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Abstract. Recent advances in generic service robots have shown their introduc-
tion in various novel environments such as domestic and healthcare facilities. In 
order to ensure an enhanced interaction between the robot and its users, a multi-
stage deep learning pipeline for facial recognition algorithm is used. By detecting 
which of the pre-trained users the robot is interacting with, it can adapt its actions 
to best fit the user's needs. The multi-stage system is composed of three modules. 
An MTCNN to detect all the faces in the image, an Inception-Resnet that gener-
ates the feature vectors and provides an amplified network for facial recognition 
and an SVM classifier to categorize each of the faces recognized to the correct 
user. The combination of the three modules allows an end-to-end facial detection 
and recognition that can be used as a real-time identification method. The result-
ing method was implemented on the general service robot CHARMIE. 

Keywords: Facial Recognition, Facial Detection, Multi-Network, Deep Learn-
ing, Service Robots, Inception-ResNet 

1 Introduction 

The analysis of information collected from visual perception is a natural human behav-
ior that allows humans to make structured decisions. By endowing robotic systems with 
the capability of observing different environments and recognizing valuable data, it is 
possible to create systems that can accurately evaluate and interact with a broad range 
of scenarios. Facial detection and recognition have been topics whose recent develop-
ments made it one of the most used bio-metric techniques for identity authentication. 

This paper presents a real-time user-based facial detection and recognition system 
implemented on CHARMIE (Collaborative Home/Healthcare Assistant Robot by Mi-
nho Industrial Electronics) [1] shown in Fig. 1. CHARMIE is an anthropomorphic robot 
that performs generic service tasks in non-standardized environment settings using ma-
chine learning algorithms, which allow the robot to make rational decisions based di-
rectly on the surrounding environment.  

The focus is to provide healthcare and domestic support in collaborative and coop-
erative tasks that involve interacting with specific workers/patients/users. In order to 
benchmark new technologies developed for CHARMIE, service and assistive robotics 
competitions [2] provide a common framework for a high-rigor benchmark of smart 
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and autonomous systems. RoboCup@Home is regarded as a top competition in the field 
of domestic service and assistive robotics [3], [4], where robots must perform a set of 
benchmark tests to aid in day-to-day realistic non-standardized home environment set-
ting. The features described in this paper demonstrate a real-time user-based face de-
tector and classifier used to create a more efficient recognition system for improved 
user recognition. It produces a more natural interaction between humans and service 
and assistive robots, which eases the performance in all tasks that are dependent of user 
recognition. 

 

   
(a) (b) (c) 

Fig. 1. CHARMIE (Collaborative Healthcare/Home Assistant Robot by Minho Industrial Elec-
tronics) different variations. (a) Conceptual sketch of the anthropomorphic robot. (b) Developed 
anthropomorphic design. (c) Primary prototype assembled 

The proposed system detects and aligns faces with a deep cascaded multi-task frame-
work, searching for facial landmarks, such as eyes, nose or mouth, predicting its bound-
ing box coordinates, cropping the detected faces containing the least background pos-
sible. Next, the bounding boxes are encoded into another neural network that extracts 
the features, creating a vector representing the face. With that, the classifier predicts the 
identity. 

2 Related Work 

Facial detection and recognition are an active computer vision field of study that dates 
more than twenty years in research. Dimensional reduction algorithms were popular-
ized by the Eigenface method [5], where eigenvectors were calculated using principal 
components analysis (PCA) and then compared to known individuals. This approach 
proved to be efficient but has low accuracy with different scales of images and orienta-
tion invariance of the head and lighting variation problems.  

With recent advances in deep learning convolutional networks, DeepFace [6] 
achieved state-of-the-art accuracy (97.35%) on LFW [7] benchmark, approaching hu-
man performance (97.53%) by training four million facial images on the AlexNet [8] 
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model. After this breakthrough, various proposals achieved state-of-the-art regarding 
classification. [9] proposes different models categorized by Euclidean-distance-based 
loss, angular/cosine-margin-based loss and SoftMax Loss and its variations. 

The Euclidean-distance-based loss is a metric learning method that embeds images 
into a Euclidean space that maximizes the inter-variance (between classes) distance and 
minimizes the intra-variance (within class). Contrastive loss uses face image pairs, pull-
ing positive pairs and pushing negative ones. DeepID3 [10] achieved 99.53% introduc-
ing VGGNet [11] and GoogleNet [12] architectures to previous DeepID approaches.  

Those methods combined face identification with SoftMax and verification with 
con-trastive loss. FaceNet [13] introduced the concept of triplet loss, which directly 
optimizes the embedding itself, rather than using an intermediate bottleneck. Using the 
Inception architecture [12] provides the capability to concatenate different filter sizes 
in the same processing layer. Contrary to contrastive loss that considers the absolute 
distances of the matching pairs and non-matching pairs, triplet loss takes into consid-
eration the relative difference of the distances between them. 

Regarding previous RoboCup@Home competitions, popular facial detection tech-
niques deployed include OpenCV, Viola-Jones algorithm and Haar-based algorithms, 
according to [14] and [15]. However, as stated by [16], those methods proved to still be 
limited on multiple variations of faces like scale, pose or illumination. More recent 
approaches include the use of OpenFace, having better performances when finding fa-
cial landmarks. [14] also overviews the diverse topologies competitors deployed for 
facial recognition. Overall, the methods used still have limited deep learning frame-
works, due to the need of libraries and cloud services based Deep Neural Networks. 
Although those present good robustness, cloud services are often unreliable due to con-
nectivity problems so many teams prefer their own offline solutions. 

3 Methodologies 

The developed system is composed of three main modules. Initially, to perform face 
detection and alignment, MTCNN [17] method is used. The outcome of the first module 
are all the detected crops of isolated faces in the image. The second module, regarding 
face recognition, uses an Inception-ResNet architecture that combines both Inception 
and ResNet algorithms [18] to provide an enhanced network that best suits the facial 
recognition purpose. The cropped detected faces ultimately serve as inputs to the net-
work to classify the faces, transforming them into an image representation vector. The 
classification is made with SoftMax Loss function or Support Vector Machine (SVM). 
Three different datasets were used for training, one custom made with the laboratory 
researchers working on CHARMIE (named LAR dataset) and two standard datasets: 
CASIA-Webface [19] and LFW [7]. 

3.1 MTCNN (Multi-task Cascaded Convolutional Networks) 

MTCNN [17] proposes a framework to integrate detection and alignment tasks using a 
3-stage (P-Net, R-Net and O-Net) unified cascaded CNNs by multi-task learning. 
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The usage of cascaded networks as a face detector, such as MTCNN allowed an 
accurate performance of facial bounding box regression as well as keypoint estimation, 
cropping and aligning the detected face proposals. In addition, it provided a robust sys-
tem for real world situations, detecting faces in non-standard situations with an accepta-
ble frame rate. 

3.2 Inception-ResNet 

The deep neural network used for faces feature extraction is the Inception-Resnet ver-
sion 1 [18]. This model results in a combination of two different deep learning meth-
odologies: residual connections introduced by Resnet [20] and the Inception modules 
introduced with GoogleNet [12]. 

The Inception architecture uses multiple Inception modules with different convolu-
tional layers with different spatial kernel sizes operating in parallel. These filter the 
same level layer in the architecture concatenating into the next level, thus, finding var-
ious features with fewer convolutional layers. The selected model is a broader and 
deeper version of [12]. Therefore, the efficiency of the network benefits by replacing 
the filter concatenation stage of the Inception with residual connections, retaining com-
puter efficiency. That resulted in more straightforward blocks to be used, followed by 
1x1 convolution without activations before the residual connections. Those convolu-
tions were implemented in order to compensate the dimensionality reduction induced 
by the Inception part, given that residual addictions only work if the input and output 
matched the same depth dimension. 

This pipeline was selected considering the tradeoff between performance and com-
putational cost of the overall architecture. Given the robot’s resources, it was crucial to 
have a less computationally expensive framework without substantially sacrificing the 
accuracy and confidence performances. Inception modules maintained state-of-the-art 
accuracy with a modest increase of computational cost compared to deeper networks, 
whereas ResNet’s residual blocks allowed a reduced training time. 

3.3 Training and Validation 

To perform the neural network training and fine-tuning, two different datasets were 
used. Initially the CASIA-Webface [19] dataset was used to train the neural network, 
containing 494,414 images of 10,575 people. It is then split into three sub-sets: training 
dataset (80%), validation dataset (10%) and test dataset (10%), and further verified on 
the LFW [7] dataset benchmark.  

Additionally, a customized dataset was created for classification. It contains image 
data from researchers and professors from the Laboratory of Automation and Robotics 
(LAR) of Minho University. It is composed of 19 different people, and the image data 
was fetched using frame samples of multiple videos with different face positions. More-
over, when extracting the images from the videos, crops, horizontal flips and rotations 
on random frames were performed when creating the LAR dataset. Those data augmen-
tation techniques were employed to simulate an additional pose variation an overall 
variety of the image data. The dataset had 300 images per identity, 250 images for 
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classifier training and 50 for validation, over people of ages between 18 and 56 of both 
female and male genders. 

As previously stated, CHARMIE performs generic service tasks in non-standardized 
environment, focusing in providing healthcare and domestic support, performing col-
laboratively and cooperatively. When presented with an unknown person, the learning 
process of a new identity needs to be efficient and fast. Training a convolutional neural 
network as a multi-class classifier, introducing a new class means an end-to-end re-
training and re-evaluation of the network, being an extended and expensive procedure. 
By using an external SVM classifier, adding more people to the dataset for training and 
classification proved to be an efficient method with great accuracy, without being com-
putationally and time expensive. 

4 Results 

4.1 MTCNN (Multi-task Cascaded Convolutional Networks) 

The MTCNN framework was implemented in real-time processing using CHARMIE’s 
camera. It uses an image-pyramid scale factor of 0.709, as well as a [0.6,0.7,0.7] detec-
tor threshold array for the bounding box IoU on the 3 stages. 

The P-Net flags all face proposals, with different kernel sizes generating numerous 
bounding boxes. It resizes the original photo to check for various face sizes that may 
appear. The P-Net final output is shown in Fig. 2. (a). It has already been filtered by 
non-maximum suppression so it can be fed into the next stage. Next, the R-Net focuses  

   

(a) (b) (c) 

   
(d) (e) (f) 

Fig. 2. Output bounding boxes of MTCNN framework. (a) P-Net output with NMS. (b) R-Net 
output. (c) R-Net output after NMS (d) O-Net output (e) O-Net output after NMS (f) Final 
Cropped face. 
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on filtering a high number of false positives from the previous network. It uses the 
initial data to generate more precise bounding boxes, with all the lower confident pro-
posals being eliminated, Fig. 2. (b). By using NMS, the bounding boxes are reduced 
and padded into squares, merging overlapped proposals, as shown in Fig. 2 (c). Finally, 
the O-Net standardizes both the bounding box and facial landmarks coordinates, Fig. 
2. (d). After the NMS, only the bounding box prediction with the highest confidence 
level is provided, as shown in Fig. 2. (e). The final output of the MTCNN is the cropped 
image from the final bounding box prediction represented in Fig. 2. (f). This image is a 
representation of the data used to train the Inception-ResNet. 

4.2 Inception-ResNet  

After tackling the face detection problem, the next method deals with the face recogni-
tion problem. Inception-Resnet v1 was trained using the CASIA-Webface dataset with 
two different topologies. After some testing, the best performing network reached 90%, 
78% and 77.5% accuracy on the train, validation and test datasets, respectively, after 
510 epochs. The hyperparameters of the best performing Inception-Resnet model are 
shown in Table 1. 

Table 1. Hyperparameter settings of the Inception-Resnet network. 

Batch 
Size 

Number of 
epochs 

Initial lr Lr Decay Dropout Train  
Accuracy 

Validation 
accuracy 

Train 
time 

5000 510 0.06 0.005*  20% 90% 78% 14 hours 

* for every 100 epochs  
 
Additionally, regulator parameters were employed to prevent overfitting. The L2 

weight decay and L1 norm loss activation  were set to 0.0005. The learning rate started 
at 0.06, decaying until 0.03. The network’s input had a 50 batch size in 100 mini-
batches per epoch, making it a total of 5000 images per batch. The model’s convergence 
over time can be seen Fig. 3. 

 

 
 

(a) (b) 

Fig. 3. Best performing model’s convergence over time during 510 epochs. (a) Accuracy. (1). 
Train dataset. (2). Cross-Validation dataset. (b) Loss. (1). Train dataset. 
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4.3 SVM classifier (Support Vector Machine) 

Using the TensorFlow framework. It uses the feature vectors extracted from the Incep-
tion-Resnet v1 network to associate the detected faces with trained ones. 

The created dataset images were inputted into the classifier. 250 training images for 
each of the 19 subjects were used, and 50 test images for validation. The SVM classifier 
correctly predicted all of the test images, where the confusion matrix displays a clear 
certainty on the predicted labels and ground truths. The feature vectors extracted were 
plotted into TensorBoard’s embedding projector using the PCA and T-SNE (Fig. 4). 

 
   

(a) (b) (c) (d) 

Fig. 4. T-distributed stochastic neighbour embedding (a) 1st interaction - joint probability distri-
bution not calculated. (b) 1000th interaction with joint probabilistic distribution. PCA – Principal 
Component Analysis with three first PCs (c) non labelled embedding visualizer (d) labelled em-
beddings.  

The final result, shown in Fig. 5 (a) and (b), already uses the robot’s camera to detect 
different pre-trained users. It shows online detection of three different users detected 
with significant accuracy percentage plus one non trained user, shown as “unknown”. 
It uses the multi-stage pipeline-built inference. MTCNN for face detection and bound-
ing box generation where the faces detected are encoded into the Inception-ResNet that 
generates the feature vectors. Lastly, the feature vectors are classified by the trained 
SVM where if a certain threshold prediction value is reached, it plots the predicted 
person information. 

  
(a) (b) 

Fig. 5. Real-time user-based facial detection and recognition (a) Two different users detected and 
classified (b) Two different users detected, on the left, the user is part of the pre-trained users and 
is classified correctly, on the right, the user is not part of the pre-trained users, and so is labelled 
as ‘Unknown’. 
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5 Discussion 

The facial detector MTCNN is a compelling framework that is able to detect faces of 
various sizes in different pose scenarios. However, the concatenation of three different 
neural networks working at a range of 8 to 14 fps is computationally expensive and thus 
require high computational power. The most impactful configuration hyperparameter 
of the MTCNN is the scalar factor that defines the size range of searches and the bound-
ing box thresholds. The scalar factor that yielded the more refined results surrounds the 
0.7 value, where any value between 0.5 and 0.75 allowed the method to converge. Also, 
the detector threshold array for the bounding box IoU on the 3 stages was set at 
[0.6,0.7,0.7]. For more challenging proposals, lowering the values in the array would 
have better detection, but the appearance of false positives was more frequent. Fig. 6 
shows an image from RoboParty 2019 with a high density of people with faraway faces, 
that come up as very small. The methodology presented detects almost every face with 
few exceptions where people are facing other directions. However, as Fig. 7 shows that, 
faces closer to the robot can successfully be detected even when looking away from the 
camera. A real concern over the detection pipeline was how different lighting settings 
would affect its performance. Hence, Fig. 8 presents an overview of different light con-
ditions tests. As one can see, the MTCNN correctly predicts the user’s bounding boxes. 

 

Fig. 6. MTCNN output bounding boxes in a highly populated scenario. (Image from RoboParty 
2019 Robotics Educational Event) 

 

Fig. 7. MTCNN detecting user with different face poses, facing different directions. 
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(a) (b) (c) 

Fig. 8. MTCNN bounding box detection with different light conditions. 

Regarding the face recognition network, the Inception-ResNet v1 proved to have 
high accuracy but challenging to optimize, given the number of gradients and parame-
ters presented in its architecture. The ideal batch size rounded between 4000 and 5000 
images per batch, divided into mini-batches. The batches were divided into a set of 
mini-batches, for two reasons: computational resources and mini-batch gradient de-
scent. Since the computational resources were limited, the GPU had difficulty allocat-
ing enough memory to train big batches of data. Mini-batch gradient descent reduced 
the variance of the gradients when calculating the error and updating the coefficients, 
which turned out to be very important for convergence. The maximum number of im-
ages the computer managed to process in a batch was 6000. However, when compared 
to smaller batches, like the standard 5000-image batch, proven efficient, the accuracy 
performance would slightly increase, but producing a less rewarding time-consuming 
framework.  

The ideal learning rate to initiate the training is between 0.03 and 0.06 (Fig. 9. (a) 
and (b)). These  allowed the model to  convergence whereas bigger values could not do 
so. Smaller values would work but would produce worse performance results. Learning 
rate decay was essential for the model’s execution (Fig. 9. (c) and (d)). By slowly de-
caying the learn metric, the model was slowly adjusting by its patterns , whereas with 
a stable lr the Inception-ResNet topologies would have a very difficult time generaliz-
ing the learning process. Overfitting of the model turned out to not be a significant issue 
over the large dataset. By tuning down the dropout percentage, the model would have 
a lower accuracy and validation(Fig. 9.(e and f)). As previously stated, the best per-
forming Inception ResNet v1 model reached almost 90% on training accuracy and 
77.5% on validation accuracy after 500 epochs (Fig. 3). Since the dataset produced such 
a challenging classification framework, reaching that accuracy performance was ensur-
ing that the model could work as a feature extractor for the final pipeline. 

The classifiers training from feature vectors using a linear kernel support vector ma-
chine proved to be a very efficient solution since service robots must add and remove 
users from their memory with a considerably high frequency while also providing con-
sistent classification results.  

In real-time, previously implemented modules could successfully work in conjunc-
tion with new data instances (Fig. 5). Using the pre-trained members of LAR as test 
labels, the system correctly detect faces and predicted the user’s identities on different 
configurations with very high accuracy and confidence. The model reached a maximum 
of 12 frames per second when only one person was detected but dropped to 6 or 7 
frames per second when more people started to appear on the image. Additionally, in 
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real-time, some face poses such as looking deeply left or right would show a lower 
accuracy that could successfully be tackled with a more diverse custom dataset. 

 

  

(a) (b) 

 
 

(c) (d) 

Fig. 9. Inception-Resnet hyperparameter tunning research using the CASIA-
Webface dataset. (a)- Train accuracy with different Learning rates on the same topol-
ogy. (b) Loss values of the different Learning Rates. (c) Dropout percentages conver-
gence on the same topology. (1) 40% Dropout train dataset accuracy. (2) 40% Dropout 
validation dataset accuracy. (3) 70% Dropout train dataset accuracy. (4) 70% Dropout 
validation dataset accuracy. (5) 80% Dropout train da-taset accuracy. (6) 80% Dropout 
validation dataset accuracy. (d) Loss values of the train dataset of different Dropout 
percentages. (1) 40% Dropout train dataset accuracy. (3) 70% Dropout train dataset 
accuracy.(5) 80% Dropout train dataset accuracy. 

6 Conclusion 

A real-time user-based face recognition system using multi-stage deep learning meth-
ods is proposed for service robots domain, with the capability to detect and identify 
people. A custom dataset of users from the Laboratory of Automation and Robotics 
(LAR) from the University of Minho was trained for facial detection and recognition 
implementation on a domestic and healthcare service robot, CHARMIE. A multi-task 
cascaded framework, MTCNN, performed the detection and alignment module that iso-
lated the detected faces. These serve as input to an extraction model, the Inception-
Resnet model, that creates a feature vector of each face. Next, an SVM classifier is 
trained with the laboratory member and predicts their identities. All the networks end-
to-end proved to be able to work on real-time applications and managed to detect users 
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with different face poses and external variations such as illumination. The Inception-
ResNet model can differentiate classes into Euclidean space, as seen by the PCA and t-
SNE plots, extracting the features of the faces. Furthermore, the classifier using SVM 
is able to predict new instances of the labels. Overall, the system was able to detect and 
predict every student with an above 90% accuracy. 

For a service and assistive robot such as CHARMIE, face detection and user recog-
nition are essential for a more user-oriented interaction. Therefore, CHARMIE can 
adapt its approach as well as how it performs different tasks depending on who the 
interacting user is. Additional information regarding its users can be associated with a 
specific user, for example, if it is a child, an adult or a senior, whether that person has 
any mobility issues or if it is allowed or not to be in a specific area of an environment. 
All this information helps create a more personalized experience for all user interactions 
since CHARMIE can use this technology to directly adapt its behaviours to positively 
influence whom it is interacting with. 
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