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ABSTRACT
This paper presents an improvement on an existing grammar-based
method for metrical structure detection and alignment, a task which
involves aligning a repeated tree structure with an input stream of
musical notes. The previous method achieves state-of-the-art re-
sults, but performs poorly when it lacks training data. Data anno-
tated as it requires is not widely available, making this drawback
of the method significant. We present a novel online learning tech-
nique to improve the grammar’s performance on unseen rhythmic
patterns using a dynamically learned piece-specific grammar. The
piece-specific grammar can measure the musical well-formedness
of the underlying alignment without requiring any training data. It
instead relies on musical repetition and self-similarity, enabling the
model to recognize repeated rhythmic patterns, even when a sim-
ilar pattern was never seen in the training data. Using it, we see
improved performance on a corpus containing only Bach composi-
tions, as well as a second corpus containing works from a variety
of composers, indicating that the online-learned grammar helps the
model generalize to unseen rhythms and styles.

Index Terms— music information retrieval, meter detection and
alignment, online learning, context-free grammar, lexicalization

1. INTRODUCTION

Metrical alignment refers to aligning a repeated metrical structure
with an input stream of musical notes. The task is an integral com-
ponent of automatic music transcription (AMT), when trying to iden-
tify the time signature of a given musical performance, or when de-
tecting the value (quarter note, eighth note, etc.) of each input note
(e.g. [1, 2]). A metrical structure can be conceptualized as a tree,
the root of which corresponds with a single bar (theoretically higher
multi-bar groupings are possible, but we do not consider them here).
The nodes at each level are divided into (usually two or three) chil-
dren, representing shorter time durations. The sum of the durations
of all nodes at any given level of a metrical tree is equal to the dura-
tion of the entire bar. In this work, we consider metrical trees with
three levels—bar, beat, and sub beat. An example of the metrical
structure of a 2

4 bar can be seen at the top of Figure 1. We also only
consider metrical structures with two, three, or four beats, where
each beat has either two or three sub beats. These simplifying as-
sumptions are made such that the six possible metrical structures we
consider form an exact one-to-one mapping with the most common
time signatures of common practice era Western music (the main
subject of this work) as shown in Table 1. We do not allow time sig-
nature changes (where the metrical structure of one bar is different
from the metrical structure of the preceding bar).
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Fig. 1. Our model takes as input non-aligned MIDI (here the rhythm
ˇ “==̌ “=== ˇ “==== ˇ “====̌ “==‰ ˇ “

==̌ “=== ˇ “====, bottom) and outputs an alignment with a repeated
metrical structure consisting of bars, beats, and sub beats (here a 2

4

meter, top). Each node in the metrical tree is represented by a dot
aligned in time with its beginning point in the underlying MIDI.

Time Signature 2
X

3
X

4
X

6
X

9
X

12
X

Beats per bar 2 3 4 2 3 4
Sub beats per beat 2 2 2 3 3 3

Table 1. The one-to-one mapping of time signatures of common
practice era Western music to our considered metrical structures. X
denotes any number (for our purposes, 4

4 is identical to 4
8, 4

16, etc.).

The task involves detecting the correct metrical structure and
aligning it with the underlying music, stretching and contracting the
nodes of each tree as necessary to match ritardandos (slowing down)
and accellerandos (speeding up) in the underlying music. Each note
in our input is labelled only with its pitch, onset time, and offset
time, and we use no other information. Our input is MIDI, but any
piano-roll-like format would work equivalently. Figure 1 shows an
example input and output of our model.

Existing work on metrical alignment of MIDI performance is
sparse. There is existing work on meter detection (but not align-
ment) from metronomic data (e.g., [3, 4])—including some which
labels a piece as duple or compound—but it does not align a full
metrical structure with the notes of the piece (except for, sometimes,
synthetic rhythms, as in [5]). There is existing work which performs
metrical alignment of MIDI, but not from MIDI performance [6]. In
the acoustic domain, work on beat tracking and downbeat detection
stops short of alignment with a full metrical structure (e.g. [7, 8]).

Whitely et al. [9] perform metrical structure detection and align-
ment probabilistically from MIDI performance by jointly modelling
tempo, meter, and rhythm. However, the evaluation was very brief,
and the idea was not used further on MIDI data to our knowledge.
Temperley [10] proposes a Bayesian model for meter detection and
alignment of monophonic MIDI performance, and extends it [11]
to work on polyphonic data, combining it into a joint model with
a Bayesian voice separator and a Bayesian model of harmony. We
compare against the joint model in this work.

The guiding principle behind most existing work is that musi-
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S →Mb,s

Mb,s→ Bs . . . Bs (b times)
Bs → SB . . . SB (s times) | r
SB → r

Fig. 2. The PCFG’s rules, where b is the number of beats per bar, s
is the number of sub-beats per beat, and r is any rhythmic pattern.

cally salient notes—in particular long or low notes—tend to align
with strong positions higher up in the metrical tree. McLeod and
Steedman [12] show that a lexicalized PCFG (probabilistic context-
free grammar; LPCFG), which is able to draw on a wider rhyth-
mic context, achieves state-of-the-art results for metrical alignment.
Their model also has the property of incrementality (it performs its
analysis in a single pass of the input and can output its top hypothe-
sis at any time). This potentially allows it to be adapted to work on
real-time tasks such as live accompaniment, unlike most other meth-
ods. However, they note that it can suffer from a lack of training
data and performs poorly on unseen or uncommon rhythms. This is
a significant issue: the training data required must be fully aligned
with a metrical structure, which is uncommon. We build upon their
method here, improving performance given limited training data.

2. PROPOSED METHOD

Our proposed method improves upon McLeod and Steedman’s [12]
LPCFG’s performance on unseen rhythms by using online learning
to create a piece-specific grammar that can be learned and used in-
crementally. The piece-specific grammar assigns a greater probabil-
ity to a metrical alignment which results in rhythmic repetition (or
near-repetition) occurring in similar metrical positions throughout a
piece of music. Repetition is a well-known aspect of music, and
much work has been done on musical pattern recognition and mo-
tif extraction (e.g. [13, 14, 15]). Notably, [16] investigates the link
between musical patterns and meter, showing that pattern extraction
can be used for meter detection, although, to our knowledge, it has
not before been used explicitly for alignment.

The original LPCFG is described in Section 2.1, and the ap-
plication of the new grammar is presented in Section 2.2. Code is
available at www.github.com/apmcleod/met-align.

2.1. Lexicalized PCFG

2.1.1. The Grammar

The grammar itself, introduced in [17], is based on a relatively sim-
ple PCFG, whose rules are in Figure 2. The grammar rules create a
tree similar in form to a metrical structure, with the addition of the
terminal symbol r, which represents any rhythmic pattern. A beat
may only be rewritten by a rhythmic pattern if it contains either a
single note or a rest for its entire duration. The grammar is based
on the principle that long notes are heard as rhythmically stressed,
and aligning a detected stress with learned metrical stress patterns
will allow for the detection of the underlying metrical structure of a
given musical performance. However, a PCFG makes a strong inde-
pendence assumption which is inappropriate for music. Specifically,
a note can only be heard as “long” in comparison to the lengths of the
surrounding notes, but a PCFG is unable to make such comparisons.

To solve this problem, the grammar is lexicalized, which refers
to the assignment of a head to each node representing the most
musically-important note (here, the longest note) beneath it in the
tree. A head is written as (d; s), where d and s represent the duration
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Fig. 3. Two possible parse trees of the rhythm ˇ “‰ ˇ “ ˇ “
== ˇ “== including lexi-

calization. Top: 6
8, p = 1.37× 10−3; bottom: 3

4, p = 6.78× 10−5.

and starting location of the longest note, each relative to the current
node’s duration. An additional “t” is added if the note is tied into
from a previous node. The heads provide a vital context which is
missing from a standard PCFG. Following this head calculation, we
assign each beat and sub beat a strength of either strong, even, or
weak, (represented by subscripts of S, E, and W ), based on its head
and the heads of its siblings. Heads are ranked by duration (with tied
notes being weaker than untied notes) and then by starting location.
If all of the siblings’ heads are equal, the nodes are assigned equal
strength. Otherwise, the nodes among a group of siblings with the
largest head are assigned strong strength while the other nodes are
assigned weak strength. Two example parse trees of the rhythm
ˇ “‰ ˇ “ ˇ “
== ˇ “== (in 6

8 and 3
4 time) are shown in Figure 3. Notice the tied note

in the second beat of the 3
4 tree, and how it affects the surrounding

heads and strengths. The probability of a parse tree is calculated
using the standard LPCFG equations as described in [18], with an
additional conditioning on the meter type and Good-Turing smooth-
ing [19]. For example, the probability of the transition from the
second beat of the 3

4 tree from Figure 3 is the product of Equations
(1)–(3). This results in probabilities of 1.37× 10−3 for the 6

8 tree
and 6.78× 10−5 for the 3

4 tree given our training data.

P (B2,W → SBWSBS |M3,2, (
1
2
; 1
2
)) (1)

P ((1; 0t) |M3,2, SBW , (
1
2
; 1
2
)) (2)

P ((1; 0) |M3,2, SBS , (
1
2
; 1
2
)) (3)

2.1.2. The Parser

The parser for the grammar is an HMM. Each state Si contains a list
of the times of the tatums of the ith bar (represented by Si.t) and a
metrical structure, which marks which of those tatums correspond to
beats and sub beats. A tatum is the lowest-level pulse of a piece of
music, and we implicitly model four tatums per sub beat. The tran-
sition function of the HMM is given by Equation (4), where T (Si)
represents the tempo at the ith bar, and P (Si.t) is the probability
of the state’s tatums—in particular how evenly spaced they are, cal-
culated as the standard deviation of the time between pulses at each
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level of the metrical tree. Both probabilities are modelled by Gaus-
sians with learned standard deviations, similar to how Gaussians are
used by Raphael [1] to model tempo deviation for rhythm parsing.

The emission function of the HMM is given by Equation (5).
The first term measures how well each observed note’s onset aligns
with a tatum (calculated as a Gaussian around each tatum location),
and P (rhythm) is the probability of the resulting rhythmic parse
tree (which is deterministic given a note set and a state) according
to the learned LPCFG. Notice that each parse tree is monophonic,
although our input is polyphonic. In practice, we perform voice sep-
aration [20] as preprocessing, creating one tree per voice per bar.
P (rhythm) is then the product of the probabilities of each mono-
phonic tree in a bar. The decoding of the model involves a modified
Viterbi algorithm [21] with beam search, as detailed in [12].

P (Si|Si−1) = P (T (Si)|T (Si−1))P (Si.t) (4)

P (Ni|Si) = P (Ni|S.t)P (rhythm) (5)

2.2. Piece-specific Grammar

As noted in previous work, one of the main drawbacks of the LPCFG
is that it suffers from a lack of data for training its grammar proba-
bilities. In particular, while it performs well for more common time
signatures with meter types it has seen often in the training data, it
tends to struggle when it has only seen a given meter type once or
twice during training. Here, we present a method to measure a given
metrical alignment’s well-formedness without relying on any train-
ing data, while retaining the model’s incrementality. To do so, we
use online learning with a piece-specific grammar (which we will
refer to here as a local grammar) that encourages the model to align
rhythmic repetition (or near-repetition) with the metrical structure.

During alignment, each hypothesis is initially assigned an empty
local grammar. We add each parsed tree to its hypothesis’s local
grammar, updating the grammar’s transition probabilities accord-
ingly. After the first, we calculate the probability of each tree (the
P (rhythm) term in the emission function from Equation (5)) as a
weighted product of its probability given the global grammar G and
its probability given its hypothesis’s current local grammar Glocal

(before that tree is added to the local grammar), as shown in Equa-
tion (6). Here, α is used to control the influence of the local gram-
mar. A grid search on our training data resulted in a value of 1

2
.

P (rhythm) ∝ P (rhythm|G)P (rhythm|Glocal)
α (6)

The local grammar drives the model towards a metrical align-
ment in which some level of the metrical tree aligns with a rhythmic
repetition. However, it cannot make a distinction between differ-
ent phases of the alignment—the global grammar must do that. For
example, imagine a piece which has a repeated bar-length pattern
of five notes. The local grammar will drive the model towards an
alignment whose bar length is correct and whose beats and sub beats
align consistently with the underlying pattern, but it will not be able
to distinguish which of the five notes occurs on the downbeat. Still,
this should eliminate a significant source of errors from the previous
version of the model, and drive it towards an at least partially correct
alignment, particularly for pieces with uncommon rhythmic patterns
which are not seen by the global grammar during training.

Another potential approach could be to run the original model as
usual (without the local grammar), and then use the local grammar
to re-rank the resulting hypotheses, although this would no longer be
incremental. Our results are slightly worse when performing this re-
ranking, likely because the incremental processing allows the model

to filter out incorrect hypotheses sooner, thus freeing up space in the
beam for more potentially good metrical alignments.

3. EVALUATION

3.1. Metric

For our evaluation metric, we use metrical F-measure as introduced
by [12]. It tries to match each ground truth bar, beat, and sub beat
node with those given by a metrical alignment. To count as a match,
the beginning and end points of two nodes must match within 70
ms1, though the level is not required to match. For example, a ground
truth beat may match with an aligned sub beat, as long as their be-
ginning and end points match. Unmatched ground truth and aligned
nodes count as false negatives and false positives respectively.

3.2. Corpora

For training our proposed model as well as the original LPCFG [12],
we use the miscellaneous corpus, released by [11], which contains
a live performance portion used to train our beat tracking HMM (22
pieces) and a metronomic portion used to train our LPCFG proba-
bilities (45 pieces). The corpus contains (mostly common practice
era) pieces by various composers, and is quite small for the purpose
of training the LPCFG for best performance. However, since we are
investigating the local grammar’s performance when there is a lack
of training data, we do not supplement it with additional data.

We evaluate the models on two corpora: (1) Bach, containing
63 metronomic MIDI files of Bach compositions—the 48 fugues
from books one and two of the Well-Tempered Clavier (BWV 846–
893; from www.musedata.org), and his 15 inventions (BWV
772–786; from www.imslp.org); and (2) piano-midi, contain-
ing 261 MIDI files of various common practice era composers from
www.piano-midi.de. We ignore those containing time signa-
ture changes or irregular meters (time signatures besides 2

X, 3
X, 4

X,
6
X, 9

X, or 12
X), bringing the total down to 216. These MIDI files

are pseudo-live performance: note velocities and tempo curves were
manually edited by their creator to emulate live performance.

While a large corpus of actual live performance is ideal, a thor-
ough evaluation of that type is left for future work. In previous work
[12] a small subset (13 pieces) of CrestMusePEDB [23], which con-
tains live performance MIDI, was used. Here, we do not do so, as the
size of the subset is quite small which may lead to unclear results.
Extending the evaluation to the full CrestMusePEDB corpus requires
additional annotation because only beats and downbeats are labelled
explicitly, not sub beats. The Vienna 4x22 piano corpus [24], which
contains MIDI performance data of four compositions, each played
by 22 different musicians, has the annotations we need. However, al-
though this corpus is large (88 MIDI files total), the models’ scores
on the 22 performances of a single composition are highly corre-
lated (since their rhythmic patterns are identical), and it is difficult
to derive any conclusion from its results.

For all corpora, we run the voice separation model from [20]
with default settings as a preprocessing step.

3.3. Results

We compare our new method against two baselines: Temperley’s
Bayesian model [11], and the original LPCFG model [12] without
the new local grammar. The results are shown in Table 2, where it
can be seen that the new local grammar leads to a consistent two to

1The 70 ms window is taken from a widely used beat tracking metric [22].
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Model Bach piano-midi
Temperley [11] 67.65 54.80
LPCFG [12] 77.67 44.91
+local (This work) 79.90 47.24

Table 2. The average metrical F-measure of Temperley’s method
[11], the original LPCFG [12], and our newly proposed model (+lo-
cal) on each corpus.

SBSSBW SBESBE SBWSBS
BS 0.2571 0.6838 0.0591
BE 0.0744 0.8989 0.0267
BW 0.0905 0.5795 0.3300

Table 3. The LPCFG’s learned probabilities for every possible beat
to sub beat transition in the context of a 4

X bar.

three point increase over the original LPCFG on both corpora. In
the piano-midi corpus, the local grammar leads to an approximately
normally distributed increase in performance among composers with
more than 5 pieces (µ = 3.5, σ = 3.7), ranging from -6 (Beethoven)
to +13 (Tchaikovsky). On the Bach corpus, both versions of the
LPCFG model outperform Temperley’s, while the opposite is true
of the piano-midi corpus. All three models perform worse on the
piano-midi corpus compared with the Bach corpus, which is not too
surprising: the tempo curves applied to the piano-midi pieces make
them much more difficult to align with a metrical structure than the
flat tempo of the Bach corpus—not to mention that corpus’s wider
variety of composers and musical styles. It was noted in previous
work that the LPCFG requires more data of a given musical style
than Temperley’s model [12], and the corpus’s variety—combined
with the fact that we have used very little training data here on
purpose—helps to explain why Temperley’s model outperforms the
two LPCFG models on the piano-midi corpus.

Table 3 gives an intuition for why the wider context provided
by the LPCFG might provide an advantage over a simpler model,
when beat tracking is accurate. It shows the LPCFG’s learned prob-
ability of every possible beat to sub beat transition in a 4

X bar. The
distributions are significantly different depending on the strength of
the beat. Only through its context is the LPCFG able to learn such
distributions, and it is precisely in cases like this that it adds value.

A specific example of a case in which the local grammar im-
proves the metrical alignment dramatically is the 12th movement of
Schumann’s Kinderszenen, Op. 15. It is in 2

4 time, and contains a re-
peated bar-length rhythmic pattern in both the right and the left hands
throughout the piece: ˇ “

==̌ “=== ˇ “==== ˇ “====̌ “==‰ (sometimes ˇ “
==̌ “=== ˇ “==== ˇ “====̌ “== ˇ “===). This pat-

tern, particularly its second beat, is quite uncommon in our training
data, so the global grammar struggles with it. The local grammar,
however, is able to recognize it. In the left hand, the pattern tends
to begin on the downbeat of each bar, while in the right hand, the
pattern usually begins on beat two. Nonetheless, each alignment is
common enough for the local grammar to recognize, and regardless
of what beat the pattern begins on, the trees from the beat level down
are identical. Figure 4 shows the first three bars of the piece, along
with the metrical alignment and F-measure of Temperley’s model
(top), and the LPCFG without (middle) and with (bottom) the new
local grammar. Temperley’s model predicts a 2

8 meter which begins
in phase, although drops in and out of phase throughout the piece
due to syncopation and tempo changes. Without the local grammar,
the LPCFG struggles, and predicts a 6

16 meter, achieving a metrical
F-measure of 0. With the local grammar, however, the model finds

Temperley: 53.27
Bar:

Beat:
Sub beat:

LPCFG: 0.00
Bar:

Beat:
Sub beat:

+local: 81.60
Bar:

Beat:
Sub beat:

Fig. 4. The metrical alignment and F-measure of Temperley’s model
(top), and the LPCFG without (middle) and with (bottom) the new
local grammar on the first three bars of the 12th movement of Schu-
mann’s Kinderszenen, Op. 15.

the bar-length pattern, and aligns it properly with a 2
4 meter (with

some minor phase errors), achieving a metrical F-measure of 81.60.
The global grammar assigns the 6

16 alignment a log probability of
-1971.34 and the 2

4 alignment a log probability of -2098.52. The
local grammar, however, assigns the 6

16 alignment a log probability
of -1556.49 and the 2

4 alignment a log probability of -1214.07. The
weighted log probabilities in the +local model then become -1833.06
for the 6

16 alignment and -1803.70 for the 2
4 alignment.

This example, combined with our new model’s performance in-
crease over the basic LPCFG, shows that leveraging rhythmic rep-
etition for metrical alignment is a useful strategy. Such repetition
can be detected directly, with no training data, and leads directly to
increased performance on the task.

4. CONCLUSION

We have presented an improvement on an existing method for met-
rical alignment of MIDI performance, which cites a lack of training
data and unseen rhythms as the source of many of its errors. To
that end, our method uses online learning to adapt to unseen or un-
common rhythms and styles based on occurrences of patterns and
rhythmic repetition in the music. Specifically, it uses a piece-specific
lexicalized PCFG (LPCFG) which assigns a greater probability to
rhythmic patterns that occur in metrical positions where they have
previously been seen in a given piece. We have shown that rhythmic
repetition is indeed useful for the task, and that our method offers in-
creased performance without requiring any additional training data.

The current version of our model weighs the global and piece-
specific grammars according to a parameter α. In future work, we
intend to have the value of α change dynamically. For example, if a
piece seems to match the rhythms from the global grammar well, α
should be adapted to rely more on the global grammar. On the other
hand, if a piece seems particularly repetitive, the model should rely
more heavily on the local grammar. Furthermore, there seems to be
room for improvement on the beat tracking portion of our model,
given the drop in performance between the two corpora, and future
work will attempt to improve beat-tracking to close that gap.
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[7] Sebastian Böck, Florian Krebs, and Gerhard Widmer, “Joint
beat and downbeat tracking with recurrent neural networks,”
in ISMIR, 2016, pp. 255–261.

[8] Simon Durand, Juan P. Bello, Bertrand David, and Gael
Richard, “Robust downbeat tracking using an ensemble of
convolutional networks,” IEEE/ACM Transactions on Audio
Speech and Language Processing, vol. 25, no. 1, 2017.

[9] Nick Whiteley, A. Taylan Cemgil, and Simon Godsill,
“Bayesian modelling of temporal structure in musical audio,”
in ISMIR, 2006.

[10] David Temperley, Music and Probability, The MIT Press,
2007.

[11] David Temperley, “A unified probabilistic model for poly-
phonic music analysis,” Journal of New Music Research, vol.
38, no. 1, pp. 3–18, Mar. 2009.

[12] Andrew McLeod and Mark Steedman, “Meter detection and
alignment of MIDI performance,” in ISMIR, 2018, pp. 113–
119.

[13] Darrell Conklin, “Discovery of distinctive patterns in music,”
Intelligent Data Analysis, vol. 14, no. 5, pp. 547–554, oct 2010.

[14] Tom Collins, Jeremy Thurlow, Robin Laney, Alistair Willis,
and Paul Garthwaite, “A comparative evaluation of algo-
rithms for discovering translational patterns in baroque key-
board works,” in ISMIR, 2010.

[15] David Meredith, “COSIATEC and SIATECCompress: Pattern
discovery by geometric compression,” in Music Information
Retrieval Evaluation eXchange (MIREX), 2013.

[16] Ron J. Weiss and Juan Pablo Bello, “Unsupervised discovery
of temporal structure in music,” IEEE Journal of Selected Top-
ics in Signal Processing, vol. 5, no. 6, pp. 1240–1251, 2011.

[17] Andrew McLeod and Mark Steedman, “Meter detection in
symbolic music using a lexicalized PCFG,” in Proceedings of
the Sound and Music Computing Conference, 2017, pp. 373–
379.

[18] Daniel Jurafsky and James H. Martin, Speech and Language
Processing: An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition, Prentice
Hall PTR, 2000.

[19] Irving J Good, “The population frequencies of species and the
estimation of population parameters,” Biometrika, pp. 237–
264, 1953.

[20] Andrew McLeod and Mark Steedman, “HMM-based voice
separation of MIDI performance,” Journal of New Music Re-
search, vol. 45, no. 1, pp. 17–26, Jan. 2016.

[21] Andrew Viterbi, “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,” IEEE Transac-
tions on Information Theory, vol. 13, no. 2, pp. 260–269, 1967.

[22] Simon Dixon, “Automatic extraction of tempo and beat from
expressive performances,” Journal of New Music Research,
vol. 30, no. 1, pp. 39–58, Mar. 2001.

[23] Mitsuyo Hashida, Toshie Matsui, and Haruhiro Katayose, “A
new music database describing deviation information of per-
formance expressions,” ISMIR, pp. 489–494, 2008.

[24] Werner Goebl, “Numerisch-klassifikatorische Interpretations-
analyse mit dem ‘Bösendorfer Computerflügel’,” M.S. thesis,
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