [7], [8], [9], [10]. Its goal is to under-
stand an arbitrary sound mixture including speech,
non-speech sounds, and music in various acoustic en-
vironments. However, most of the sound source sepa-
ration systems work only in o�-line and simulation en-
vironments. For example, Bi-HBSS [9] uses Head Re-
lated Transfer Function (HRTF) for sound source sep-
aration by binaural processing. HRTFs are measured
in an anechoic room, and are usually not available in
real-world environments, because these are prone to
environmental changes. In addition, it takes a lot of
time to measure HRTFs. Therefore, sound source sep-
aration without HRTFs should be developed for robot
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Fig. 3. Hierarchical Architecture of Real-Time Tracking System

audition.
A real-time multiple speaker tracking system has

been developed by integrating audition and vision [11].
For auditory processing, the system uses active audi-
tion, which can perform sound source localization in
a residential room by a new localization method with-
out HRTFs and motor noise cancellation in motion by
using cover acoustics. For visual processing, multiple
face detection and recognition are used. By integrating
auditory and visual processing with distributed pro-
cessing on PCs, the system can track several people in
real-time even when occlusion and two simultaneous
speeches occur.
This system, however, has the following limitations:

1. Face recognition fails in the case of a partial face
such as a pro�le.

2. No sound source separation is possible.
3. The communication load is almost 100% on Fast
Ethernet (100Mbps).

4. The implementation cannot be scaled, using more
processing nodes, to attain real-time processing.

In this paper, these limitations will be overcome by
the following improvements:

1. Stereo vision is introduced for robust face recog-
nition

2. Sound source separation is performed by an ac-
tive direction-pass �lter which takes sensitivity of
direction into account.

3. Gigabit Ethernet is used and load distribution is
introduced.

4. A more general implementation is adopted.

This paper reports the �rst three functionalities in

detail and mentions the last one brie
y.
The rest of this paper is organized as follows: Sec-

tion II describes our humanoid SIG and the real-time
human tracking system. Section III explains sound
source separation by active direction-pass �lter. Sec-
tion IV shows evaluation of the system. The last sec-
tion provides discussion and conclusion.

II. The Real-Time Human Tracking System

We use the upper torso humanoid SIG shown in
Fig. 1 as a testbed for multi-modal integration. SIG
has a cover made of FRP (�ber reinforced plastic). It is
designed to separate the SIG inner world from the ex-
ternal world acoustically. A pair of CCD camera (Sony
EVI-G20) is used for stereo vision. Two pairs of mi-
crophones are used for auditory processing. One pair
is located in the left and right ear position for sound
source localization (Fig. 2). The other is installed in-
side the cover mainly for canceling self-motor noise in
motion. SIG has 4 DC motors (4 DOFs) with func-
tions of position and velocity control by using potentio-
meters.
Fig. 3 shows the architecture of the real-time hu-

man tracking system using SIG. The system consists
of seven modules, i.e., Sound, Face, Stereo Vision, Associa-
tion, Focus-of-Attention, Motor Control and Viewer.

Sound, Face and a new module Stereo Vision generate an
event by feature extraction. Motor Control also generates
an event of motion. Association forms streams as tem-
poral sequences of these events and associates these
streams into a higher level representation, an associ-
ation stream. Focus-of-Attention plans SIG 's movement



based on the status of streams, associated or not. Motor

Control is activated by the Focus-of-Attention module and
generates PWM (Pulse Width Modulation) signals to
DC motors. Viewer shows the status of auditory, vi-
sual and associated streams in the radar and scrolling
windows.

From the viewpoint of functionality, the whole sys-
tem can be decomposed into �ve layers | SIG De-
vice Layer, Process Layer, Feature Layer, Event Layer
and Stream Layer. The SIG Device Layer includes
sensor equipment such as cameras, microphones and
the motor system. They send images from cameras
and acoustic signals from microphones to the Process
Layer. In Process Layer, various features are extracted
from raw data such as images and signals, and they
are sent to the Feature Layer. Features are trans-
formed to events with observed time for communica-
tion, then they are sent from the Event Layer to the
Stream Layer. In the Stream Layer, event coordinates
are converted into world coordinates. They are con-
nected by taking their time series into account to make
a stream. When two streams are close enough to be
regarded as originating from a single source, they are
associated into an association stream. Such an associ-
ation stream gives SIG strong attention.

A. Real-Time Processing

Modules are distributed to four PCs of Pentium III
1GHz running RedHat Linux 7.1J. Although our pre-
vious system realized real-time processing with three
PCs, one more PC is added to the system because of
the introduction of Stereo Vision, which requires a lot of
CPU power. This addition of one PC increases load
average of communication. To reduce the communi-
cation load, each node in our current system has two
network interfaces of Fast Ethernet and Gigabit Eth-
ernet. Because Sound, Face, Stereo Vision and Motor create
a lot of events for asynchronous communication, Giga-
bit Ethernet is used for event communication. Fast
Ethernet is used for light communication such as syn-
chronization by NTP (network time protocol). The
system can work in real-time with a small latency of
500ms and synchronize modules with time di�erence
within 100 �s, because the system is designed to se-
lect a suitable interface according to the properties of
communication.

B. Sound Module

Generally, humans often use sounds for understand-
ing the surroundings. However, it is di�cult for a com-
puter because of reverberation, environmental noises
and their dynamic change. Sound module can cope
with a mixture of sounds, i.e, it can separate sound
sources and localize them in the real world. Robust

localization is not achieved by only one sound clue,
but by integration of several sound clues. The rest of
this section describes the 
ow of auditory processing.

Peak Extraction and Sound Source Separation:

First, a STFT (Short-Time Fourier Transform) is ap-
plied to the input sound. A peak on spectrum is ex-
tracted by a band-pass �lter, which lets a frequency be-
tween 90Hz and 3KHz pass if its power is a local max-
imum and more than the threshold. This threshold
is automatically determined by stable auditory con-
ditions of the room. Then, extracted peaks are clus-
tered according to harmonicity. A frequency of Fn is
grouped as an overtone (integer multiple) of F0 if the
relation jFn

F0
� bFn

F0
cj � 0:06 holds. The constant,

0.06, is determined by trial and error. By applying an
Inverse FFT to a set of peaks in harmonicity, a har-
monic sound is separated from a mixture of sounds.

Sound Source Localization: Robust sound source
localization in the real world is achieved by four stages
of processing, i.e., 1.localization by interaural phase
di�erence (IPD) and auditory epipolar geometry, 2.lo-
calization by interaural intensity di�erence (IID), 3.in-
tegration of overtones, and 4.integration of 2. and 3.
by Dempster-Shafer theory.

HRTF is of less use in the real world because HRTF
depends on the shape of head and it also changes as
environments change. Therefore, instead of HRTF, we
use auditory epipolar geometry[12], which is an exten-
sion of epipolar geometry in stereo vision to audition,
for sound source localization by IPD. Auditory epipo-
lar geometry generates a hypothesis of the IPD for each
5� candidate. The distance between each hypothesis
and the IPD of the input sound is calculated. IPDs
of all overtones are summed up by using a weighted
function. It is converted into belief factor BP by using
a probability density function (PDF).

For localization by IID, by calculating summation
of IID of all overtones, belief factors supported by the
left, front, and right direction are estimated.

Thus, Sound estimates sound directions by IPD and
by IID with belief factors. Then, the belief factors
of BP and BI are integrated into a new belief factor
of BP+I supported by both of them using Dempster-
Shafer theory de�ned by

BP+I(�) = BP(�)BI(�)+�
1�BP(�)

�
BI(�) + BP(�)

�
1�BI(�)

�
: (1)

Finally, Sound sends an auditory event consisting of
pitch (F0) and a list of 20-best directions (�) with
reliability factors and observation times for each har-
monics.



C. Face Identi�cation Module

Face detects, recognizes and localizes multiple faces,
and sends face events. To implement on a robot and
apply to a real world, this module employs fast and
robust processing for frequent changes in the size, di-
rection and brightness of a face.

The face detection submodule detects multiple faces
robustly by combining skin-color extraction, correla-
tion based matching, and multiple scale image gener-
ation [13].

Then, the face recognition submodule can identify
each detected face by Linear Discriminant Analysis
(LDA), which can create an optimal subspace to dis-
tinguish classes and continuously update a subspace
on demand with a small amount of computation [14].

The face localization submodule converts a face po-
sition in the 2-D image plane into 3-D world coordi-
nates by assuming average face size.

Finally, Face sends a face event consisting of a list of
5-best Face ID (Name) with reliabilities, observation
time and position (distance r, azimuth � and elevation
�) for each face.

D. Stereo Vision Module

Stereo Vision is introduced to improve the robustness
of the system. It can do what our previous system
could not: track a person who looks away and does
not talk. Stereo Vision enables tracking of such a person.
In addition, accurate localization of lengthwise objects
such as people is achieved by using a disparity map.

First, a disparity map is generated by an intensity
based area-correlation technique. This is processed in
real-time on a PC by a recursive correlation technique
and an optimization peculiar to Intel architecture [15].

In addition, left and right images are calibrated by
a�ne transformations in advance. An object is ex-
tracted from a 2-D disparity map by assuming that
a human body is lengthwise. A 2-D disparity map is
de�ned by

DM2D = fD(i; j)ji = 1; 2; � � �W; j = 1; 2; � � �Hg (2)

where W and H are width and height, respectively
and D is a disparity value.

As a �rst step to extract lengthwise objects, the me-
dian of DM2D along the direction of height shown as
Eq. (3) is extracted.

Dl(i) =Median(D(i; j)) (3)

A 1-D disparity map DM1D as a sequence of Dl(i)
is created.

DM1D = fDl(i)ji = 1; 2; � � �Wg (4)

Next, a lengthwise object such as a human body is
extracted by segmentation of a region with similar dis-
parity in DM1D. This achieves robust body extraction
so that only the torso can be extracted when the hu-
man extends his arm. Then, for object localization,
epipolar geometry is applied to the center of gravity
of the extracted region.
Finally, Stereo Vision creates stereo vision events

which consist of distance, azimuth and observation
time.

E. Association Module

Association forms a stream by connecting events to
a time course, and associates the streams to create
a higher level stream, which is called an association
stream.

Stream Formation: Since location information in
sound, face, stereo vision events is observed in a SIG
coordinate system, event coordinates should be con-
verted into world coordinates by comparing a motor
event observed at the same time.
The converted events are connected to a stream with

some error corrections according to the following al-
gorithm, and a non-connected event generates a new
stream.

� Sound Event: A sound event is connected to
a sound stream when it satis�es two conditions
that they have harmonic relationship, and their
direction di�erence is within �10�. The value of
�10� is determined according to the accuracy of
auditory epipolar geometry.

� Face and Stereo Vision Event: A face or a
stereo vision event is connected to a face or a
stereo vision stream when they have the same
event ID and their distance is within 40 cm. The
value of 40 cm is de�ned by assuming that human
motion speed is less than 4m/sec.

A stream is terminated if there is no event to be con-
nected for more than 500ms.
The advantages of stream formation are detection

of object (human body) tracks and disambiguation of
temporary errors of pitch detection and face recogni-
tion.

Association: When the system judges that multi-
ple streams originate from the identical person, they
are associated into an association stream, higher level
stream representation. When one of the streams form-
ing an association stream is terminated, the termi-
nated stream is removed from the association stream,
and the association stream is deassociated to some sep-
arated streams.
The advantage of association is an improvement

of robustness by disambiguation of missing informa-
tion, e.g., temporary occlusion can be compensated by



sound stream and sound direction can be compensated
by more accurate visual information.

F. Focus-of-Atenttion

Focus-of-Attention selects a SIG action by audio-visual
servo to keep the direction of a stream with atten-
tion and sends motor events to Motor. The principle of
focus-of-attention control is as follows:
1. an associated stream has the highest priority,
2. a visual stream has the second priority, and
3. an auditory stream has the third priority.

III. Active Direction Pass Filter

The direction-pass �lter extracts sound originating
from a speci�c direction by hypothetical reasoning
about the IPD and IID of each sub-band [16]. Hypo-
thetical reasoning compares actual IPD and IID with
ideal ones which are calculated based on HRTF. This
�lter can extract not only harmonic sounds but also
non-harmonic sound such as unvoiced consonants. The
direction may be given by vision or by audition itself.
Since the direction obtained by vision is much more ac-
curate, that obtained by audition is used only in case
when visual direction is not available due to occlu-
sion. The �lter improves the accuracy of sound source
separation and is shown e�ective in automatic speech
recognition of three simultaneous speeches in a clean
environment. It, however, has some severe problems
as follows:

� It is not robust in the real world, because IPD and
IID are calculated by HRTF.

� It does not take into account the sensitivity of
the direction-pass �lter, although the accuracy of
direction-pass �lter depends on the direction, that
is, higher sensitivity in the front while lower by
deviating from it.

� HRTF is available only at discrete points.
To cope with these problems in the real world, we pro-
pose an active direction-pass �lter based on auditory
epipolar geometry, which is shown in Fig. 4. The al-
gorithm is described as follows:
1. Direction of a stream with current attention is
obtained from Association.

2. Because the stream direction is obtained in world
coordinates, it is converted into azimuth � in the
SIG coordinate system by considering latency of
processing.

3. The IPD 4' of � is calculated for each sub-band
by auditory epipolar geometry.

4. Peaks are extracted from the input and IPD 4'0

is calculated.

5. If the IPD satis�es the speci�ed condition,
namely, j4'0 � 4'j � �(�), then the sub-band
is collected. �(�) is determined by measurement.

Because the SIG front direction has maximum
sensitivity, � has a minimum value. � has a larger
value at the side directions because of lower sen-
sitivity.

6. A wave consisting of collected sub-bands is con-
structed.

The active direction-pass �lter can improve sound
source separation in the real world by supporting ac-
tive motion of SIG and controlling adaptive sensitivity
according to direction. In addition, sound source sep-
aration can work properly even when a sound source
and/or SIG itself may be moving, because it obtains
an accurate direction from the stream representation
in Association module. Note that the direction of an as-
sociated stream is speci�ed by visual information not
by auditory one.

IV. Evaluation

The performance of the active direction-pass �lter
is evaluated by four kinds of experiments. In these
experiments, SIG and loud speakers are located in a
room of 10 square meters. The distance between SIG
and the speakers is 50cm. The direction of a loud
speaker is represented as 0� for SIG front direction.
Two metrics are used for evaluation; di�erence of

SNR (signal-noise ratio) de�ned by Eq. 5 between in-
put and separated speech, and word recognition rate
of automatic speech recognition (ASR). As ASR, the
Japanese dictation software, \Julius", is used, and as
speech data, 20 sentences from the Mainichi Newspa-
pers are used.

SNR = 10 log10

P
n
(s(n)� �so(n))

2

P
n
(s(n)� �ss(n))2

(5)

where, s(n), so(n), and ss(n) are the original signal,
the signal observed by robot microphones and the sig-
nal separated by the active direction-pass �lter, respec-
tively. � is the attenuation ratio of amplitude between
original and observed signals.

Experiment 1: The error of sound source localiza-
tion of Sound, Face and Stereo Vision is measured.
The results are shown in Fig. 5 when sound source
direction is from 0� to 90�.

Experiment 2: Speeches from a loud speaker located
of 0�, 30�, 60� and 90� are extracted by the active
direction-pass �lter. In this case, the direction of
a loud speaker is given. When the pass range of
the �lter � varies from �5� to �90�, Fig. 6 shows a
comparison of the word recognition rate between
observed signal and separated signal.

Experiment 3: The �rst loud speaker is �xed at 0�,
the second one is located in 30�, 60� and 90� of
SIG. Two speakers make sounds simultaneously.
Speech from the �rst loud speaker is extracted
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by the active direction-pass �lter. The �lter pass
range function �(�) obtained from Experiment 1
is used. Fig. 7 shows the improvement of SNR by
the active direction-pass �lter.

Experiment 4: Two loud speakers are used. One is
�xed in the direction of 60�. The other is moving
from left to right repeatedly within the visual �eld
of SIG. Speeches from the second loud speaker are
extracted by the active direction-pass �lter. Fig. 8
shows the improvement of SNR by using of stereo
vision information.
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Fig. 5 shows that sound source localization by Stereo

Vision is the most accurate. The error is within 1�.
Generally, localization by vision is more accurate than
by audition. However, Sound has the advantage of an
omni-directional sensor. That is, Sound can estimate
the direction of sound from more than �15� of az-
imuth. The sensitivity of localization by Sound depends
on sound source direction. It is the best in the front
direction. The error is within �5� from 0� to 30�, and
it is getting worse at more than 30�. This proves that
active motion such as turning to face a sound source
improves sound source localization.

Fig. 6 shows that the front direction has a high sensi-
tivity in sound source localization. For example, when
� is 20�, the di�erence of speech recognition rate be-
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tween the front and the side direction is 50%. When
a sound source is located at 60� and 90� from the
front direction of SIG, the recognition rate is not good
even if an optimal � is used. This is caused by the
SIG cover, i.e, the cover gives omni-directional micro-
phones a directivity of the front direction. Facing the
sound source improves sensitivity and SNR. The word
recognition rate of separated sound increases 5��10%
in the direction of 0� and 30� in comparison with non-
separated sound. This proves that the active direction-
pass �lter reduce environmental noise and improves
the SNR.



Fig. 7 shows the sound source separation of two
static speakers. It proves that the e�ciency of the
active direction-pass �lter is 4��5dB when the angle
between two speakers is more than 60�, but separa-
tion of two speakers closer together than that is more
di�cult. For speech recognition, better sound source
separation should be required because the result of the
ASR is not good.

Fig. 8 shows that integration with visual informa-
tion is not so e�ective, about 1dB improvement. This
is because the sound stream is manually created. A
\sound stream" consists of so many fragments that
automatic stream formation failed. On the contrary,
a stream by \integration" is automatically created by
compensating such a gap in the sound stream with the
aid of visual information.

V. Conclusion

This paper reports real-time sound source seper-
ation by an active direction-pass �lter as well as
some improvements of our previous real-time multiple
speaker tracking system. Robustness of sound source
localization is improved by incorporating stereo vision,
because it achieves more accurate localization even
when only a partial face is available. By distribut-
ing communication load to Gigabit Ethernet and Fast
Ethernet, computationl costs of Stereo Vision, which
requires a lot of CPU power, does not a�ect the real-
time processing.

The active direction-pass �lter with adaptive sen-
sitivity control is shown to be e�ective in improv-
ing sound source separation. The sensitivity of the
direction-pass �lter has not been reported so far in
the literature and the idea of the active direction-pass
�lter resides in active motion to face a sound source
to make the best use of the sensitivity. Since we use a
conventional automatic speech recognition as it is, the
recognition rate is not so good. However, we believe
that the results reported in this paper should be used
as the baseline performance for robust speech recogni-
tion. The combination of most up-to-date robust auto-
matic speech recognition with the active direction-pass
�lter is one of exciting future work.

For the improvement of sound source separation,
a more accurate direction-pass �lter, integrated with
other clues such as IID, is another future work. For
a robust ASR, missing data such as masking signals
by reverberation and environmental noise should be
taken into account. A switch of acoustic and linguis-
tic models by context extraction also would be neces-
sary. Disambiguation of sound source localization and
separation by hierarchical multi-modal integration, as
humans do, would lead to a robust total perception
system.
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