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Abstract
We propose a novel acoustic beamforming method using blind
source separation (BSS) techniques based on non-negative
matrix factorization (NMF). In conventional mask-based ap-
proaches, hard or soft masks are estimated and beamforming
is performed using speech and noise spatial covariance matri-
ces calculated from masked noisy observations, but the phase
information of the target speech is not adequately preserved. In
the proposed method, we perform complex-domain source sep-
aration based on multi-channel NMF with rank-1 spatial model
(rank-1 MNMF) to obtain a speech spatial covariance matrix for
estimating a steering vector for the target speech utilizing the
separated speech observation in each time-frequency bin. This
accurate steering vector estimation is effectively combined with
our novel noise mask prediction method using multi-channel
robust NMF (MRNMF) to construct a Maximum Likelihood
(ML) beamformer that achieved a better speech recognition per-
formance than a state-of-the-art DNN-based beamformer with
no environment-specific training. Superiority of the phase pre-
serving source separation to real-valued masks in beamforming
is also confirmed through ASR experiments.
Index Terms: beamforming, blind source separation, multi-
channel non-negative matrix factorization, noisy speech recog-
nition

1. Introduction
Speech reverberation and additive noise adversely influence the
speech recognition accuracy when the user is distant from the
microphone, and there are increasing demands and expectations
for the robust distant automatic speech recognition (ASR) sys-
tems. Various research efforts have been made in line with this
understanding and the reported results for recent open evalua-
tions such as the Reverb Challenge [1] and the CHiME chal-
lenge [2] clearly show that multi-channel signal processing
is particularly effective for an acceptable distant ASR perfor-
mance in very adverse noisy conditions.

Acoustic beamforming [3][4] is a promising approach for
this multi-channel speech enhancement front-end for ASR.
In earlier attempts at beamforming for ASR, it was typi-
cally performed based on a roughly determined voice activ-
ity detection (VAD) results and the time differences of ar-
rival (TDOA) estimated using geometry information [5][6],
but they did not achieve ASR performances good enough for
noisy speech in real situations. Recently, a number of works
adopting another approach based on time-frequency masks have
been reported showing impressive enhancement performances
[7][8][9][10][11][12].

In this paper, we propose a natural extension to this mask-

based beamforming. Our contribution is twofold. First, we
reformulate the conventional mask-based beamforming frame-
work so that the steering vector for the target speech is calcu-
lated using a time-frequency representation of speech preserv-
ing phase extracted via a complex-domain source separation
technique. For this purpose, we adopt a multi-channel NMF
employing rank-1 spatial model (rank-1 MNMF) [13] that sep-
arates out the target signal with little distortion, which is an ad-
vantage for ASR. Its rank-1 constraint also matches the charac-
teristics of beamforming which is basically performed using a
single steering vector. Secondly, we show that our novel multi-
channel source separation technique called multi-channel robust
NMF (MRNMF) [14] can be applied to robust estimation of
noise spatial covariance matrices, as well as to the initialization
for rank-1 MNMF estimation that yields robust separation re-
sults for speech source. These techniques resulted in a powerful
beamformer which achieved a better ASR performance than a
state-of-the-art DNN-based beamformer with no environment-
specific training.

2. Acoustic beamforming
We perform speech enhancement in the short-time Fourier
transform (STFT) domain. The data model considered in this
paper is as follows:

yft,m = gf,msft + vft,m

= xft,m + vft,m, (1)

where yft,m, xft,m and vft,m ∈ C are the noisy speech, speech
and noise observations at the m-th microphone. t (1 ≤ t ≤ T )
and f (1 ≤ f ≤ F ) are the indices for time frame and frequency
bin. sft is the single source signal and gf,m ∈ C is the finite
inpulse response of the recording environment, and the vector
defined as [gf,1, gf,2, ..., gf,M ]T ∈ CM is called the steering
vector.

The speech enhancement via beamforming is performed by
applying a time-invariant linear filter hf ∈ CM to the noisy
speech observations as:

zft = hH
f yft

= hH
f xft + hH

f vft, (2)

where yft is defined as yft = [yft,1, yft,2, ..., yft,M ]T ∈ CM .
xft and vft are also defined in the same way. zft is the en-
hanced signal. In this paper, we adopt two specific types of
beamformers, namely ML and MV beamformers [15] to evalu-
ate our framework. The proposed method can also be applied
to a variety of methods including the Generalized Eigenvector
(GEV) beamformer [16], which is not presented in this paper
due to space limitation.
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2.1. Maximum likelihood (ML) beamformer

The ML beamformer1 [15] is obtained by maximizing the fol-
lowing likelihood function:

p(yft|sft) =
1

det(πKf )
exp(−(yft − gfsft)

H

K−1
f (yft − gfsft)), (3)

on the assumption that the noise conforms to Gaussian distribu-
tion where Kf is the spatial covariance matrix of noise calcu-
lated as Kf = 1

T

∑
t vftv

H
ft. The value of sft that maximizes

the likelihood function is:

ŝft =
gH
f K

−1
f yft

gH
f K

−1
f gf

(4)

and this leads to the following filter coefficients:

h
(ML)
f =

K−1
f gf

gH
f K

−1
f gf

. (5)

For performing the ML beamforming, both of Kf and gf

need to be estimated from the noisy observations in some way.

2.2. Minimum variance (MV) beamformer

Another version of beamforming method called MV beam-
former [15] can be performed even when the noise covariance
matrix Kf is not available. It minimizes the power (variance)
of the filtered noisy speech under the constraint that the target
speech signal remains distortionless as:

h
(MV )
f = argmin

hf

hfRfh
H
f s.t. hH

f gf = 1, (6)

where Rf is the spatial covariance matrix of noisy speech cal-
culated as Rf = 1

T

∑
t yfty

H
ft. This leads to the following

filter coefficients:

h
(MV )
f =

R−1
f gf

gH
f R

−1
f gf

. (7)

2.3. Mask-based beamforming

When a time-frequency mask is available [9][11][12], the noise
covariance matrix Kf can be estimated by accumulating time-
frequency bins clustered to be noise as:

K̂f =
1∑

t M
(noise)
ft

∑
t

M
(noise)
ft yfty

H
ft, (8)

where the real-valued noise mask M
(noise)
ft shared among all

channels represents the probability that the time-frequency bin
is dominated by noise. We can also find a steering vector ĝf

by performing eigenvalue decomposition to the speech covari-
ance matrix Jf = 1

T

∑
t xftx

H
ft and picking up the eigen-

vector with the largest eigenvalue. Jf is also estimated using
speech mask M

(speech)
ft :

Ĵf =
1∑

t M
(speech)
ft

∑
t

M
(speech)
ft yfty

H
ft. (9)

We can construct an ML beamformer with both of Kf and
gf using formula (5), and an MV beamformer with gf using
(7).

1ML beamformer is also referred to as MVDR in the literature, e.g.,
[8],[11], whereas MV beamformer in 2.2 has traditionally been referred
to as MVDR ([3], [17]) and sometimes MPDR ([18]). We follow the
definitions in [15].

3. Proposed method
3.1. Steering vector estimation using rank-1 MNMF

As described in the previous section, we need to estimate the
steering vector for target speech for both of ML and MV beam-
formers and it critically influences the performance of speech
recognition backend as will be demonstrated in the next sec-
tion. In this paper, we estimate the steering vector for tar-
get speech source utilizing a source separation technique called
rank-1 MNMF [13]. We modify (1) and assume that the obser-
vation consists of one speech source and N − 1 noise sources
as:

yft = Gfsft, (10)

where one element of sft = [sft,1, sft,2, ..., sft,N ]T ∈ CN is
the speech source, and the N columns in the M × N matrix
Gf = [gf,1, ..., gf,N ] are the steering vectors for speech and
noise sources. In rank-1 MNMF, this observation is modeled to
conform to a zero-mean complex Gaussian distribution as:

yft ∼ Nc(y|0,Rft), (11)

where Rft =
∑

n gf,ng
H
f,nrft,n and rft,n =

∑
k λnkbfkckt.

bk (= [b1k, ..., bFk]
T), k = 1, ...,K, are called bases and con-

stitute representative spectral patterns that are regarded as acti-
vated by ckt that represents gain for basis k at time t. The latent
variable λnk indicates whether the basis k belongs to the source
n or not. We estimate the model parameters λnk, bfk, ckt, and
Gf by minimizing the negative log-likelihood

L(θ;D) =
∑
t

∑
f

− logNc(yft|0,Rft), (12)

where θ = {λnk, bfk, ckt,W f (
def
= G−1

f )|n = 1, ..., N, f =

1, ..., F, t = 1, ..., T, k = 1, ...,K} and D = {yft|f =
1, ..., F, t = 1, ..., T}. We set the number of sources, N , equal
to M for convinience to obtain the model parameters within the
rank-1 NMF framework [13].

The minimization of this likelihood function is performed
by a repetition of auxiliary function-based update rules for spa-
tial part of the model parameters (i.e. W f ) and multiplicative
update rules for source subset (i.e. λnk, bfk, ckt) of the model
parameters. Readers are referred to [13] for the detail. Once we
obtain Ŵ f , the estimate of W f , we can recover the speech and
noise signals from N sources as

ŝft = Ŵ fyft. (13)

After determining the source index ns as speech source,
e.g., by choosing the one with the largest energy, we can obtain
the contribution to the observation from speech source as:

x̂ft = ĝf,ns
ŝft,ns , (14)

where ĝf,ns
is the ns-th column of Ŵ

−1

f , and ŝft,ns is the ns-
th element of the N -vector sft. The speech covariance matrix
can be computed as

Ĵf =
1

T

∑
t

x̂ftx̂
H
ft (15)

3.2. Binary mask estimation using MRNMF

Since background noise spectrum in different time frames are
usually highly correlated with each other, it can be assumed to
lie in a low-rank subspace. On the other hand, human voices
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Figure 1: Run-time algorithm for estimating noise and speech spatial covariance matrices based on combined BSS

have more variation and are relatively sparse in the spectral do-
main. In multi-channel robust NMF (MRNMF) [14], the ampli-
tude spectrogram of noisy speech observation is decomposed
into channel-wise low-rank spectrograms lft,m ∈ R+ and a
sparse spectrogram shared among all channels sft ∈ R+ as
follows:2

|yft,m| ≃ lft,m + at,msft, (16)

where at,m ∈ R+ is the gain of the sparse component. This
model is formulated as a unified Bayesian model and the es-
timation of noise and speech components is performed by a
variational Bayesian (VB) inference. While the speech com-
ponent sft is induced to be sparse by introducing gamma pri-
ors with the Jeffreys’ hyperpriors, the noise component lft,m is
forced to be low-rank exploiting the Bayesian NMF decompo-
sition framework [19] as:

lft,m ≃
∑
k

bfk,mckt,m, (17)

where bfk,m and ckt,m are the elements of the F ×K NMF ba-
sis matrix Bm and K × T activation matrix Cm. More details
including an effective variational Bayesian inference algorithm
are found in [14]. MRNMF has an attractive characteristics for
robust speech recognition. It gives robust estimation for speech
signal in very adverse conditions using only sparseness crite-
rion without any prior knowledge on the testing conditions, even
when the microphone array is partially occluded. Different from
rank-1 MNMF or the complex GMM-based method proposed
in [9], the speech signal is extracted as the sparse component
without any external decision criteria in the MRNMF frame-
work. Because the current version of MRNMF is performed in
the amplitude domain, however, the output speech signal is not
free from serious distortion and is not appropriate for input to
back-end ASR. On the other hand, we can obtain a robust es-
timation of noise mask by thresholding the sparse component
as:

M
(noise)
ft =

{
1 sft < θmask

0 otherwise.
(18)

An example of the estimated noise mask is presented in
Fig. 2. We define the threshold θmask as:

θmask = 0.01 · 1

FTM

∑
f,t,m

|yft,m|. (19)

2R+ means the set of non-negative real numbers.

0 50 100 150 200 250 300
0

50

100

150

200

0 50 100 150 200 250 300
0

50

100

150

200

Figure 2: An example of amplitude spectrum (top) and the esti-
mated binary mask (bottom) with MRNMF for real noisy speech

3.3. Combined BSS-based ML beamformer

Although rank-1 MNMF can estimate an accurate steering vec-
tor, it has three disadvantages. First, it cannot give a full-
rank noise spatial covariance matirx required in ML beamform-
ing. Secondly, we need some external criteria for choosing the
speech source. Thirdly, because rank1-NMF is not perfectly
free from permutation problem, speech signal can be separated
into multiple sources, which can cause a serious performance
degradation in subsequent beamforming and ASR.

These problems inherent to rank-1 MNMF can be solved
by combining it with MRNMF. The first problem is solved by
using the covariance matrix calculated with noise mask (17).
Both of the second and third problems are solved by using
the sparse component estimated using MRNMF for initializ-
ing rank-1 MNMF estimation. More precisely, a column in
the mixing matrix Gf in rank-1 MNMF, which corresponds to
the source we want to assign speech signal, is initialized with
the steering vector estimated from the speech covariance matrix
calculated using the MRNMF mask.

Based on the above discussion, we can construct a power-
ful ML beamformer by combining rank-1 MNMF and MRNMF
without any training data. The run-time algorithm for estimat-
ing the speech and noise spatial covariance matrices in the pro-
posed combined BSS-based framework is depicted in Fig. 1.

4. Experimental evaluation
We evaluated the proposed methods through the ASR task of
the third CHiME challenge [2]. The noisy training set consists
of 1,600 real noisy utterances and 7,138 simulated noisy utter-
ances generated by artificially mixing the clean WSJ0 training
set with noise backgrounds. Each utterance consists of six chan-
nels from which we used five by eliminating channel 2 facing
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Table 1: Performance of proposed methods combined with multi-cond. acoustic model back-end (WER(%))
et05 real noisy ID

no enhancement 23.39 (1)
Beamformit 15.60 (2)

rank-1 MNMF (no beamforming) 15.35 (3)

Ĵf K̂f beamformer needs training
real valued mask-based MRNMF MRNMF ML no 12.99 (4)

DNN DNN ML yes 11.51 (5)
complex domain separation-based rank-1 MNMF - MV no 13.11 (6)

rank-1 MNMF MRNMF ML no 11.82 (7)
MRNMF + rank-1 MNMF MRNMF ML no 10.94 (8)

the opposite direction. There are four different types of noisy
environments, namely, bus, street, cafe, and pedestrian area [2].
We trained a DNN-HMM acoustic model [20][21] using the
training set described above. It has four hidden layers with 2k
rectified linear units (ReLUs) [22] and a softmax output layer
with 2k nodes. A 1,320-dimensional feature vector consisting
of 11 frames of 40-channel log Mel-scale filterbank (lmfb) out-
puts and their delta and acceleration coefficients is used as input.
Dropout [23] and batch normalization [24] is used for training
of all hidden layers. For decoding, we used the Kaldi WFST de-
coder [25]. The language model is the standard WSJ 5k trigram
LM. We used the real noisy evaluation set (”et05 real noisy”)
consisting of 1,320 utterances for evaluating the methods.

We used Beamformit [26] as a baseline bermformer against
which we compared our method. We also trained a feed-
forward DNN for mask prediction [11][12] using the ideal bi-
nary mask (IBM) [11] as target3. The DNN structure is the
same as the acoustic model described above, except that the in-
put feature is the 1,110-dimensional feature vector consisting of
11 frames of static 100-dimensional lmfb outputs and the output
is F (= 201)-dimensional mask.

The experimental results are presented in Table 1. As
shown in row (2), the baseline delay-and-sum beamformer
(Beamformit) successfully reduced the WER. The WER ob-
tained using rank-1 MNMF output directly without beamform-
ing is shown in row (3). Speech channel selection is done by
simply picking up the one with the highest power in this case.
While it already gave a comparable average WER to Beamfor-
mit, we observed ASR errors due to permutation in some utter-
ances.

In all beamforming experiments below, we used the same
setting for acoustic signal processing: the sampling rate of au-
dio signal is 16kHz, the window length and frame shift for
short-time Fourier transform is 25ms (400 samples) and 10ms,
which is the same as those for lmfb computation for ASR.

4.1. Mask-based beamforming using MRNMF

In the MRNMF-based system, both of the speech and noise co-
variance matrices are estimated using MRNMF-based masks.
The speech mask is calculated as M (speech)

t,f = 1 − M
(noise)
t,f .

As shown in row (4) of Table 1, the MRNMF-based ML
beamformer significantly outperformed Beamformit and rank-1
MNMF without beamforming, confirming that MRNMF-based
robust mask estimation is effective for beamforming. However,
it did not achieve a comparable performance to the ML beam-

3In [11] and [12], mask prediction was conducted using biderec-
tional LSTMs, but the feed-forward DNNs using spliced lmfb features
as input slightly outperformed biderectional LSTMs in our preliminary
experiments and we show only the results obtained with DNNs here.

former constructed using a state-of-the-art DNN-based mask
prediction (row (5)). Note that both of the MRNMF and DNN-
based beamforming evaluated here are performed using real-
valued masks.

4.2. Complex domain source separation-based beamform-
ing

We evaluated the proposed system combining complex domain
source separation based on rank-1 spatial model (rank-1 NMF)
and MRNMF.

First, from row (6), we can see that the accurate steer-
ing vector for the target speech estimated using rank-1 MNMF
achieved a comparable performance to the MRNMF-based ML
beamformer, even with MV beamformer that does not use the
noise covariance. Interestingly, this result is much better than
the WER obtained with the direct output of rank-1 MNMF (row
(3)), suggesting that beamforming may not be drastically dam-
aged by permutation errors.

When this steering vector by rank-1 MNMF is combined
with the noise covariance matrix estimated using MRNMF
(row (7)), the WER was significantly reduced from row (4),
where the mask-based method was used for obtaining the tar-
get speech steering vector, suggesting the advantage of the
phase-preserving source separation in steering vector estima-
tion. Moreover, rank-1 MNMF estimated using the sparse com-
ponent by MRNMF for initialization gave further significant
improvement (row (8)), suggesting that the MRNMF output was
a good initializer for rank-1 MNMF. This proposed system out-
performed the DNN-based beamformer (row (5)) without any
environment-specific training for mask generation.

5. Conclusion
We have proposed a novel acoustic beamforming method that
utilizes rank-1 MNMF for accurately estimating a steering vec-
tor for the target speech and the multi-channel robust NMF for
effectively estimating the noise mask as well as robustly initial-
izing rank-1 MNMF to construct a powerful ML beamformer.
We demonstrated the effectiveness of the proposed methods
through noisy speech recognition experiments.

We are also interested to see how other techniques works as
well, such as IVA [27] and full-rank MNMF [28] for source sep-
aration and Complex Gaussian Mixture Model [9] for mask pre-
diction. Promising future work includes an extension of the cur-
rent version of MRNMF to allow complex-valued inputs which
would estimate an accurate full rank noise covariance and the
steering vector directly without using real-valued masks in an
unified framework. Since the proposed approach to beamform-
ing is based on a robust source separation method, it will poten-
tially be extended to distant ASR for multiple speakers.
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