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ABSTRACT

In this paper, we introduce the MIDI Degradation Toolkit
(MDTK), containing functions which take as input a musi-
cal excerpt (a set of notes with pitch, onset time, and dura-
tion), and return a “degraded” version of that excerpt with
some error (or errors) introduced. Using the toolkit, we
create the Altered and Corrupted MIDI Excerpts dataset
version 1.0 (ACME v1.0), and propose four tasks of in-
creasing difficulty to detect, classify, locate, and correct
the degradations. We hypothesize that models trained for
these tasks can be useful in (for example) improving au-
tomatic music transcription performance if applied as a
post-processing step. To that end, MDTK includes a script
that measures the distribution of different types of errors in
a transcription, and creates a degraded dataset with simi-
lar properties. MDTK’s degradations can also be applied
dynamically to a dataset during training (with or without
the above script), generating novel degraded excerpts each
epoch. MDTK could also be used to test the robustness
of any system designed to take MIDI (or similar) data as
input (e.g. systems designed for voice separation, metrical
alignment, or chord detection) to such transcription errors
or otherwise noisy data. The toolkit and dataset are both
publicly available online, and we encourage contribution
and feedback from the community.

1. INTRODUCTION

Music language models (MLMs) have been the subject of
much research in recent years. In the most general terms,
their goal is to learn the structure of a typical piece of
music, usually in symbolic form, as either a piano roll or
a (monophonic or polyphonic) sequence of notes. Such
models can be designed either as a stand-alone system (i.e.
to perform a specific task such as voice separation, metrical
alignment, or chord detection), or as part of an automatic
music transcription (AMT) system along with an acoustic
model.

In AMT systems, MLMs have thus far led to only
small increases in performance compared to state-of-the-
art acoustic models by themselves [9]. One possible reason
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is that such MLMs are typically run at the frame-level 1 ,
rather than at the note-level or the beat-level [20]. Re-
gardless, even beat- or note-level MLMs have not led to
very large improvements by themselves (e.g. [19,21]). One
approach to solving this issue has been proposed in [22],
where a separate “blending model” is used to combine the
acoustic model with the MLM. The blending model leads
to a small but significant increase in performance over us-
ing the acoustic model only.

Another possible reason for their minimal improvement
is that such MLMs are not directly trained to solve the task
at hand—to correct errors produced by the acoustic model.
That is, they are not discriminative models taking data with
errors as input and producing the correct transcription as
output. Instead, they are typically trained to model the dis-
tribution of clean (usually MIDI) data, and used to alter
the probabilistic predictions of the acoustic model. The
integration of such an MLM into an AMT system usually
involves searching through a large space of possible out-
put transcriptions. One potential solution to this problem
(at least when using an RNN-based MLM), is to train the
model with scheduled sampling [3], which uses its own
(noisy) outputs during training, teaching it to recover from
such mistakes. In fact, the MLM from [22] is trained us-
ing scheduled sampling. However, this training strategy is
only designed to allow the MLM to recover after a mistake,
rather than to recognize and correct a mistake directly.

Training a discriminative model which “cleans” the out-
put of an acoustic model is only feasible in the presence of
a dataset mapping degraded data to clean data. Whilst this
dataset could be produced by running an acoustic model on
a dataset mapping audio to the correct transcription, such
datasets are small relative to the amount of clean MIDI
data available elsewhere. Our MDTK package allows the
user to take any clean data and degrade it to have mu-
sical errors of their choosing. The pool of clean MIDI
data is many orders of magnitude larger than that which
maps audio to transcription data. For example, MAE-
STRO [7] has aligned MIDI and audio data of ~1 300 per-
formances totalling ~200 hours. In comparison, the Lakh
MIDI Dataset [14] comprises ~175 000 MIDI files 2 to-
talling ~9 000 hours. This is over 40 times the size, and

1 It is debatable as to whether frame-based models should be called
“language” models, since they do not work at a step related to the lan-
guage (e.g. musical notes or beats), but rather the frames of the acoustic
model. However, such a distinction is not the focus of this work.

2 The true number of files is slightly smaller than this as it is known
that some of these MIDI files are corrupted.
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additionally spans diverse genres. Using a dataset such
Lakh MIDI, MDTK allows for the creation of datasets
large enough to make the direct discriminative task fea-
sible. In addition, as we will discuss later in Section 2.2,
there is no need to restrict learning capability by explicitly
creating a degraded dataset: MDTK’s Degrader objects
can be used to degrade clean input dynamically when load-
ing it into the model, thus providing on-the-fly data aug-
mentation, enabling the model to be trained on a degraded
dataset which is essentially unlimited in size.

This process is analogous to performing learned data
augmentation—MDTK makes the discriminative task of
correcting errors feasible by increasing the effective size
of the dataset. Data augmentation has proved essential in
other fields. In [5], the authors advocate the automated ap-
plication of data augmentation for the ImageNet task [6], a
classification task for image data. They find that by auto-
matically tuning the type of data augmentation they apply
for each task, they can attain a significant improvement
over the state-of-the-art. In [1], the authors explicitly in-
vestigate the effects of generating augmented data in low-
data regimes, advocating the use of learned generators—
essentially what MDTK’s Degrader objects are—using
GANs. Finally, in [17], the authors solve their low-data
regime issue for environmental sound classification by us-
ing data augmentation, finding that performing augmenta-
tions such as pitch shifting and time stretching leads to a 6
percentage point boost in classification accuracy. MDTK
enables similar such data augmentation techniques to be
performed easily for AMT.

For non-AMT tasks, standalone MLMs typically take
as input MIDI files and output some alignment or label,
depending on the task. To our knowledge, the robustness
of these MLMs to noisy or incorrect data is rarely if ever
analysed. This is not necessarily an important factor when
clean MIDI files are used as input, but when such a MIDI
file is the result of noisy process such as AMT or Optical
Music Recognition (OMR; e.g. [18]), a model’s robustness
to noise becomes an important piece of information.

We propose that both of these shortcomings—poor
AMT post-processing, and that MLMs’ robustness to noise
has not been analysed—can be addressed using excerpts
of music to which noise is added. In an AMT system, a
post-processing model which is trained directly to identify
and correct similar noise should be better able to correct
noisy acoustic model outputs than a generic MLM. Like-
wise, the robustness of a standalone MLM to noisy input
can be analyzed with such noisy data, allowing the MLM
to be evaluated for its potential usefulness in downstream
tasks such as those involved in creating a complete piece
of sheet music given an audio signal.

In this paper, we introduce the MIDI Degradation
Toolkit (MDTK), a set of tools to easily introduce con-
trolled noise into excerpts automatically extracted from a
set of MIDI files. MDTK is similar to the Audio Degra-
dation Toolbox [11] for audio, but to the authors’ knowl-
edge, ours is the first toolkit of its kind for MIDI data.
The controlled noise includes (1) shifting the pitch of a
note; (2) lengthening, shortening, or shifting a note in time;

(3) adding or removing a note; and (4) splitting or joining
notes.

We also introduce the Altered and Corrupted MIDI Ex-
cerpts dataset version 1.0 (ACME v1.0), containing MIDI
excerpts which have been degraded (and some which have
not been degraded) using the toolkit, and four new tasks
of increasing difficulty: to (1) detect whether each excerpt
has been degraded; (2) if so, classify what degradation has
been applied and (3) locate where a degradation has taken
place; and (4) recover the original excerpt.

We present a simple baseline model for each task and
analyse its performance. These baselines are provided as
an easy starting point for researchers wanting to attempt
our proposed tasks or post-process their own AMT data.
We provide evaluation metrics for assessment and postu-
late that, if high performance were achieved, we would be
able to improve AMT output using models trained for these
tasks. We can easily swap out ACME v1.0 for a dataset
matching the errors for a specific AMT system using a pro-
vided script.

2. THE TOOLKIT

The MIDI Degradation Toolkit (MDTK) is a python pack-
age, installable with pip, which can be used to introduce
errors to MIDI excerpts. The code is released open source
under an MIT License, and is available online. We encour-
age feedback and contribution from the community in its
continued development.

Internally, MDTK stores each excerpt as a set of notes
in a Pandas [12] DataFrame with columns pitch (MIDI
pitch, with C4=60), onset (the onset time of the note, in
milliseconds), track, and dur (the duration of the note, in
milliseconds), all integers. It contains functionality to load
an excerpt from a MIDI file (using pretty_midi [15]), as
well as to read from and write to a CSV file.

2.1 Degradations

Each degradation provided in MDTK takes as input a
pandas DataFrame of an excerpt of music, and returns a
DataFrame with the given degradation. Some degrada-
tions (e.g. removing a note from an empty excerpt) are
not always possible. In such cases, a warning is printed
and None is returned. Care is also taken to ensure that no
overlaps on the same pitch are introduced by a degrada-
tion. There are a total of 8 degradations in MDTK, each of
which is described below.

The pitch_shift degradation changes the pitch of
a random note. By default, the new pitch is chosen uni-
formly at random from all possible pitches (a minimum
and maximum pitch can be given, and the valid range de-
faults to 21–108 inclusive). It can also be drawn from a
weighted distribution of intervals around the original pitch,
for example to emphasize octave errors from overtones.
We also include a flag to force the new pitch to align with
the pitch of some other note in the excerpt, to reduce out-
of-key shifts, if desired.

Three degradations shift a random note in time in some
way: onset_shift changes the note’s onset time, leav-
ing its offset time unchanged; offset_shift changes
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847



the note’s offset time, leaving its onset time unchanged;
and time_shift changes the note’s onset and offset
times by the same amount, leaving its duration unchanged.
For all of these degradations, care is taken to ensure that
the shifted note does not lie outside the excerpt’s initial
time range. A minimum and maximum resulting duration
can be specified, as well as a minimum and maximum shift
amount. We also include flags to align some combination
of the shifted note’s onset or duration with those of other
notes from the excerpt, ensuring the note lies on some met-
rical grid, if desired.

Two degradations can be used to either add a random
note to an excerpt (add_note), or remove a random note
from an excerpt (remove_note). Flags to align an added
note’s pitch, onset, or duration to those of existing notes are
included.

Two degradations can be used either to split a note into
multiple shorter consecutive notes or to combine consec-
utive notes at the same pitch into a single longer note.
Specifically, split_note will cut a random note into
some number of consecutive notes of shorter duration (the
first of which begins at the original note’s onset time and
the last of which ends at the original note’s offset time).
By default the note is split into two shorter notes, but
this—as well as a minimum allowable duration for the
resulting notes—can be set with a parameter. Similarly,
join_notes takes two or more consecutive notes at the
same pitch (with a maximum allowable gap—set with a
parameter—allowed between them), and joins them into a
single note with onset time equal to that of the first note
and offset time equal to that of the last.

2.2 Other Tools

2.2.1 Dynamically degrading clean data

MDTK includes the Degrader class, which can be
used to degrade excerpts dynamically. When instanti-
ating a Degrader object, the proportion of excerpts
that should remain undegraded is set with a parame-
ter (which can be 0). The probability of each degra-
dation being performed on an excerpt (if it is to be
degraded) can also be set at this time. Then, each
time Degrader.degrade(excerpt) is called, a ran-
domly degraded version of the input excerpt is generated
according to the proportions set during object creation.
The Degrader class can be easily inserted into any model
training procedure in order to dynamically create new de-
graded excerpts during each epoch, dramatically increas-
ing the amount of data available for training.

2.2.2 Automatically matching model errors

MDTK includes a measure_errors.py script, which
can be used to estimate the types of errors (specifically,
as degradations) typical to a particular AMT system,
given a set of transcriptions and ground truths from that
system. Note that there is no unique set of degrada-
tions which reproduce the errors that a transcription sys-
tem has made (e.g., any shift degradation can be triv-
ially replaced by a remove_note and an add_note).

We make no claim that the degradations found by the
script correspond to the exact causes of the errors made
by the AMT system. Rather, only that the distribution
of degradations produces excerpts with similar proper-
ties to those transcribed by that system. Nonetheless,
the script finds what we believe are a reasonable set of
degradations to have produced those errors using a sim-
ple heuristic-based approach. Notes are first matched
as correct if possible (same pitch, and onset and offset
within a changeable threshold), and the remaining notes
are checked for the various degradations in the follow-
ing order: (1) join_notes and split_note, either
of which may include an additional offset_shift
or onset_shift; (2) offset_shift, if the pitch
and onset time match; (3) onset_shift, if the pitch
and offset time match; (4) time_shift, but only if
the transcribed note overlaps the position of the corre-
sponding ground truth note; and (5) pitch_shift,
which must match in onset time, although an additional
offset_shift can be added. Finally, any remain-
ing unmatched notes are counted as add_note and
remove_note.

The output of the script is a json file containing the es-
timated proportion of each degradation in the given set of
transcriptions. It does not yet include values for the var-
ious degradation parameters (though this is planned for a
future update to MDTK). This output file can be used, for
example, to create a custom-tuned, static, degraded dataset
for training a model. However, the two tools can also be
combined in powerful ways. By passing this json file to
the Degrader constructor, a Degrader object can be
instantiated that generates degradations exactly matching
the estimated proportions. This could then be used to train
a model to correct the errors of that specific AMT system
using a relatively small amount of raw data.

3. THE DATASET
3.1 ACME version 1.0
The Altered and Corrupted MIDI Excerpts dataset v1.0
(ACME v1.0) is a dataset of 5 second excerpts with degra-
dations implemented by MDTK. It is not intended to emu-
late the errors of any specific AMT system, but rather serve
as a starting point for the modelling tasks we introduce be-
low.

The dataset is taken from two sources: (1) the piano-
midi dataset 3 , which contains 328 MIDI files of pseudo-
live performance 4 piano pieces of various styles (gen-
erally classical); (2) the 22194 primes from the small,
medium, and large sections of the monophonic and
polyphonic Patterns for Prediction Development Datasets
(PPDD-Sep2018) 5 , which contain excerpts drawn ran-
domly from the Lakh MIDI Dataset (LMD) [14].

We remove track information, flattening each excerpt to
a single track, simplifying the modelling tasks 6 ; analysis

3 http://www.piano-midi.de
4 The files are quantized and beat-aligned, but their tempo curves were

manually edited by their creator to sound more like live performance.
5 https://www.music-ir.org/mirex/wiki/2019:

Patterns_for_Prediction
6 The use of tracks is not standard our different data sources.
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of multi-track MIDI files will be addressed in future work.
We then fix any pair of overlapping notes of the same pitch
by cutting the first note at the onset time of the second.
We additionally set the offset time of the second note to
the maximum of the original offset times of the two notes,
such that no sustain is removed.

Once this pre-processing is complete, we select a ~5
second excerpt from each piece by choosing a random note
and all notes beginning in the subsequent 5 seconds, but
require that at least 10 notes be present. The excerpt ends
when the last held note is released. This duration is approx-
imately 2 bars for most songs so is small enough for the
models proposed in section 4 to train quickly. We degrade
8
9 of the excerpts, selecting the degradation uniformly at
random from the set of 8 defined degradations, and leave
the remaining 1

9 undegraded. For ACME v1.0, we use de-
fault parameter settings for all degradations, although we
intend to investigate the effect of different settings in future
work (and future releases of ACME datasets).

The excerpts and degraded excerpts are split randomly
into training, validation, and test sets of proportion 0.8,
0.1, and 0.1, creating the official splits for ACME v1.0.
The canonical form is available online as a set of CSV
files. Additionally, the MDTK package includes the
make_dataset.py script which we used to create the
dataset from scratch—including the automatic download-
ing of the raw data—and thus serves as a record of how it
was created.

3.2 Custom Dataset Creation

The make_dataset.py script can also be used to gen-
erate an ACME-style dataset from a user-provided set of
MIDI or CSV files. The user can specify custom sizes for
the excerpts, a custom distribution of the various degrada-
tions, as well as custom parameters for each. The script can
be given the json output of the measure_errors.py
script in order to match the properties of the generated
dataset with those measured from an AMT result. Alter-
natively, a user can simply choose to degrade individual
excerpts from their own training set by calling MDTK dur-
ing the training process, either manually or randomly using
the Degrader class.

4. PROPOSED TASKS

4.1 Motivation

These tasks are performed on ACME v1.0, and proposed in
lieu of taking existing AMT systems and measuring their
improvement when trained with the assistance of MDTK.
It is proposed that the output of arbitrary AMT systems
could be improved with models that can solve these tasks.

For instance, we could use a model trained to classify
the error contained within a given excerpt to call out for
human intervention. We could also train models to per-
form the actual fix; however, we show that, with the mod-
els we have chosen for our baseline, this problem is far
from solved.

Figure 1. Example piano rolls of a clean excerpt (left) be-
ing degraded with pitch_shift (right), including the labels
for Error Location (top right).

4.2 Tasks

We propose four tasks of increasing difficulty. Figure 1
shows a simple toy data point which has been pitch shifted
(changed note in red). We will use it as an example when
necessary throughout this section. We should note that
the tasks we introduce here are not in any way trivial, but
represent significant steps towards successful AMT post-
processing.

1. Error Detection: detect whether a given excerpt has
been degraded. This is a binary classification task with a
skewed distribution: 8

9 excerpts are degraded (the positive
class), and 1

9 are not degraded (the negative class). We
evaluate performance using F-measure but, since the neg-
ative class is the minority, for the purposes of F-measure
evaluation, we treat those as positives. Thus, a model
which always outputs “degraded” achieves a “reverse F-
measure” of 0.00 (with precision and recall both 0) rather
than its F-measure of 0.94 (with precision 8

9 and recall 1).
2. Error Classification: specify which degradation

(if any) was performed on each excerpt. This is a multi-
class classification problem, and since ACME v1.0 con-
tains a uniform distribution of each class, we evaluate per-
formance using accuracy and a confusion matrix to show
specific error tendencies for each degradation.

3. Error Location: assign a binary label to each (40
ms) frame of input identifying whether it contains an error
i.e. whether this frame contains a degradation. We evaluate
performance using the standard F-measure. The labels for
this task are shown in the top right of Figure 1.

4. Error Correction: output the original, un-degraded
version of each excerpt. In Figure 1, a model is given the
degraded excerpt (right) and expected to output the orig-
inal excerpt (left). For this task, we define our own met-
ric, helpfulness (H), based on two F-measures proposed by
[2]: frame-based F-measure with 40ms frames, and note-
based onset-only F-measure. We use the mir_eval [16]
implementation of note-based F-measure (with 50ms on-
set tolerance) to evaluate both the given excerpt and the
system’s output compared to the original excerpt. We take
the average between the two F-measures for each excerpt,
which we denote Fg (for the given excerpt) and Fc (for
the system’s corrected output). If Fg = 1 (the given ex-
cerpt was not degraded), H = Fc. If the given excerpt
was degraded, however (Fg < 1), H is calculated as in
Equation (1). An intuition for this calculation is as fol-
lows: H = 0.5 represents an output which is exactly as
accurate as the given excerpt (the error correction system
has neither helped nor hurt), and H scales linearly up to 1
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and down to 0 from there. For example, H = 0.75 repre-
sents an output which is in some sense twice as accurate
as the given excerpt (its error, 1 − Fc, is half of the given
excerpt’s error, 1−Fg). Similarly, H = 0.25 represents an
output which has twice as many errors as the input.

H =

{
1− 1

2
1−Fc

1−Fg
Fc ≥ Fg

1
2
Fc

Fg
Fc < Fg

(1)

4.3 Baseline Models
4.3.1 Data Formats

For input into our baseline models, we first quantize each
excerpt onto 40 ms frames, rounding note onsets and off-
sets to the nearest frame. We use two different input for-
mats for our baseline models, and provide data conversion
and loading functions for each of them.

The command format is based on the one designed by
[13]. Each excerpt is converted into a sequence of one-hot
vectors representing commands from a pre-defined vocab-
ulary of 356 commands: note_on(p), note_off(p), and
shift(t) (p ∈ [0, 127], t ∈ [1, 100]). The note on and off
commands represent note onsets and offsets at the current
frame, and the shift command skips t frames. Longer shifts
are represented by multiple shift commands.

The piano roll format represents each excerpt as two
binary piano rolls: one representing pitch presence in each
frame, and another represent pitch onsets in each frame.
These two piano rolls are concatenated together frame-
wise to form the model’s input.
4.3.2 Model details

The details for the models provided in this paper are brief.
For code which fully defines the models and the code used
to train and evaluate them, see the repo 7 . Our choice of
models was relatively arbitrary; they are easy to implement
with existing open source packages and easy to improve
upon.

Our baseline for Error Detection uses the command
format as input. It consists of an embedding layer of
size 128, followed by a basic Long Short-Term Memory
(LSTM) [8]. A dropout of 0.1 is applied to the final LSTM
state’s output, which is then passed to a fully-connected
layer of size 2 with softmax activation, resulting in a sin-
gle output for each input sequence.

Our Error Classification baseline uses the same de-
sign, but with output dimensionality 9 for the final layer
(one for each degradation plus one for no degradation).

For Error Location, we use the piano roll format. We
first feed the input frames into a bi-directional LSTM (Bi-
LSTM), and send the output of each Bi-LSTM state (with
dropout 0.1) into 3 linear layers, each with dropout 0.1
and ELU activation. These are each fed into a final fully-
connected layer of size 2 with softmax activation, resulting
in one output per input frame.

For Error Correction, we use the piano roll format,
and base our network on a basic Encoder-Decoder struc-
ture [4], where both the encoder and the decoder are Bi-
LSTMs. The input is passed directly into the encoder Bi-
LSTM, and the output at each frame is passed through a

7 https://www.github.com/JamesOwers/midi_
degradation_toolkit

Task Model Loss Metric

Error Detection Rule-based 0.466 0.000
Baseline 0.344 0.000

Error Classification Rule-based 2.197 0.113
Baseline 2.130 0.189

Error Location Rule-based 0.404 0.000
Baseline 0.109 0.525

Error Correction Rule-based 0.690 0.590
Baseline 0.693 0.000

Table 1. Loss and evaluation metric for the baseline and
rule-based models for each task on the ACME v1.0 test set.
Each task’s metric is different, as explained in the text.

single fully connected layer with dropout 0.1. This se-
quence is input into the decoder Bi-LSTM, each output of
which is fed into 4 linear layers which output a vector of
the same length as the input.

The models were trained using the Adam optimizer
[10], and a grid search was performed for weight decay,
learning rate, LSTM hidden-unit size, and linear layer sizes
(for full details, see the code). The model with the lowest
validation loss on each task is used as the baseline.

4.4 Analysis

To gauge the difficulty of each task, we compare each of
the baseline models to a simple rule-based approach. Like
our baseline models, the rule-based systems output proba-
bility values ∈ [0, 1]. For Error Detection, the rule-based
system returns an 8

9 probability of each data point being
degraded. For Error Classification, the rule-based system
outputs a 1

9 probability for each class. For Error Location,
the rule-based system outputs a 0.06 probability that each
frame has been degraded (the proportion of frames that are
degraded in the training set is 0.06). Finally, for Error Cor-
rection, we calculate p(1|0) = 0.01 and p(1|1) = 0.96
from the training set 8 and have the system output these
values for each cell in a given piano roll.

The results for each task on the ACME v1.0 test set
are shown in Table 1. From the losses, it is clear that the
baseline models have learned something, since all of their
losses are lower than the rule-based losses except for in Er-
ror Correction. However, from the metrics, it is also clear
that there is much room for improvement on each of the
proposed tasks (as we would hope).

For Error Detection, the baseline predicts 1 (degraded)
for every data point, just like the rule-based system, likely
because of the skew of the training data. As a simple at-
tempt to overcome this tendency, we trained another model
identical to the baseline which weights the loss of each data
point inversely proportional to that label’s frequency in the
training set. This results in a model with greater overall
loss (as expected), but which outputs some 0s, achieving a

8 That is, for the degraded piano rolls from the training set, 1% of cells
with a 0 and 96% of cells with a 1 map to a value of 1 in the corresponding
cell of the clean piano roll.
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Figure 2. Left: Confusion matrix showing the distribution
of the baseline Error Classification model’s classifications,
normalized by true label. Rows show the true label, and
columns show the predicted label. Right: The baseline Er-
ror Location model’s F-measure for each degradation type.

reverse F-measure of 0.155. Overcoming the skew of the
dataset may prove to be a challenge for this task.

For Error Classification, the baseline achieves an accu-
racy of greater than that of the rule-based system. The
baseline’s confusion matrix is shown in Figure 2 (left),
where rows represent the ground truth label and columns
represent its output. This shows error tendencies, and
(more importantly) gives an idea of the general difficulty
of detecting each degradation. Here, it can be seen that the
maximum point in each column is always on the diagonal,
showing that the model does seem to have learned some-
thing sensible. It performs well on the add note degrada-
tion, classifying 32% of those data points correctly. Pitch
shift, time shift, and remove note seem to be the most diffi-
cult, while join notes is a common target for false positives.
We are interested to see whether the above trends continue
in future work on Error Classification, and intend to further
investigate their causes.

The Error Location baseline outperforms the rule-based
system in terms of both loss and F-measure by wide mar-
gins. It achieves this F-measure with a precision of 0.844
and a recall of 0.381, so although it rarely guesses that a
frame has been degraded, it is usually correct when it does.
Figure 2 (right) presents the baseline’s F-measure split by
degradation type, which shows the model performing best
on add_note, but also well for onset and offset shifts (preci-
sion is over 0.9 for all three). It is slightly worse with pitch
and time shifts (precision over 0.6 for both), and performs
poorly on the other degradations (the value for “none” will
always be 0 since it has no positives). Given the relative
success of this model compared to the other tasks’ base-
lines, pre-training a model for this task before continuing
to train it for another task might be an avenue for improved
performance. Another strategy could be to use a model
trained for this task as an attention mechanism for some of
the other tasks.

Error Correction is clearly the most difficult task of the
four, and the baseline model’s performance reflects this.

Although its loss is similar to that of the rule-based system,
its helpfulness lags clearly behind. The rule-based model’s
strategy of (essentially) reproducing the input turns out to
be a strong baseline. Our baseline, on the other hand, al-
most always outputs empty piano rolls, no matter the input.
The difficulty of this task might require a more modular
approach than the presented end-to-end baseline, perhaps
combining the results of models from tasks 2 and 3 with a
system designed to correct a specific degradation affecting
a specific set of frames.

5. CONCLUSION

In this paper, we have introduced the MIDI Degradation
Toolkit (MDTK), which contains tools to “degrade” (in-
troduce errors to) MIDI excerpts. The toolkit is publicly
available online 9 under an MIT License, and we encour-
age contributions and feedback from the community. Us-
ing MDTK, we have created the Altered and Corrupted
MIDI Excerpts v1.0 (ACME v1.0) dataset 10 and include
in MDTK a tool to create custom ACME-style datasets
with different settings or data. We have proposed a set
of four new tasks of increasing difficulty involving such
datasets: Error Detection, Classification, Location, and
Correction, and designed evaluation metrics and scripts for
each of them. We also designed and presented simple mod-
els to be used as a baseline for each, which show that the
proposed tasks are non-trivial, and may require innovative
solutions.

The toolkit is ready to be used for improving Automatic
Music Transcription (AMT). To do so, a user can:

1. use measure_errors.py to analyse the types of
errors made by an AMT system or acoustic model.

2. instantiate a Degrader with the configuration pro-
duced by measure_errors.py—this can gener-
ate unlimited data matching the errors made by the
system from step (1).

3. train a discriminative model using data generated by
the Degrader.

4. apply that model to the output of the model from step
(1) and evaluate the difference in performance.

As performance on the proposed tasks modelling
ACME v1.0 improves, we intend to introduce ACME v2.0
with additional features such as multi-track excerpts, a
track-based degradation, longer excerpts, multiple degra-
dations per excerpt, and various parameter settings for
the degradations. We also intend to analyze the effect of
adding noise on MLM performance.
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