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Objectives: Multiple FO estimation and timbre-based source separation

We aim to overcome three fundamental limitations of the standard NMF

Vo Standard KL-NMF (1) A large number of unconstrained spectral bases are needed
m1 to fully represent the timbral variations of instrument sounds

AfVH Idea: Factorizing spectral bases as the products of sources and filters
(2) An independent post-processing step is needed to determineJ
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ey e e the existence of a FO and estimate its value from each basis
e — Idea: Parametrizing FOs and harmonic structures of sourcesiHennequln Hoffman
— T H (3) The number of spectral bases should be specified in advance [PAMX 2010%"3"’“ 2010
e o [ﬁ&___ﬂ Hl Idea: Using Bayesian nonparametrics for sparse learning in an infinite space
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We integrate all these techniques into a unified Bayesian model
(1) : — — ——
X, .| A Z Ve Hp, We propose an ultimate probabilistic framework for joint estimation
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Basis Gain

of FOs, timbres, the number of FOs, and the number of timbres (Point!)

Approach: Nonparametric Bayesian formulation of source-filter NMF
We design prior distributions and parametric functions for individual factors
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Auxiliary variables

Our models are optimized by combination of variational Bayes (VB) and multiplicative update (MU)

Experiments: Source-filter factorization of piano and popular music
Multiple FO estimation for MAPS Piano Database (analysis of sources) [Frame-level F-measure for 30 pieces: ]

48.4% (KL-iCARM) 35.1% (I1S-iCARM)
| unnecessarily | The KL-iCARM is capable of discovering
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Degenerated Harmonic and noise components
M— are associated with different sources

| The IS-iCARM tends to overestimate
1 the numbers of sources and filters
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Timbre-based source separation for RWC Music Database: Popular Music (analysis of filters)

Amplitude spectrogram ¢  Effective filters A Amplitude spectrogram @ Effective filters A - _
T | Bass guitar I - —————— —iBassguitar [N mMany songs, the most significant filter corresponds

|Vocal to the bass guitar and the second one to the vocal

ol Percussive sounds (bass drums, snare drums,
|Drums and hi-hats) are modeled by several filters
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(Future work:

_ ot S — I Formulate iCARMs on the logarithmic frequency

— }Lttmrﬁ”t | _ >Lﬂa§§§“nﬁf§$ domain to deal with wavelet spectrograms
I 1, Integrate language models with acoustic models
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