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ABSTRACT
We study a method for converting the music style of a given melody
to a target style (e.g. from classical music style to pop music style)
based on unsupervised statistical learning. Following the analogy
with machine translation, we propose a statistical formulation of
style conversion based on integration of a music language model
of the target style and an edit model representing the similarity be-
tween the original and arranged melodies. In supervised-learning
approaches for constructing style-specific language models, it has
been crucial to use data that properly specify a music style. To re-
duce reliance on manual data selection and annotation, we propose
a novel statistical model that can spontaneously discover styles in
pitch and rhythm organization. We also point out the importance
of an edit model that incorporates syntactic functions of notes such
as tonic and build a model that can infer such functions unsupervis-
edly. We confirm that the proposed method improves the quality of
arrangement by examining the results and by subjective evaluation.

Index Terms— Symbolic music processing; music arrange-
ment; style conversion; statistical music language models; unsuper-
vised grammar induction.

1. INTRODUCTION

Computational understanding of music creation has been a challenge
in artificial intelligence [1–4] and recently it has gathered much at-
tention for use in applications such as automatic music generation
[5–17]. Music arrangement for converting the music style, e.g. from
classical music style to pop music style, is an important creative pro-
cess to increase the variety of music [18–22]. A few speculations
about this process lead to interesting questions such as ‘How can we
computationally define and model music styles?’ and ‘What musi-
cal characteristics are kept invariant for style conversion to maintain
similarity between the original and arranged music?’. Here, we ad-
dress these questions from the viewpoint of statistical learning and
develop a method for melody style conversion that uses minimal
prior musical knowledge and annotated data.

Style conversion (and other types of music arrangement [9, 14])
can be considered in analogy with machine translation: one needs
to generate a melody [sentence] that fits into the target music style
[language grammar] and retains the characteristics [meaning] of the
original melody [sentence]. To achieve this, we follow the formal-
ism of statistical machine translation [23] and propose a framework
for style conversion based on integration of a style-specific language
model representing the target style and an edit model representing
the similarity between original and arranged melodies.

In most work on music generation [8, 11, 12, 17, 20, 22], style-
specific models have been built with training data of a specific ‘mu-
sic category’ (genre, composer, etc.). However, music categories do
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Fig. 1. Framework for style conversion. Style-specific language
models and edit models are obtained by unsupervised learning.

not often correspond to well-defined music styles [24–27]. For ex-
ample, in the music of ‘Mozart’ or ‘The Beatles’, different styles of
pitch organization (e.g. major and minor modes) and of rhythms (e.g.
quarter-note rhythm, 8th-note rhythm, and dotted rhythm) coexist.
Training data of mixed styles may obscure and even harm the learned
style, leading to unsuccessful music generation [15–17]. Successful
results have been obtained with well-selected and annotated training
data (e.g. with key information) [11, 12, 28], but it requires much
cost to do this for all possible target styles. To reduce the cost of
manual selection and annotation of data, we need a method that can
spontaneously discover styles from data [25, 29].

For machine translation, a corpus of bilingual parallel text is typ-
ically used for building an edit model. For music style conversion,
the cost of preparing such parallel data is very high, which calls for
an unsupervised method for constructing edit models. Studies have
revealed that tonal functions (e.g. tonic and leading tone) are impor-
tant factors for music similarity, in addition to the geometric distance
of notes [30,31]. In the general situation that source and target styles
have unknown and different musical systems, the challenge is to in-
fer such syntactic functions of notes and the relations between the
functions in the two styles without using annotated data.

In this paper, we propose a framework for unsupervised mu-
sic style conversion, focusing on the domain of melodies (Fig. 1).
First, we present a statistical formulation of style conversion based
on integration of language and edit models. Second, we develop a
method for discovering styles from data by clustering characteristics
in pitch organization and rhythms, based on unsupervised learning
of a mixture of probabilistic sequential models. For this, we con-
struct a novel Markov model with an architecture to embody met-
rical structure, transposition-symmetric structure of pitches such as
musical scales, and interdependence of pitches and rhythms. Third,
we build an edit model that incorporates both the geometric distance
of notes and their syntactic functions. This is realized by means of
a hidden Markov model (HMM) that spontaneously learns common
syntax underlying two style-specific music language models. We ex-
amine the effect of the proposed method by a subjective evaluation
experiment and by inspecting arranged melodies.
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The main results of this study are
• A rigid formulation of music style conversion based on the combi-

nation of a style-specific language model and an edit model. Pre-
viously, an edit model has not been formulated [18–21].

• Music language models capturing meaningful styles such as musi-
cal scales and typical rhythms can be obtained unsupervisedly.

• Unsupervised construction of edit models incorporating syntactic
relations of notes without parallel data or annotated data.

• Both the refinements of the music language model and the edit
model improve the quality of melody style conversion.

2. PROPOSED METHOD

2.1. Statistical Formulation of Style Conversion

Let us first formalize the problem of melody style conversion. A
melody is described as a sequence ((pmn, smn)Nm

n=1)Mm=1, where
pmn is the pitch of the n th note in the m th bar and smn is the
onset score time of that note, both of which take integer values (M
is the number of bars and Nm is the number of notes in the m th
bar). We here focus on pieces in 4/4 time for simplicity and repre-
sent score times smn in units of 1/3 s of a 16th note. We assume that
the number of notes in each bar and the octave ranges of notes are
kept invariant under style conversion. With this assumption, we can
represent pitches pmn by their relative values (called pitch classes)
qmn ∈ {0, . . . , 11} in each octave range (qmn ≡ pmn mod 12)
and score times smn by their relative values (called beat positions)
bmn ∈ {0, · · · , 47} in each bar (bmn ≡ smn mod 48). Thus,
we can represent a melody X as X = ((qmn, bmn)Nm

n=1)Mm=1. A
method for melody style conversion is defined as an algorithm that
maps an original melody X belonging to a source music style to an
arranged melody X̃ = ((q̃mn, b̃mn)Nm

n=1)Mm=1 belonging to a target
music style. As necessary conditions for successful style conversion,
we require that an arranged melody matches a target style and that
humans can feel the original melody in the arranged melody.

In the statistical formulation, we model the probability P (X̃|X)

of the arranged melody X̃ given the original melodyX . Similarly as
for statistical machine translation [23], we decompose this probabil-
ity as P (X̃|X) ∝ PL(X̃)PE(X|X̃), where PL represents a target
language model and PE represents an edit model. The purpose of
the target language model is to describe the characteristics of the tar-
get music style and that of the edit model is to embody the (content)
similarity between melodies X and X̃ .

2.2. Music Language Model

A minimal model for the sequence of pitch classes (pcs) is the
pitch-class Markov model (PcMM) defined with initial probabilities
P (q11 = q) and transition probabilities as P (qmn = q | q′mn = q′).
Hereafter, we write q′mn (and similarly s′mn etc.) for the note that
comes just before the qmn. Similarly, a minimal model for beat
positions is the metrical Markov model (MetMM) [32, 33] defined
with probabilities P (b11 = b) and P (bmn = b | b′mn = b′).

To incorporate interdependence of pitches and rhythms, we
combine the PcMM and MetMM by considering the product space
of pc and beat position. The transition probabilities are written as
P (qmn, bmn | q′mn, b′mn) = Ψ(q′mn, b

′
mn; qmn, bmn). Hereafter,

to save space, initial probabilities are not written down explicitly
but readers should understand that they are similarly defined. We
call this model a torus Markov model (TMM) since the state space
can be identified as a grid on a torus S1 × S1 with one circle cor-
responding to the pc space and the other one corresponding to the

Classical music

Enka music

Style 1 (major diatonic) Style 2 (minor diatonic)

Style 1 (major pentatonic) Style 2 (minor pentatonic)

Fig. 2. Learned parameters of the TSTMMixMs. Marginalized
pitch-class transition probabilities are shown as bands.

beat-position space. Note that even with the first-order restriction,
the TMM can induce a range of dependence up to a bar length since
pcs on different beat positions are treated as independent states.

To describe both transpositions (global pitch shifts of entire mu-
sical pieces) and modulations (local pitch shifts of phrases or sec-
tions of a musical piece), we introduce (local) key variables km ∈
{0, . . . , 11} defined for each bar m. For example, when km =
0 indicates C major key, D major key is indicated by km = 2.
We suppose that key variables are generated by a Markov model
P (km|km−1) and extend the TMM as

P (km = k | km−1 = k′) = πk′k, (1)

P (qmn, bmn | q′mn, b′mn, km) = Ψ(km)(q′mn, b
′
mn; qmn, bmn). (2)

To relate parameters for different keys, we impose transposition
symmetry for the model parameters (similarly as in [34]):

πk′k = π(k′+`)(k+`), (3)

Ψ(k)(q′, b′; q, b) = Ψ(k+`)(q′ + `, b′; q + `, b), (4)

for any ` ∈ {0, . . . , 11} (additions for pcs and keys are defined in
modulo 12). We call this model a transposition-symmetric TMM
(TSTMM). A transposition-symmetric PcMM is defined similarly.

As discussed in Sec. 1, there are commonly several modes of
pitch and rhythm organizations in a music category. With the ex-
pectation that these modes can be represented by different parameter
values of TSTMMs, we construct a mixture model by introducing
mode variables ρm ∈ {1, . . . , NM} defined for each bar. For each
mode we consider 12 transpositions indexed by km. The generative
process is now described as

P (ρm = ρ, km = k | ρm−1 = ρ′, km−1 = k′) = πρ′k′,ρk, (5)

P (qmn, bmn | q′mn, b′mn, ρm = ρ, km = k)

= Ψ(ρ,k)(q′mn, b
′
mn; qmn, bmn). (6)

We again impose transposition symmetry as in Eqs. (3) and (4).
This model is called a transposition-symmetric torus Markov mix-
ture model (TSTMMixM). A component TSTMM defines PL(X̃).

TSTMMixMs can be learned unsupervisedly by the EM algo-
rithm [35]. Although one can use random initialization in princi-
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Fig. 3. Syntactic functions of notes described in the edit model.

ple, we empirically found that this often leads to unwanted local op-
tima. To solve this problem, we can learn a mixture of transposition-
symmetric PcMMs and that of MetMMs separately and then use
them to initialize the learning of TSTMMixMs.

The two TSTMMixMs learned from the classical music dataset
and the Enka dataset (see Sec. 3.1 for details) are illustrated in Fig. 2.
Here, the PcMMs obtained by marginalizing the component TMMs
are visualized, and the pcs are transposed to make interpretation eas-
ier. For the classical music data the two models represent the major
and minor (diatonic) scales, and for the Enka data the two models
represent the major and minor pentatonic scales. Major and minor
scales are similarly learned from the J-pop data. While these scales
are well-known and expected to be extracted from data, it is worth
emphasizing that they are here inferred unsupervisedly without any
annotation on the tonic and mode. Similar visualizations for other
styles are accessible from the accompanying web page [36].

We can also see that different rhythmic styles are learned from
different music categories (see visualizations in [36]). Most notably,
onsets on stronger beats are more frequent in the styles of the clas-
sical music, whereas this is not true in the styles of J-pop music
reflecting the presence of frequent syncopations.

2.3. Edit Model

If note x=(q, b) of the original melody corresponds to note x̃=(q̃, b̃)
of the arranged melody, a simple edit model can be defined by

P (x|x̃) ∝ exp

(
− (q − q̃)2

2σ2
p

)
exp

(
− (b− b̃)2

2σ2
r

)
, (7)

where the squared distances are defined in the spaces of pc and beat
position, and σp and σr are scale parameters.

The simple edit model has an essential problem, especially in the
unsupervised setup. For example, if one converts a C-major melody
into the minor mode, normally one chooses C minor key for the ar-
ranged melody and retains the tonic note (C), which is often used as
a closing note. However, with the simple edit model, A minor key
(or another minor key) is often selected as the one that minimizes
the geometric distances of notes and then the structure of syntactic
functions of notes (such as tonic) is not retained.

To solve this problem, we construct a refined edit model that
takes into account syntactic functions of notes. To infer syntactic
functions of notes from data unsupervisedly, we apply the technique
developed in [37]. This method uses HMMs with latent states repre-
senting functions of symbols, which can be trained using sequential
contexts, i.e. what comes before and after a certain symbol. Writing
zmn ∈ {1, . . . , NF} for a latent state (NF is a predefined number
of syntactic functions), the HMM is defined wth transition probabil-
ities P (zmn|z′mn) and output probabilities P (qmn|zmn), which are
to approximate the probability P (q|q′) of a TSTMMixM.

To construct an edit model connecting two styles, we extend
this model with two output probabilities, one for the source style
P (qmn|zmn) and the other for the target style P (q̃mn|zmn) (Fig. 3).
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Fig. 4. Learned edit probabilities P (q|q̃) for two sets of source and
target music styles. Thick rectangles indicate principal scale notes.

The latent states and transition probabilities P (zmn|z′mn) are shared
in the two styles to induce the model to represent common syntactic
structure. These probabilities are to approximate both P (q|q′) and
P (q̃|q̃′). This model can induce the following edit probability:

PF (X|X̃) =
∑
z

[∏
m,n

P (qmn|zmn)

]
P (z|q̃), (8)

where z = (zmn) and q̃ = (q̃mn). The second factor in the left-
hand side can be computed by the forward-backward algorithm.

Combining both the distance-based model and the function-
based model, the refined edit model is defined as

PE(X|X̃) ∝ PF (X|X̃)α1
∏
m,n

PD(qmn|q̃mn)α2PD(bmn|b̃mn)α3 ,

where PD(q|q̃) and PD(b|b̃) denote the two factors in Eq. (7) and we
have introduced weights α1, α2, and α3 for the component models.

Examples of learned parameters of the edit model are shown in
Fig. 4, where the heat maps represent the probabilities P (q|q̃) ∝∑
z P (q|z)P (q̃|z)π∗z (π∗z is the stationary distribution of z). In the

left figure, notes of the major diatonic scale are mapped to those of
the minor pentatonic scale, and one can find the mediant and subme-
diant (E and A) are mapped mainly to flat notes (E[ and A[), which
agrees with the musical intuition. In the right figure, the major penta-
tonic scale is mapped to the major diatonic scale. Notably, the fourth
and fifth notes (G and A) of the pentatonic scale correspond to mul-
tiple notes of the diatonic scale. The functions of these notes can
change depending on the context; e.g. A before C in the pentatonic
scale can correspond to the leading tone B in the diatonic scale. As
in these examples, we found that the refined edit models obtained by
unsupervised learning often matched the musical intuition.

2.4. Algorithm for Melody Style Conversion

An algorithm for melody style conversion can be derived based on
statistical inference of the combination of the language model in
Sec. 2.2 and the edit model in Sec. 2.3. We first learn one set of
a TSTMMixM for each dataset of the source and target music cate-
gories and extract music styles indexed by the mode variable ρsource
and ρtarget. If an original melody X and the corresponding music
style ρsource are given, then the key information can be estimated by
the Viterbi algorithm using the source language model.

The target music style is specified by one of the values of ρtarget.
One can infer the target melody X̃ and its key information with re-
spect to the target language model jointly by maximizing the prob-
ability P (X̃|X) ∝ PE(X|X̃)PL(X̃), which can be done with the
Viterbi-like algorithm. For efficient computation, after the key infor-
mation of the original melody is estimated we simply transfer this
information to the target melody using the edit model since the ac-
curacy of key estimation is high (100% accuracy for our test data).
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Fig. 5. Examples of melody style conversion. The original melody is
a J-pop song. The target category is the classical music and the 2nd
style (minor mode) is used as the target for methods M2 and M3.

3. RESULTS AND EVALUATION

3.1. Experimental Setup

For numerical experiments, we use three datasets of different mu-
sic categories, (Western) classical music, J(apanese)-pop music, and
Enka music (a genre of Japanese popular song), which were chosen
for the ease of data preparation and subjective evaluation. The clas-
sical music data consist of 7133 bars of soprano melodies composed
by Mozart, the J-pop data consist of 3878 bars of vocal melodies
composed by a Japanese band ‘Mr. Children’, and the Enka data
consist of 37032 bars of vocal melodies by various artists [38, 39].

The language model for each music category is trained as fol-
lows. First, NPM mixtures of PcMMs and NRM mixtures of Met-
MMs are learned by the EM algorithm. Then, all combinations of
products of these models are used as initial values for learning the
TSTMMixMs with NM = NPMNRM mixtures. The numbers of
mixtures for the test data are set to (NPM, NRM) = (3, 1), (3, 2),
and (3, 3) for the classical music, J-pop, and Enka data, respectively.
Out of the learned TSTMMs, we choose two that have large mixture
weights, i.e. most frequently appearing one, and use them as repre-
sentative styles of each music category. After a few trials, we set
α1 = 0.4, α2 = α3 = 0.8, σp = 0.7, σr = 3, and NF = 7. For
comparison, we implement and test the following three methods:

• (M1) Torus Markov model (TMM) + simple edit model
• (M2) TSTMMixM + simple edit model
• (M3) TSTMMixM + refined edit model

3.2. Example Results

Examples of melody style conversion are shown in Fig. 5, where a J-
pop melody is converted to a style of the classical music category. In
the rhythmic aspect, results for the three methods are all successful:
tied notes that are typical for J-pop songs are replaced with mod-
est rhythms typical for the classical music style. On the other hand,
three arrangements have different pitch organizations. In the result
for M1, accidentals in the third bar imply a modulation to the sub-
dominant key, which is not present in the original melody, leading
to an unstable closing. This can be explained by the fact that the
key structure is not described in the TMM. In the results for M2 and
M3, the key structure is consistent. However, the result for M2 has
the key of B-flat minor and the closing notes are not properly con-
verted. This can be explained by the fact that functions of notes such
as tonic are not modelled in the simple edit model. One can find no
such problems in the pitch organization in the result for M3.

Similar tendencies can be found in other examples (see [36]).
Results for M1 often have unnatural key structure and sometimes do
not raise sense of tonality. Results for M2 and M3 are often similar

 2.5
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Fig. 6. Result of the subjective evaluation. Main bars indicate means
and error bars indicate 1σ standard errors.

when the keys of the target melodies are same. Otherwise, results
for M2 can have unnatural tonal structure, when functions of notes
or key structure are improperly transferred to the arranged melody.

3.3. Subjective Evaluation

We conducted a subjective evaluation test to measure the quality of
style conversion. 10 evaluators who listen to music more than one
hour a day participated the experiment. Two well-known melodies
(8-bar length) are chosen in each of the three categories (classical,
J-pop, and Enka) and are converted to one style of the two different
music categories; in total we have 12 arranged melodies for each
method (results are accessible in [36]). After evaluators listened to
the arranged melodies, being informed the target styles but not the
methods, they evaluated the following metrics in 6-level scores:
• Style match: Does the arranged melody match the target style?
• Similarity: Do you feel the original melody?
• Naturalness: Is the melody natural?
• Attractiveness: Is the melody attractive?

The results in Fig. 6 show that the mean scores of all the met-
rics are improved by refinements of the method. Particularly, the
‘style match’ score improved by 0.5 (p-value < 10−5, t-test) with
the refined language model (M1 vs M2), and the ‘similarity’ score
improved by 0.28 (p-value = 3.3 × 10−3, t-test) with the refined
edit model (M2 vs M3). The improvements in the ‘naturalness’ and
‘attractiveness’ scores are also statistically significant. These results
clearly demonstrate the efficacy of the proposed method.

4. CONCLUSION

Back to our questions, the results of this study indicate that aspects
of music styles such as musical scales and typical rhythms can be
described as clusters defined by statistical generative models, which
can be learned without much relying on expert musical knowledge.
Unsupervised learning of music styles has been studied for use in
genre classification [25, 29], and we showed that it is also useful
for generating or arranging music. We also revealed the importance
of syntactic functions of musical notes in describing music similar-
ity for the arrangement task, and the effect is particularly enhanced
when the key information must be estimated automatically. The gen-
erality of our framework and the promising results suggest that the
proposed formulation of style conversion can also be useful for other
forms of music such as chord sequences and polyphonic music.

The present framework can easily be applied to other music
styles and we plan to examine the universality of the approach in a
wide variety of music styles. We found that different music styles are
obtained by different initial values from the same data and the results
are not always interpretable. How to characterize musically mean-
ingful clustering of styles in terms of information measures (e.g.
likelihood) is therefore essential. Determining the optimal number
of mixtures is also an important issue left for future work.
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