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ABSTRACT
This paper describes a statistical method of automatic drum tran-
scription that estimates a musical score of bass and snare drums and
hi-hats from a drum signal separated from a popular music signal.
One of the most effective approaches for this problem is to apply
nonnegative matrix factor deconvolution (NMFD) for estimating the
temporal activations of drums and then perform thresholding for es-
timating a drum score. Such a pure audio-based approach, however,
cannot avoid musically unnatural scores. To solve this, we propose
a unified Bayesian model that integrates an NMFD-based acoustic
model evaluating the likelihood of a drum score for a drum spectro-
gram, with a deep language model serving as a prior (constraint) of
the score. The language model can be trained with existing drum
scores in the framework of autoencoding variational Bayes and has
more expressive power than the conventional statistical models. We
derive an inference algorithm using Gibbs sampling, which is a mar-
riage of the solid formalism of Bayesian learning with the expres-
sive power of deep learning. It is shown that the proposed method
not only slightly improved the F-measure score but also increased
musical naturalness of the transcribed drum scores than NMFD.

Index Terms— Drum transcription, musical language model,
NMF, VAE, deep Bayesian learning

1. INTRODUCTION

Automatic drum transcription (ADT) has actively been investigated
for describing the rhythmic characteristics of popular music in the
field of music information retrieval (MIR) [1]. Although many dif-
ferent types of drum instruments such as floor, low, and high toms
and ride and crash cymbals are included in a drum kit, three kinds of
drum instruments, i.e., bass and snare drums and hi-hats, have com-
monly been focused on because they form the rhythmic backbone
of popular music. Most studies on ADT aim to estimate drum rolls

describing the onset times of those drums in a similar way that most
studies on automatic music transcription (AMT) aim to estimate pi-

ano rolls describing the onset and offset times of pitched musical
instruments. To complete ADT, it is thus necessary to convert drum
rolls to drum scores by quantizing the onset times of the drums. Such
a process is called rhythm transcription in AMT [2, 3], but this has
scarcely been investigated in ADT.

A typical approach to ADT is to use nonnegative matrix factor-
ization (NMF) for decomposing a drum spectrogram into the basis
spectra and temporal activations of the three drums [4–6]. NMF has
often been used for AMT and is especially suitable for ADT be-
cause drum sounds appear repeatedly with different combinations
and volumes and the magnitude spectrogram of a drum part can thus
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Fig. 1. A hierarchical generative model of a drum-part spectrogram
integrating a pretrained DNN-based drum score model (score prior)
with an NMFD-based acoustic model (score likelihood). Given a
drum-part spectrogram as observed data, a drum score and all vari-
ables are estimated by using both models in a Bayesian manner.

be approximated as a low-rank matrix. Since the acoustic charac-
teristics of each drum cannot be fully represented by a basis spec-

trum, Smaragdis [7] proposed a convolutional extension of NMF
called nonnegative matrix factor decomposition (NMFD) that ap-
proximates a drum-part spectrogram as a patchwork consisting of
overlapping basis spectrograms of the drums. To detect the onset
times of the drums, simple peak-picking or thresholding is typically
applied to the estimated activations. To avoid such a separate post-
processing, Liang et al. [8] proposed beta-process NMF (BP-NMF)
that introduces binary variables (masks) describing the presence or
absence of basis components at each time.

Although NMF and its variants have been used successfully
for ADT, musically unnatural drum rolls are often obtained. If a
dictionary of drum patterns is available, one can categorize each
segment of the estimated drum rolls into one of the registered pat-
terns [9]. This approach, however, cannot deal with unregistered
drum patterns. Recurrent neural networks (RNNs) have recently
been used for learning direct conversion of a drum-part spectrogram
to a drum roll in a supervised manner and significantly improved the
performance [10, 11]. However, musically unnatural scores cannot
be avoided because RNNs are used for learning the temporal dy-
namics of drum sound mixtures at the frame level and those of drum
scores at the tatum level are not considered.

The limitation of these pure acoustic models calls for a music
language model defined on symbolic musical scores. Such language
models have recently been used successfully for AMT [12–14]. A
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basic approach to representing the sequential dependency of musi-
cal notes is to use first- or lower-order Markov models or hidden
Markov models (HMMs) [13]. The expressive power of these mod-
els, however, is severely limited and higher-order models are com-
putationally prohibitive. RNN-based language models have recently
been proposed to learn long-term dependency of musical notes and
used for estimating musical scores from piano rolls estimated by an
NMF-like low-rank acoustic model [14]. Principled integration of a
language model defined on discrete symbols and an acoustic model
defined on continuous values is still an open problem.

In this paper, we propose a new approach to ADT based on a uni-
fied Bayesian model integrating a DNN-based language model with
an NMFD-based acoustic model (Fig. 1) under an assumption that
tatum times (16th-note-level beat times) and bar lines are given in
advance (e.g. by a beat tracking method [15]). The acoustic model
evaluates the likelihood of a drum score (tatum-level binary vari-
ables) for a drum spectrogram and the language model evaluates the
prior probability (musical appropriateness) of the score. While the
physical additivity of drum sounds can be represented well by a lin-
ear model based on NMFD, the complicated syntactic structures of
drum scores are hard to be explicitly represented. We thus use a vari-
ational autoencoder (VAE) [16] for learning an implicit generative
model of one-measure drum patterns with their latent feature rep-
resentations from existing drum patterns in an unsupervised manner.
Given a drum spectrogram, a drum score (a sequence of one-measure
drum patterns) and all variables of the language and acoustic models
can be estimated in a principled manner via Gibbs sampling.

At the heart of this study is a marriage of the solid formalism
of Bayesian learning with the expressive power of deep learning.
This is the first attempt that utilizes a powerful deep prior model for
ADT and that can be applied to more general types of AMT. A key
advantage of our deep Bayesian approach is that a huge amount of
drum patterns available on the Web [17] can be used for learning the
language model, while a standard approach to end-to-end learning
needs time-aligned pair data for supervised learning.

2. PROPOSED METHOD

This section describes the proposed method that estimates a drum
score from a drum-part signal separated from a popular music signal
using harmonic/percussive source separation (HPSS) [18].

2.1. Problem Specification

The problem of ADT is formalized as follows:

Input: The magnitude spectrogram of a target signal X 2 RF⇥T
+

with 16th-note-level tatum times and bar lines
Output: Drum score S 2 {0, 1}K⇥R.

Here, F is the number of frequency bins, T the number of time
frames, K = 3 the number of drum instruments (snare and bass
drums and hi-hats), and R the number of tatums in the observed
signal. The target signal is assumed to include only the percussive
components obtained from the HPSS method [18]. The binary mask
Skr indicates whether drum k has an onset at tatum r. Note that S
can be divided into measures (drum patterns).

2.2. Model Formulation

We formulate a hierarchical generative model of a magnitude spec-
trogram X by integrating a DNN-based language model of binary
masks S with an NMFD-based acoustic model of X (Fig. 1).

2.2.1. NMFD-Based Acoustic Model (Score Likelihood)

The magnitude spectrogram X is approximated by using basis spec-
trograms W 2 R(K+1)⇥F⇥M

+ , activation vectors H 2 R(K+1)⇥T
+ ,

and binary masks S 2 {0, 1}K⇥R as follows:

Xft ⇡ Yft
def
=

MX

m=1

KX

k=0

Yftkm. (1)

Here, Yftkm is given by
⇢

Yftkm = WkfmHk,t�mSk,r(t�m) (k � 1),
Yft0m = W0fmH0,t�m,

(2)

where M is the number of frames forming each basis spectrogram,
{Wkfm}Ff=1 (k � 1) is the basis spectrum of drum k at frame m

and r(t) denotes the tatum to which frame t belongs. We have intro-
duced an additional basis spectrogram W0fm and an activation vec-
tor H0t to represent possible noise added to the target drum sounds.
To evaluate the approximation error of Eq. (1), we use the Kullback-
Leibler (KL) divergence as in KL-NMF [19]. In terms of probabilis-
tic modeling, the minimization of the KL divergence is equivalent to
the maximization of the Poisson likelihood given by

Xft ⇠ Poisson(Yft). (3)

To complete Bayesian formulation, we put conjugate gamma
priors on W as follows:

⇢
Wkfm ⇠ Gamma(akfm, bkfm) (k � 1),
W0fm ⇠ Gamma(a0, b0),

(4)

where Gamma(a⇤, b⇤) denotes a gamma distribution with shape
and rate hyperparameters a⇤ and b⇤. Similarly, we put conjugate
gamma priors H as follows.

⇢
Hkt ⇠ Gamma(ck, dk) (k � 1),
H0t ⇠ Gamma(c0, d0),

(5)

where ck, dk c0, and d0 are hyperparameters.

2.2.2. DNN-Based Language Model (Score Prior)

The binary masks S are assumed to independently follow Bernoulli
distributions as follows:

Skr ⇠ Bernoulli(⇡kr), (6)

where ⇡kr indicates the prior probability of the presence of the onset
of drum k at tatum r. For mathematical convenience, we rewrite the
drum- and tatum-wise representation given by Eq. (6) as a measure-
wise representation as follows:

si ⇠ Bernoulli(⇡i), (7)

where si and ⇡i are 16K-dimensional binary and real-valued vec-
tors consisting of Skr’s and ⇡kr’s in measure i (0  i  I � 1),
respectively. The core part of the proposed method is that ⇡i is rep-
resented by an implicit deep generative model as follows:

zi ⇠ N (0, 1), (8)
⇡i = DNN✓(zi), (9)

where DNN✓ is a non-linear function with parameters ✓ that maps
zi to ⇡i and zi is a V -dimensional latent representation of the drum
pattern of measure i. The deep score prior p✓(S) is obtained by
marginalizing out the latent variables Z from the implicit generative
model given by p✓(S|Z)p(Z).
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Fig. 2. The VAE of one-measure drum patterns.

2.3. Score Prior Learning

To estimate the deep score prior p✓(S), we train a variational au-
toencoder (VAE) for existing drum patterns S in an unsupervised
manner. Our goal is to estimate the DNN parameters ✓ that maxi-
mize the likelihood given by p✓(S). Since the direct maximization
of p✓(S) is intractable, we derive the lower bound of log p✓(S) that
can be maximized easily. More specifically, introducing an arbitrary
variational distribution q(Z) and using Jensen’s inequality, the lower
bound of log p✓(S) can be derived as follows:

log p✓(S) � �KL[q(Z)|p(Z)] + Eq[log p✓(S|Z)]. (10)

As an instance of q(Z), we formulate a recognition model q�(Z|S)
with parameters � defined as follows:

q�(Z|S) =
I�1Y

i=0

N (zi|µ�(si),�
2
�(si)), (11)

where µ� and �2
� are nonlinear functions defined with DNNs whose

input and output are 16K- and V -dimensional vectors, respectively.
The lower bound of log p✓(S) can be further written as follows:

log p✓(S)

� 1
2

X

i,v

�
1 + log�2

�,v(si)� µ2
�,v(si)� �2

�,v(si)
�

+
X

k,r

Eq[Skr log ⇡kr + (1� Skr) log(1� ⇡kr)], (12)

where µ2
�,v(si) is the vth dimension of the V -dimensional output of

µ2
�(si) and �2

�,v(si)is defined similarly. Eq. (12) is a function of ✓
and � because ⇡ is determined by Eq. (9). Both ✓ and � are jointly
optimized such that the lower bound given by Eq. (12) is maximized
by a stochastic gradient descent method such as Adam [20].

2.4. Score Posterior Computation

Given X as observed data, we aim to compute the posterior distribu-
tion p(W,H,S,Z|X). Since this cannot be calculated analytically,
we use Gibbs sampling for iteratively and alternately updating W,
H, S, and Z in a stochastic manner.

2.4.1. Updating Drum Score

Using the acoustic model with W and H and the language model
with Z, binary masks S are sampled as follows:

Skr ⇠ Bernoulli

✓
P1

kr

P0
kr + P1

kr

◆
, (13)

P0
kr / (1� ⇡kr) p(X|W,H,S¬(kr), Skr = 0), (14)

P1
kr / ⇡kr p(X|W,H,S¬(kr), Skr = 1), (15)

where the first and second terms of Eq. (14) or Eq. (15) indicate
the prior probability and the acoustic likelihood, respectively, and
S¬(kr) denotes the subset of S excluding Skr . Note that ⇡ depends
on Z. The likelihood terms of Eq. (14) and Eq. (15) are given by

p(X|W,H,S¬(kr), Skr = 0)

=
Y

t2{r(t)=r}

Y

f

 
Y

¬k
ft +

X

m

WkfmHk,t�m

!Xft

· exp
(
�
X

m

WkfmHk,t�m

)
, (16)

p(X|W,H,S¬(kr), Skr = 1)

=
Y

t2{r(t)=r}

Y

f

⇣
Y

¬k
ft

⌘Xft
, (17)

where Y
¬k
ft is given by

Y
¬k
ft =

X

l 6=k

X

m

Yftkm (k � 1). (18)

2.4.2. Updating NMFD-Based Acoustic Model

To sample W, H, and S involved in Bayesian NMFD with binary
masks S, we extend a Gibbs sampling method proposed for Bayesian
NMF with binary masks called BP-NMF [8]. More specifically, con-
ditioned by H and S, W is sampled as follows:

Wkfm ⇠ Gamma(âkfm, b̂kfm), (19)
⇢

âkfm =
P

t Xft�ftkm + akfm (k � 1),
â0fm =

P
t Xft�ft0m + a0,

(20)
⇢

b̂kfm =
P

t Hk,t�mSk,t�m + bkfm (k � 1),
b̂0fm =

P
t H0,t�m + b0,

(21)

where �ftkm is an auxiliary variable given by

�ftkm =
Yftkm

Yft
. (22)

Similarly, conditioned by W and S, H is sampled as follows:

Hkt ⇠ Gamma(ĉkt, d̂kt), (23)
⇢

ĉkt =
P

f,m Xft�f,t+m,km + ck (k � 1),
ĉ0t =

P
f,m Xft�f,t+m,0m + c0,

(24)
(

d̂kt =
P

f,m WkfmSkt + dk (k � 1),

d̂0t =
P

f,m W0fm + d0.
(25)

2.4.3. Updating DNN-Based Language Model

Since it is difficult to analytically calculate the posterior distribution
of Z, we use a Metropolis-Hastings method to update Z. A proposal
of z⇤i at each bar i is sampled in a way of random walk by using a
Gaussian distribution as follows:

z
⇤
i ⇠ q(z⇤i |zi) = N (zi, 0.1). (26)

The proposal z⇤i is accepted as the next zi with the following accep-
tance rate az⇤i |zi :

az⇤i |zi = min

0

@1,
p(z⇤i )
p(zi)

Y

k,r2{bar(r)=i}

p(Skr|z⇤i )
p(Skr|zi)

1

A . (27)
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Method Part P(%) R(%) F(%)

HH 79.4 60.9 69.0
NMFD SD 63.2 63.6 63.4

BD 82.3 80.2 81.2

HH 80.9 61.4 69.8
VAE-NMFD SD 67.6 65.4 66.5

BD 83.0 79.4 81.2

Table 1. Performances of ADT for RWC popular music database.
The “HH”, “SD”, and “BD” represent the hi-hats and snare and bass
drums, respectively.

Here, bar(r) = b r
16c denotes the measure to which tatum r belongs.

To estimate Z effectively, we initialize Z with samples drawn from
the recognition model q�(Z|S) with initial estimates of S.

3. EVALUATION

3.1. Experimental Setup

For evaluation, we used audio signals in the RWC popular music
database [21]. Those signals were converted into monaural signals
and divided into segments of 30-second length. The second segment
of each piece was used for evaluation. We selected 64 pieces in
which bass and snare drums and hi-hats are played at least once.
We split the selected audio signals into segments of 1 measure using
tatum times obtained from the annotations [22]. The tatum times we
used were shifted 0.03 seconds earlier from the original annotations
to align them with the onset times of the drum sounds.

All songs were sampled at 44.1 kHz, and we obtained mag-
nitude spectrograms using an STFT with a Hann window of 2048
points and a shifting interval of 441 points (10 ms). Moreover, we
applied HPSS [18] for the spectrograms to separate the drum part
spectrograms. Each magnitude spectrogram was normalized so that
the average magnitude becomes unity.

To determine the hyperparameters akfm and bkfm (k � 1), we
used the isolated sounds of bass and snare drums and hi-hats from
the RWC musical instrument sound database [23]. The magnitude
spectrograms of those sounds were obtained similarly as above and
the template spectrogram of each drum was estimated by applying
NMFD with a single basis to the spectrogram obtained by concate-
nating all the spectrograms of the target drum. The hyperparameters
were set so that the means of the Gamma priors were the same as the
basis spectrograms and the variance of the Gamma priors was 0.01.
The other hyperparameters of the priors on basis spectrograms W

and activation vectors H were set as a0fm = 0.05, b0fm = 50.0,
c0 = 50.0, d0 = 50.0, ck = 1.0, and dk = 50.0. We trained the
VAE network using 41474 bars obtained from drum scores of The
Beatles and Japanese popular music, which had no overlaps with the
test data. The number of frames forming each basis spectrogram was
M = 20. The dimension of the latent variable zi was V = 4.

Performance of ADT was measured by the precision and recall
rates and F-measure defined as follows:

P =
Nc

Ne
, R =

Nc

Ng
, F =

2RP
R+ P , (28)

where Ne, Ng , and Nc are the numbers of estimated, ground-truth,
and correct notes, respectively. For each k (� 1), note onsets t

⇤

are detected using the estimated from H and S by the following

HH
SD
BD
HH
SD
BD

VAE-NMFD

Input

Blue: Detected notes (correct),  Red: Delete error, Yellow: Insertion error

Ground truth
HH
SD
BD

NMFD
HH
SD
BD
HH
SD
BD

Fig. 3. Examples of drum scores estimated by NMFD (baseline)
and VAE-NMFD (proposed). For VAE-NMFD, activations obtained
after applying the masks are shown.

conditions for forming a peak:

Hkt⇤Skt⇤ � 0.3 ·max
t

{HktSkt}, (29)

Hkt⇤Skt⇤ = max
t⇤�5tt⇤+5

{HktSkt}. (30)

When the time difference between an estimated note and a ground-
truth note was within 50 ms, we judged the estimated note as correct.

3.2. Experimental Results

The experimental results of ADT are shown in Table 1. For snare
drum and hi-hats, the proposed method significantly outperformed
NMFD in all the metrics. For bass drum, the recall rate for the
proposed method was slightly worse than that of NMFD and the
F-measure was even. In the example in Fig. 3, the snare drum part
obtained by NMFD (acoustic model) had unnatural rhythmic pat-
terns (for example in the last half measure) whereas that obtained
by the proposed method was musically natural. These results indi-
cate that the proposed method integrating the DNN-based language
model and the NMFD-based acoustic model not only improved the
objective evaluation metrics but also increased the musical natural-
ness of the transcribed scores. These results clearly demonstrate the
effectiveness of the proposed method.

4. CONCLUSION

This paper has presented a statistical method of ADT that integrates
an NMFD-based acoustic model with a VAE-based deep language
model in a unified Bayesian manner. A key advantage of our deep
Bayesian approach is that the language model can be learned from
musical scores, while a standard approach to end-to-end learning
needs time-aligned pair data for supervised learning. This approach
can be applied to more general types of music transcription. The
experimental results showed that the proposed method can estimate
musically natural scores by leveraging the powerful deep score prior.

A future direction is to integrate the present method with a sta-
tistical method of beat and downbeat detection for joint estimation
of drum scores and beat times, similarly as in [24]. We also plan to
represent the temporal dependency and repetitive structures of drum
patterns by using a time-series or recurrent extension of the VAE.
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