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Abstract

This paper describes drum sound identification for poly-

phonic musical audio signals. It is difficult to identify drum

sounds in such signals because acoustic features of those

sounds vary with each musical piece and precise templates

for them cannot be prepared in advance. To solve this

problem, we propose new template-adaptation and template-

matching methods. The former method adapts a single seed

template prepared for each kind of drums to the correspond-

ing drum sound appearing in an actual musical piece contain-

ing sounds of various musical instruments. The latter method

then uses a carefully-designed distance measure that can de-

tect all the onset times of each drum in the same piece by

using the corresponding adapted template. The onset times

of bass and snare drums in any piece can thus be identified

even if their timbres are different from prepared templates.

Experimental results with our methods showed that the ac-

curacy of identifying bass and snare drums in popular music

was about 90%.

1. Introduction

Musical instrument identification as well as automatic music

transcription become important to archive and retrieve a del-

uge of musical audio signals. If the names of musical instru-

ments in musical pieces can automatically be identified, they

are useful for classifying music and indexing music structure.

To identify musical instrument sounds with the harmonic

structure, several methods have been proposed. Martin et

al. [7] and Eronen et al. [1], for example, discussed identi-

fication of solo tones. Kashino et al. [6] developed an au-

tomatic transcription system that can identify sound sources

for polyphonic music.

Because those previous methods assuming the harmonic

structure cannot be applied to drum sounds, different ap-

proaches have been proposed for drum sounds. Herrera et

al. [5] used a method of using spectral and temporal features

of drum sounds and achieved the accuracy of about 90% on

643 solo tones of drum sounds. This method, however, can-

not be applied to polyphonic musical audio signals including

drum sounds. On the other hand, Zils et al. [8] proposed

a time-domain method of extracting drum sounds from such

polyphonic signals. They show the effectiveness of a promis-

ing idea of adapting simple templates of drum sounds to a

musical piece in the time domain. This method, however,

focused on resynthesizing high-quality drum sounds and did

not aim at identifying all the onset times of drum sounds in

a piece. The accurate identification of drum sounds in real-

world polyphonic musical audio signals is still difficult prob-

lem because it is impossible to prepare, in advance, all kinds

of drum sounds appearing in various musical pieces.

In this paper, we propose a frequency-domain template-

adaptation method that uses the power spectrum of drum

sounds as template models. The advantage of our method

is that only one template model called “seed template” is

necessary for each kind of drums: the method does not re-

quire a large database of drum sounds. To identify bass

and snare drums, for example, we should prepare just two

seed-templates (i.e., prepare a single example for each drum

sound). Given the seed templates, our method can adapt them

to actual drum sounds appearing in any polyphonic musical

piece that contains other musical instrument sounds. To iden-

tify all the onset times of drum sounds after this adaptation,

we then developed another method for accurate template-

matching. It uses a new distance measure that can find all

the drum sounds in the piece by using the adapted templates.

The rest of this paper is organized as follows. First, Sec-

tion 2 and 3 describe the template-adaptation method and

the template-matching method, respectively. Next, Section 4

shows experimental results of evaluating those methods. Fi-

nally, Section 5 summarizes this paper.

2. Template Adaptation Method

In this paper, templates of drum sounds are the power spec-

trum in the time-frequency domain. The adaptation method

of Zils et al. [8] worked only in the time domain because

they defined templates consisting of audio signals. Extend-

ing their idea, we define templates in the time-frequency

domain because non-harmonic sounds like drum sounds

are well characterized by the shapes of power spectrum.

Our template-adaptation method uses a single base template

called “seed template” for each kind of drums. To iden-

tify bass and snare drums, for example, we require just two

seed templates, each of which is individually adapted by the

method.
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Figure 1: Overview of template-adaptation method (iterative adaptation algorithm).

Our method is based on an iterative adaptation algo-

rithm. An overview of the method is depicted in Fig. 1.

First, the Rough-Onset-Detection stage roughly detects on-

set candidates in the audio signal of a musical piece. Starting

from each of them, a spectrum excerpt is extracted from the

power spectrum. Then, by using all the spectrum excepts

and the seed template of each kind of drums, the iterative

algorithm successively applies two stages — the Excerpt-

Selection stage and the Template-Refinement stage — to ob-

tain the adapted template.

In each iteration, the Excerpt-Selection stage calculates

the distance between the template (the seed template is used

for the first iteration) and each of the spectrum excerpts by

using a specially-designed distance measure. It selects a set

of spectrum excerpts whose distance is smaller (the ratio of

the set to the whole is a constant). The Template-Refinement

stage then updates the template by replacing it with the me-

dian of the selected excerpts. The template is thus adapted to

the current piece and used for the next iteration. The iteration

is repeated until the adapted template converges.

2.1. Rough Onset Detection

The Rough-Onset-Detection stage is necessary to reduce the

computational cost of the two stages in the iteration. It makes

it possible to extract a spectrum excerpt that starts from not

every frame but every onset time. The detected rough on-

set times do not necessarily correspond to the actual onsets

of drum sounds: they just indicate that some sounds might

occur at those times.

When the power increase is high enough, the method

judges that there is an onset time. Let P (t, f) denote the

power spectrum at frame t and frequency f and Q(t, f) be

the its time differential. At every frame (441 points), P (t, f)
is calculated by applying the STFT with Hanning windows

(4096 points) to the input signal sampled at 44.1 kHz. The

rough onset times are then detected as follows:

1. If ∂P (t, f)/∂t > 0 is satisfied for three consecutive

frames (t = a − 1, a, a + 1), Q(a, f) is defined as

Q(a, f) =
∂P (t, f)

∂t

∣

∣

∣

∣

t=a

.

Otherwise, Q(a, f) = 0.

2. At every frame t, a weighted summation S(t) of

Q(t, f) is calculated by

S(t) =

2048
∑

f=1

F (f) Q(t, f),

where F (f) is a lowpass filter that is determined as

shown in Fig. 2 according to the frequency character-

istics of typical bass or snare drums.

3. Each onset time is given by the peak time found by

peak-picking in S(t). S(t) is linearly smoothed with a

convolution kernel before its peak time is calculated.
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Figure 2: Function of the lowpass filter according to the fre-

quency characteristics of typical bass and snare drums.

2.2. Seed Template and Spectrum Excerpt Preparation

The seed template TS , which is a spectrum excerpt prepared

for each of bass and snare drums, is created from audio sig-

nal of an example of that drum sound, which must be mono-

phonic (solo tone). By applying the same method with the

Rough-Onset-Detection stage, the onset time in the audio sig-

nal is detected. Starting from the onset time, TS is extracted

from the STFT power spectrum of the signal. TS is repre-

sented as a time-frequency matrix whose element is denoted

as TS(t, f) (1 ≤ t ≤ 15 [frames], 1 ≤ f ≤ 2048 [bins]). In

the iterative adaptation algorithm, a template being adapted

after g-th iterations is denoted as Tg. Because TS is the first

template, T0 is set to TS .

On the other hand, a spectrum excerpt Pi is extracted

starting from each detected onset time oi (i = 1, · · · , N)
[ms] in the current musical piece. N is the number of the

detected onsets in the piece. Pi is also represented as a time-

frequency matrix whose size is same with the template Tg.

We also obtain T́g and Ṕi from the power spectrum

weighted by the lowpass filter F (f):

T́g(t, f) = F (f) Tg(t, f),

Ṕi(t, f) = F (f) Pi(t, f).

Because the time resolution of the onset times roughly

estimated is 10 [ms] (441 points), it is not enough to obtain

high-quality adapted templates. We therefore adjust each

rough onset time oi [ms] to obtain more accurate spectrum

excerpt Pi extracted from the adjusted onset time o′i [ms]. If

the spectrum excerpt from oi −5 [ms] or oi +5 [ms] is better

than that from oi [ms], o′i [ms] is set to the time providing the

better spectrum excerpt as follows:

1. The following is calculated for j = −5, 0, 5.

(a) Let Pi,j be a spectrum excerpt extracted from

oi + j [ms]. Note that the STFT power spectrum

should be calculated again for oi + j [ms].

(b) The correlation Corr(j) between the template Tg

and the excerpt Pi,j is calculated as

Corr(j) =
15
∑

t=1

2048
∑

f=1

T́g(t, f) Ṕi,j(t, f),

where Ṕi,j(t, f) = F (f) Pi,j(t, f).
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Figure 3: Quantization at a lower time-frequency resolution

for our improved log-spectral distance measure.

2. The best index J is determined as an index j that max-

imizes Corr(j).
J = argmax

j
Corr(j).

3. Pi is determined as Pi,J .

2.3. Excerpt Selection

To select a set of spectrum excerpts Pi that are similar to the

template Tg, we propose an improved log-spectral distance

measure. The spectrum excerpts whose distance from the

template is smaller than a threshold are selected. The thresh-

old is determined so that the ratio of the number of selected

excerpts to the total number is a certain value (the ratio is

0.1 in this paper). We cannot use a normal log-spectral dis-

tance measure because it is too sensitive to the difference of

spectral peak positions. Our improved log-spectral distance

measure uses two kinds of the distance Di — Di for the first

iteration (g = 0) and Di for the other iterations (g ≥ 1) — to

robustly calculate the appropriate distance even if frequency

components of the same drum may vary during a piece.

The Di for the first iteration are calculated after quantiz-

ing Tg and Pi at a lower time-frequency resolution. As is

shown in Fig 3, the time and frequency resolution after the

quantization is 2 [frames] (20 [ms]) and 5 [bins] (54 [Hz]),

respectively. The Di between Tg(TS) and Pi is defined as

Di =

√

√

√

√

√

15/2
∑

t̂=1

2048/5
∑

f̂=1

(

T̂g(t̂, f̂) − P̂i(t̂, f̂)
)2

(g = 0),

where the quantized (smoothed) spectrum T̂g(t̂, f̂) and

P̂i(t̂, f̂) are defined as

T̂g(t̂, f̂) =
2t̂

∑

t=2t̂−1

5f̂
∑

f=5f̂−4

T́g(t, f),

P̂i(t̂, f̂) =

2t̂
∑

t=2t̂−1

5f̂
∑

f=5f̂−4

Ṕi(t, f).

On the other hand, the Di for the iterations after the first

iteration is calculated by the following normal log-spectral

distance measure:

Di =

√

√

√

√

15
∑

t=1

2048
∑

f=1

(

T́g(t, f) − Ṕi(t, f)
)2

(g ≥ 1).
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Figure 4: Updating the template by calculating the median

of selected spectrum excerpts.

2.4. Template Refinement

As is shown in Fig. 4, the median of all the selected spec-

trum excerpts is calculated and the updated (refined) template

Tg+1 is obtained by

Tg+1(t, f) = median
s

Ps(t, f),

where Ps (s = 1, · · · , M) are spectrum excerpts selected in

the Excerpt-Selection stage.

We use the median operation because it can suppress fre-

quency components that do not belong to drum sounds. Since

major original frequency components of a target drum sound

can be expected to appear at the same positions in most se-

lected spectrum excerpts, they are preserved after the median

operation. On the other hand, frequency components of other

musical instrument sounds do not always appear at similar

positions in the selected spectrum excerpts. When the me-

dian is calculated at t and f , those unnecessary frequency

components become outliers and can be suppressed. We can

thus obtain the drum-sound template adapted to the current

musical piece even if it contains simultaneous sounds of var-

ious instruments.

3. Template Matching Method

By using the template adapted to the current musical piece,

this method finds all temporal locations where a targeted

drum occurs in the piece: it tries to exhaustively find all on-

set times of the target drum sound. This template-matching

problem is difficult because sounds of other musical instru-

ments often overlap the drum sounds corresponding to the

adapted template. Even if the target drum sound is included

in a spectrum excerpt, the distance between the adapted tem-

plate and the excerpt becomes large when using most typi-

cal distance measures. To solve this problem, we propose a

new distance measure that is based on the distance measure

proposed by Goto and Muraoka [2]. Our distance measure

can judge whether the adapted template is included in spec-

trum excerpts even if there are other simultaneous sounds.

This judgment is based on characteristic points of the adapted

template in the time-frequency domain.

An overview of our method is depicted in Fig. 5. First,

the Weight-Function-Generation stage prepares a weight

function which represents spectral characteristic points of

the adapted template. Next, the Loudness-Adjustment stage

calculates the loudness difference between the template and

each spectrum excerpt by using the weight function. If the

loudness difference is larger than a threshold, it judges that

the target drum sound does not appear in that excerpt, and

does not execute the subsequent processing. If the difference

is not too large, the loudness of each spectrum excerpt is ad-

justed to compensate for the loudness difference. Finally, the

Distance-Calculation stage calculates the distance between

the adapted template and each adjusted spectrum excerpt. If

the distance is smaller than a threshold, it judges that that

excerpt includes the target drum sound.

3.1. Weight Function Generation

The weight function w is defined as

w(t, f) = F (f) TA(t, f),

where TA is the adapted template and F (f) is the low-pass

filter function depicted in Fig. 2. The weight function repre-

sents the magnitude of spectral characteristic at each frame t
and frequency f in the adapted template.

3.2. Loudness Adjustment

The loudness of each spectrum excerpt is adjusted to that of

the adapted template TA. This is required by our template-

matching method: if the loudness is different, our method

cannot estimate the appropriate distance between a spectrum

excerpt and the template because it cannot judge whether a

spectrum excerpt includes the template.

To calculate the loudness difference between a spectrum

excerpt Pi and the template TA, we focus on spectral char-

acteristic points of TA in the time-frequency domain. First,

spectral characteristic points (frequencies) at each frame are

determined by using the weight function w, and the power

difference ηi at each spectral characteristic point is calcu-

lated. Next, the power difference δi at each frame is calcu-

lated by using ηi at that frame. If the power of Pi is too much

smaller than that of TA, the method judges that Pi does not

include TA, and does not proceed with the following process-

ing. Finally, the loudness difference is calculated by integrat-

ing δi. The algorithm is described as follows:

1. Let ft,k (k = 1, · · · , 15) be the characteristic points of

the adapted template, determined as frequencies where

w(t, ft,k) is the k-th largest at frame t. The power

difference ηi(t, ft,k) at t and ft,k is calculated as

ηi(t, ft,k) = Pi(t, ft,k) − TA(t, ft,k).

2. The power difference δi(t) at frame t is determined as

the minimum of ηi(t, ft,k) for k:

δi(t) = min
k

ηi(t, ft,k),

Ki(t) = argmin
k

ηi(t, ft,k).

If the number of frames where δi(t) ≤ Θδ is satisfied

is larger than a threshold Rδ , we judge that TA is not

included in Pi (Θδ is a negative constant).
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Figure 5: Overview of template-matching method (matching adapted template with all spectrum excerpts).

3. The loudness difference ∆i is calculated as

∆i =

∑

{t|δi(t)>Θδ}
δi(t) w(t, ft,Ki(t))

∑

{t|δi(t)>Θδ}
w(t, ft,Ki(t))

.

Let P ′
i be an adjusted spectrum excerpt after the loud-

ness adjustment, determined as

P ′
i (t, f) = Pi(t, f) − ∆i.

3.3. Distance Calculation

The distance between the adapted template TA and an ad-

justed spectrum excerpt P ′
i is calculated by using an ex-

tended version of the Goto’s distance measure [2]. If P ′
i (t, f)

is larger than TA(t, f) — i.e., P ′
i (t, f) includes TA(t, f),

P ′
i (t, f) can be considered a mixture of frequency compo-

nents of not only the targeted drum but also other musical

instruments. We thus define the distance measure as

γi(t, f) =
{ 0 (P ′

i (t, f) − TA(t, f) ≥ Ψ) ,
1 otherwise,

where γi(t, f) is the local distance between TA and P ′
i at t

and f . Ψ is a negative constant to make this measure robust

for the small variation of frequency components. If P ′
i (t, f)

is larger than about TA(t, f), γi(t, f) becomes zero.

The total distance Γi is calculated by integrating γi in the

time-frequency domain, weighted by the weight function w:

Γi =
15
∑

t=1

2048
∑

f=1

w(t, f) γi(t, f).

To determine whether the targeted drum played at P ′
i , the

distance Γi is compared with a threshold ΘΓ. If Γi is smaller

than ΘΓ, we judge that the targeted drum played.

4. Experiments and Results

Drum sound identification for polyphonic musical audio sig-

nals was performed to evaluate the accuracy of identifying

bass and snare drums by our proposed method.

4.1. Experimental Conditions

We tested our method on excerpts of five songs included in

the popular music database RWC-MDB-P-2001 developed

by Goto et al. [3]. Each excerpt was taken from the first

minute of a song. The songs we used included sounds of vo-

cals and various instruments in addition to drums as songs

in commercial CDs do. Seed templates were created from

solo tones included in the musical instrument sound database

RWC-MDB-I-2001 [4]. All data were sampled at 44.1 kHz

with 16 bits. The same thresholds were used in the identifi-

cation of bass drum and snare drums as:

Rδ = 7 [frames], Ψ = Θδ = −10 [dB],

ΘΓ = 5000.

We evaluated the experimental results by the recall rate,

the precision rate, and the F-measure:

recall rate =
the number of correctly detected onsets

the number of actual onsets
,

precision rate =
the number of correctly detected onsets

the number of onsets detected by matching
,

F-measure =
2 · recall rate · precision rate

recall rate + precision rate
.

To prepare actual onset times (correct answers), we extracted

onset times of bass and snare drums from the standard MIDI

file of a piece, and adjusted them to the piece by hands.



Table 1: Experimental results for five musical pieces in RWC-MDB-P-2001.

piece bass drum snare drum

number method recall rate precision rate F-measure recall rate precision rate F-measure

No.6 base 25.5 % (28/110) 68.3 % (28/41) 0.37 81.0 % (51/63) 83.6 % (51/61) 0.82

adapt 57.3 % (63/110) 84.0 % (63/75) 0.68 98.4 % (62/63) 100 % (62/62) 0.99

No.11 base 53.8 % (28/52) 100 % (28/28) 0.70 21.6 % (8/37) 66.7 % (8/12) 0.33

adapt 100 % (52/52) 100 % (52/52) 1.00 94.6 % (35/37) 97.2 % (35/36) 0.96

No.30 base 19.2 % (25/130) 89.3 % (25/28) 0.31 25.7 % (18/70) 90.0 % (18/20) 0.40

adapt 93.1 % (121/130) 93.8 % (121/129) 0.93 97.1 % (68/70) 100 % (68/68) 0.99

No.50 base 92.4 % (61/66) 93.8 % (61/65) 0.93 91.7 % (99/108) 91.7 % (99/108) 0.92

adapt 97.0 % (64/66) 87.7 % (64/73) 0.92 61.1 % (66/108) 94.3 % (66/70) 0.74

No.52 base 86.3 % (113/131) 95.8 % (113/118) 0.90 97.4 % (76/78) 93.8 % (76/81) 0.96

adapt 93.9 % (117/131) 90.4 % (117/128) 0.92 88.5 % (69/78) 97.2 % (69/71) 0.93

average base 51.1 % (255/489) 91.1 % (255/280) 0.66 70.8 % (252/356) 89.4 % (252/282) 0.79

adapt 86.5 % (423/489) 91.0 % (423/465) 0.89 88.5 % (300/356) 87.3 % (300/307) 0.90

4.2. Results of Drum Sound Identification

Table 1 shows the results of comparing our template-

adaptation-and-matching methods (called adapt method)

with a method in which the template-adaptation method was

disabled (called base method); the base method used a seed

template instead of the adapted one for the template match-

ing. The number of adaptive iterations is three. These results

showed the effectiveness of the adapt method: the template-

adaptation method improved the F-measure of identifying

bass drum from 0.66 to 0.89 and that of identifying snare

drum from 0.79 to 0.90 on average of the five pieces. In fact,

in our observation, the template-adaptation method absorbed

the difference of the timber by correctly adapting seed tem-

plates to actual drum sounds appearing in a piece.

In most musical pieces, the recall rate was significantly

improved in the adapt method. The base method detected

only a few onsets in some pieces (e.g., No. 11 and No. 30) be-

cause the distance between an unadapted seed template and

spectrum excerpts was not appropriate. On the other hand,

the template-matching method of the adapt method worked

effectively; all the rates in No. 11 and No. 30, for example,

were over 90% in the adapt method.

Although our adapt method is effective in general, it

caused a low recall rate in a few cases. The recall rate of

identifying the snare drum in No. 50, for example, was de-

graded, while the precision rate was improved. In this piece,

the template-matching method was not able to judge that

the template was correctly included in spectrum excerpts be-

cause frequency components of the bass guitar often over-

laped spectral characteristic points of the bass drum in those

excerpts.

5. Conclusion

In this paper, we have described a method that can detect on-

set times of bass and snare drums in real-world CD record-

ings containing polyphonic musical audio signals. Even if

drum sounds prepared as seed templates are different from

ones used in a musical piece, our template-adaptation method

can adapt the templates to the piece through the iterative

adaptation. By using the adapted templates, our template-

matching method then detects all the onset times of those

drum sounds in the piece by the improved Goto’s distance

measure. Our experimental results have shown that the adap-

tation method significantly improved the F-measure of iden-

tifying bass and snare drums. In the future, we plan to extend

our method to identify other drum sounds and various non-

harmonic sounds.
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