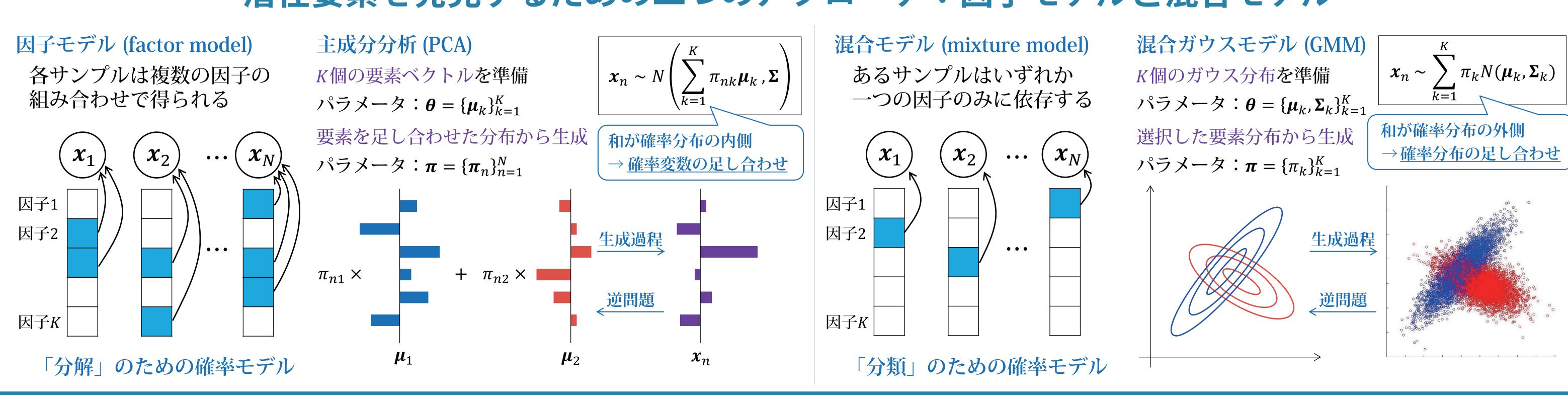
音楽音響信号解析のための ディリクレ過程に基づくベイズ潜在成分分析

中村 栄太 糸山 克寿(京大) 後藤 真孝(産総研) 吉井 和佳

潜在要素を発見するための二つのアプローチ:因子モデルと混合モデル



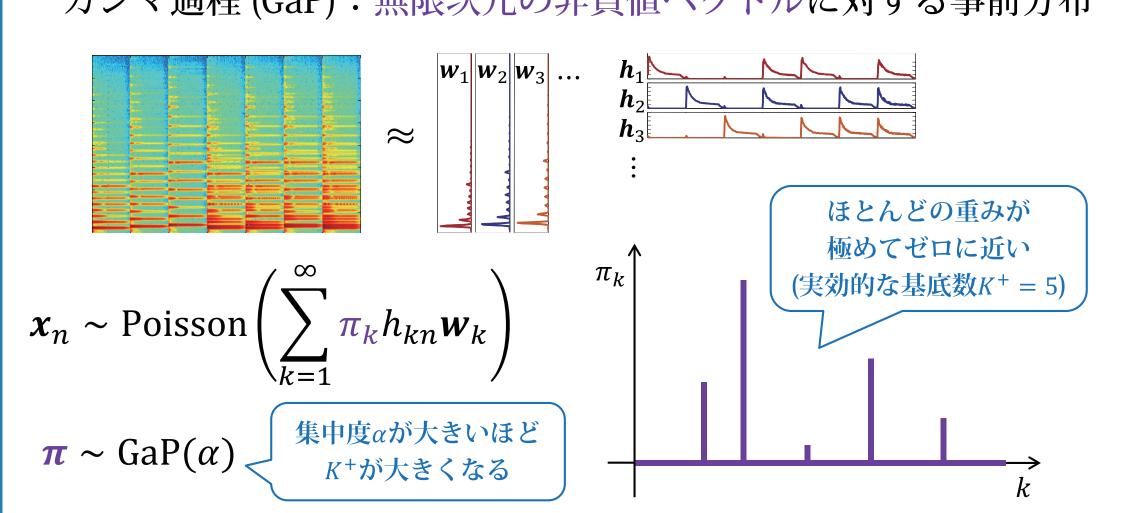
非負値行列因子分解 (NMF) と確率的潜在成分分析 (PLCA)

理論的には「因子モデル」が妥当 → NMF

各フレームにおいて、混合音のスペクトル(「サンプル」)は、 複数の音源信号のスペクトルが重畳することによって得られる 各フレームが複数の音源に分解される

ガンマ過程NMF (GaP-NMF) [Hoffman 2010]

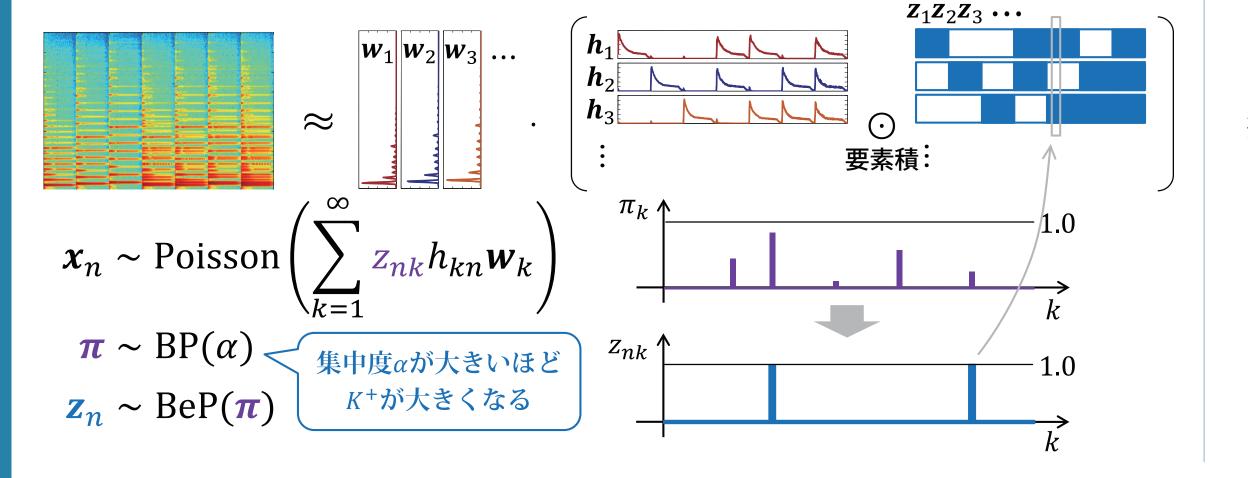
無限個の基底に対する重みを導入してスパース学習 ガンマ過程 (GaP):無限次元の非負値ベクトルに対する事前分布



ベータ過程NMF (BP-NMF) [Liang 2014]

無限個のバイナリ変数を導入してスパース学習

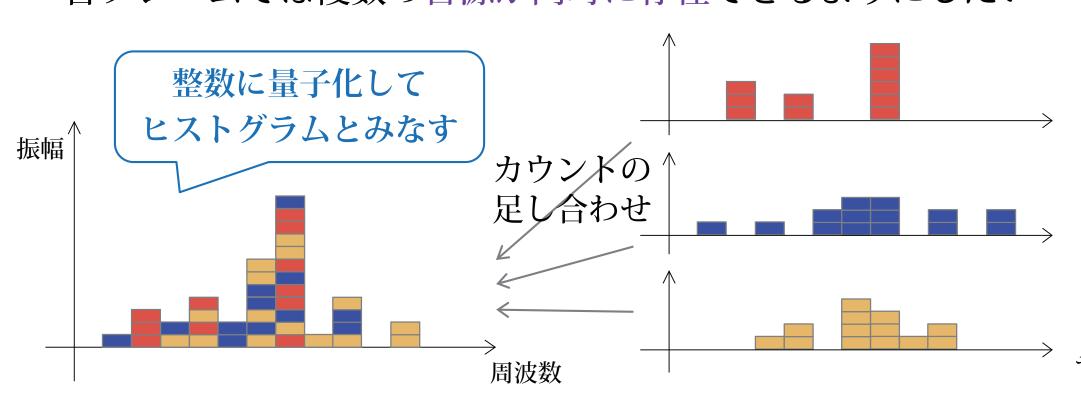
ベータ過程 (BP):無限次元の0~1の非負値ベクトルに対する事前分布 ベルヌイ過程 (BeP):無限次元のバイナリベクトルに対する事前分布



現実には「混合モデル」も提案 \rightarrow PLCA

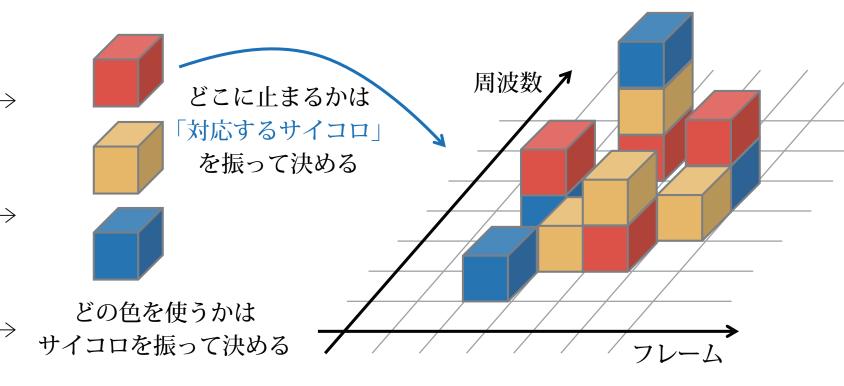
トリック! 混合音のスペクトル=「サンプル」の集合 スペクトル全体としてみたときには複数の音源が含まれる

各「サンプル」はいずれかの音源に分類される 各フレームでは複数の音源が同時に存在できるようにしたい



Poisson分布に基づくNMF (KL-NMF) も PLCAもエネルギー量子化の粒度を 適切に決める必要がある

"音量子"を投げ入れると平面内のどこかで止まる 二次元平面はグリッドに分割されている



ディリクレ過程PLCA (DP-PLCA) [提案法]

混合離散分布

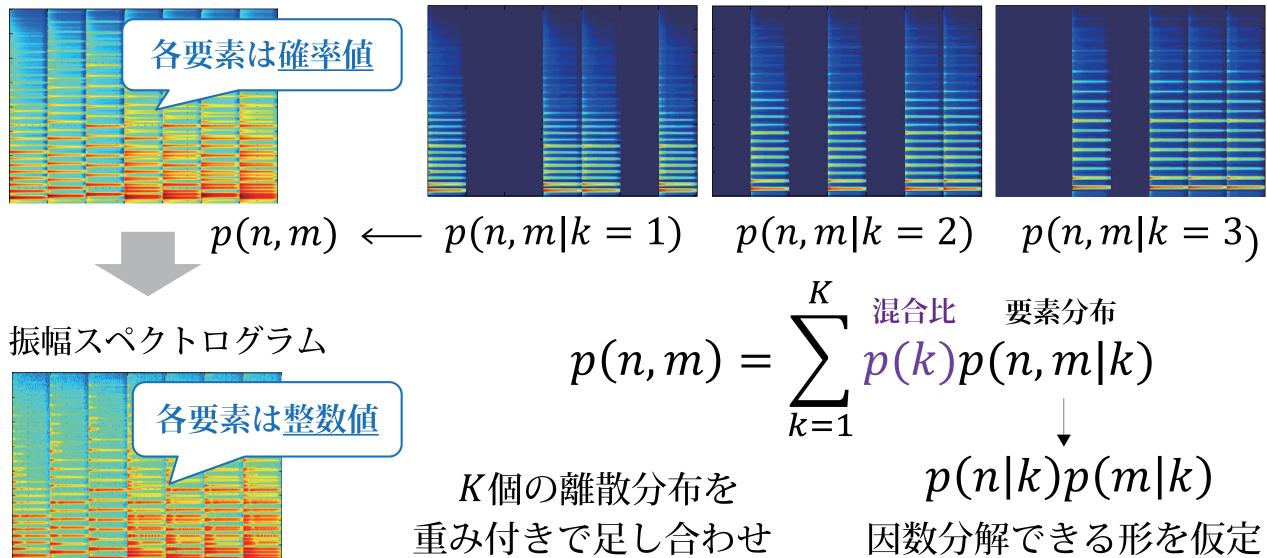
無限個の基底に対する正規化された重み (足して1) を導入してスパース学習

離散分布

ディリクレ過程 (DP):無限次元の正規化された非負値ベクトル (離散分布) に対する事前分布

離散分布

離散分布



ディリクレ分布 $p(m|k) \sim \text{Dirichlet}(\gamma)$ ディリクレ分布 $p(n|k) \sim \text{Dirichlet}(\beta)$

ディリクレ過程 $p(k) \sim \mathrm{DP}(\alpha)$

ほとんどの重みが 極めてゼロに近い p(k)(すべて足すと1)

潜在的ディリクレ配分法 (LDA) と類似しているが、階層ディリクレ過程 (HDP) を利用しなくても定式化可能

ディリクレ過程PLCAのベイズ学習:周辺化ギブスサンプリング

無限は扱えないので	T	<u></u>	-
打ち切り近似が必要	ガンマ過程	ベータ過程	ディリクレ過程
119917年1877年	(GaP)	(BP)	(DP)
有限次元の	無限個の	無限個の	無限次元の
確率分布の極限	ガンマ分布	ベータ分布	ディリクレ分布
棒折り過程	複雑	複雑	簡単
(stick-breaking process)			间半
料理店表現	₩	インド料理過程	中華料理店過程
(restaurant representation)	複雑	(IBP)	(CRP)
無限次元の混合比			打ち切り近似を

ボルバクルして地口と 棒折り過程 任意の分布 中華料理店過程

人工データに適用

する必要がない

DP-PLCAにおいては、実効的な基底数<math>K+を増減させながらパラメータの事後分布計算が可能

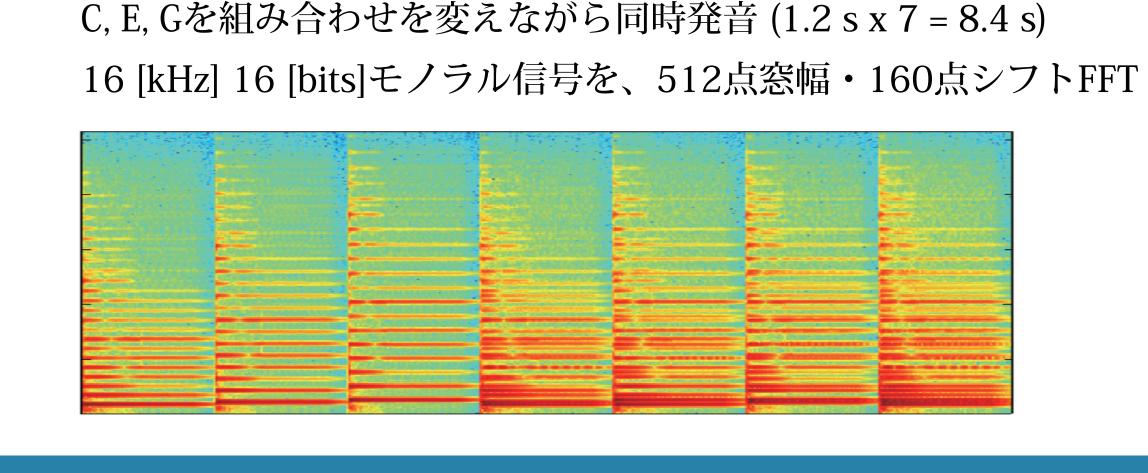
最大基底数で打ち切る近似が不要 (GaP-NMFやBP-NMFでは打ち切りが必要な変分ベイズ法が提案)

全てのパラメータが周辺化可能 中華料理店過程のおかげで、 p(k)を考えなくてOK 事前分布の共役性のおかげで、 p(n|k)p(m|k)を考えなくTOK

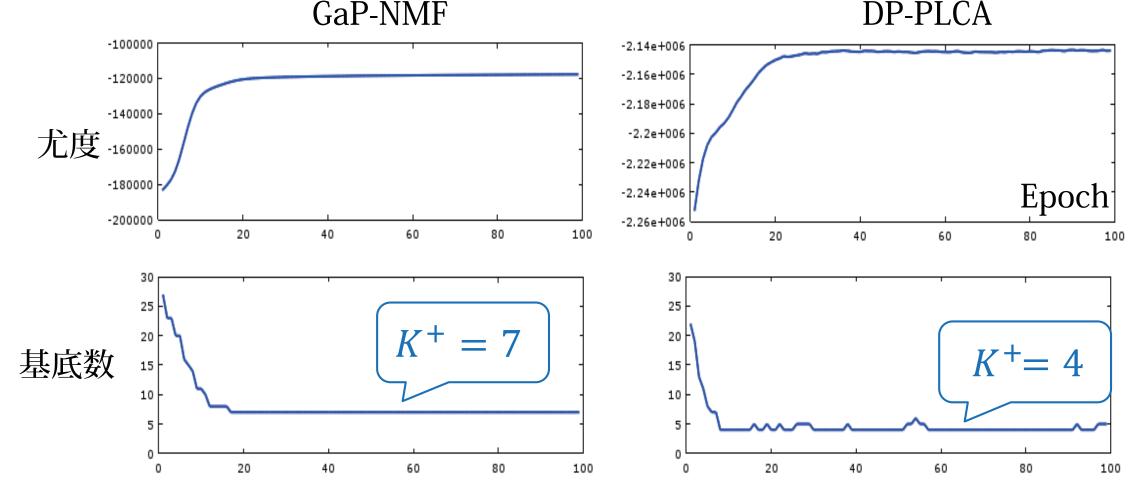
各音量子に関して、音源への割り当てのみを 順番にサンプリングしていけばOK

音量子の割り当てが なくなった基底は消滅 新しい基底に 割り当てられることがある

DP-PLCA (Gibbs) は基底数を適切に推定



GaP-NMF (VB)は基底数を過剰に見積もってしまう傾向が見られた GaP-NMF DP-PLCA



今後の課題:"音量子"の物理的な裏付け

最尤推定の場合は、十分細かくしておけばよい (サンプル数を十分に大きくする) ベイズ推定の場合は、サンプル数が多いほど

事後分布における不確実性が低下 ノンパラメトリックベイズモデルだと、

推定される基底数が増加してしまうのが問題

フォノンのような概念?