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Path search in an unknown environment by Q-learning

- Application to a multi-purpose problem -
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Abstract

In this paper, Q-learning was applied to a cliff walking problem,
which is a typical example of path searching in an unknown
environment. In order to test whether Q-learning is effective to
multi-purpose problems, we added two constraints on safety
walking and the goal time to the original cliff walking problem.
Our experimental results shows that Q-learning can learn an
optimal path for the multiple purposes.
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HEBE 0 AR > N OREEERIIBEICEA LTI, fRx
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BUSE S d1T 2 R ERR R 12 H I HIK O TRZR
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TV ISR R L DL E, Wl UBOBGS R,
OHHIEY ™ (s)15, Rl TikiEs Icb Y, TRl
Rl el L EOMIFHEL 225, Tbb, v La”
WIS 2 V™ (5) DERITRD L 51272 5.

Vi(s)=E.{R|s,=s}=E, {gfmﬂ s, = S} )

E { g ===y MBS LI & D
WA 23, BBV ™ % 055K o \oxhd 2 IR REAh i RE %k
(state—value function) & MRS,

FERIZ, R r O T CREES ICBW T8l 20D Z
L oflifitiz Q" (s,a) TEL, Wigs fTlha 250, =
DIRIZF R 7\ A > T IR 2 IR D TEFRT 5.

Q" (s.a)=E.{R,|s,=s,a,=a} ()

=E, {iykr;+k+l |s, =s,a, :a} ®)
k=0
O 5K n lTkIT 217EMMERI%L (action-value
function), F721%QfHE & MRS,
ETOREseS TR LT, fRREMfiE B & 2
Vo(s)> V7™ (s)Chais, Hfiridr Lo
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Abstract

This paper proposes a subjective map for a
multiagent system to make decisions in a dy-
namic, hostile environment. A typical situation
can be found in RoboCup legged league compe-
tition [1]. The subjective map is a map of the
environment that each agent maintains regard-
less of the objective consistency of the represen-
tation among agents. Owing to its subjectiv-
ity, the method is not affected by other agent’s
information which may include not negligible
errors due to dynamic changes in the environ-
ment caused by accidents such as falling down
or being picked up and brought to other places
by the referee. A potential field is defined on
the subjective map in terms of subtasks such as
ball reaching and shooting, and is dynamically
updated to make a decision to act. The meth-
ods is compared with a conventional sharing
and no sharing methods, and the future issues
are given with discussion.

1 Introduction

In a multi robot system, it is expected that communica-
tions or information sharing between robots help aquir-
ing the knowledge about thier environment. When multi
robots communicate with each other, they seem to need a
refference coordinate system to exchange their informa-
tion about the environment. In case of mobile robots,
the world coordinate or the coordinate fixed to the en-
vironment are often used. To convert the observation
to the world coordinate, each robot localizes itself. As-
suming that localization errors are small or neglectable,
information exchange between robots are proposed for
self-localization [2]. However, localization errors often
become too large to ignore.

Methods to localize itself and to acquire knowledge
about environment by shared information from other
robots are proposed [3, 4]. They use geometric con-
straints between several robots which are commonly ob-
served from each other, calculates their positions, and

share the environment map. The errors of self-locations
are minimized so that shared observations conform to
geometric constraints. To observe several robots at one
time, they used omnidirectional cameras rather than
normal cameras with limited view angles. However, in
case of robots with the latter cameras, there will be many
situations that they will not be able to observe others.
Then it becomes difficult to use such methods.

Although the representation of self-location by prob-
abilistic form and use of beliefs are proposed and
commonly used in order to handle the error of self-
localization, it is difficult to obtain the accurate model
to merge the maps by two or more robots and to main-
tain the shared map. Simple weighted average of infor-
mation by robots may work when the errors are small.
However when one of the robots has a large error on its
self-localization it will affect the shared map used by all
other robots. Designing weights or accuracy mesuare-
ments to prevent such a case is difficult because there
are always errors that is unknown to the designer and in
many situations errors are not detectable by the robot it-
self. Then, we propose a subjective map based approach
rather than shared map based one. A subjective map is
for a multiagent system to make decisions in a dynamic,
hostile environment. A typical situation can be found in
RoboCup legged league competition [1]. The subjective
map is maintained by each robot regardless of the objec-
tive consistency of representations among other agents.
Owing to its subjectivity, the method is not affected by
other agent’s information which may include not negli-
gible errors due to dynamic changes in the environment
caused by accidents. A potential field is defined on the
subjective map in terms of subtasks such as ball reaching
and shooting, and is dynamically updated to make a de-
cision to act. The methods is compared with no sharing
and conventional sharing methods, and the future issues
are given with discussion.

2 A subjective map generation

Let us assume that there are two robots (robot A and
robot B) and one object (a ball) in an environment.
These robots have localized themselves and they are
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Figure 1: There are two robots watching at a ball.

watching at the ball but they cannot observe each other
due to their limited view angles (Figure 1). If we ignore
the localization errors and put information on a map,
there will be contradiction about the ball position as
shown in Figure 2(a).

If we use the weighted average of the ball location &,

B, A A_A
i’:(rw—f—am7 (1)

Ao- + BO’
where 4z, Bx, 40, Bo are the ball positions and their
deviations estimated by robots A and B, respectively,
assuming Gaussian distributions. Then we have a map
shown in Figure 2(b). There is no contradiction in this
map. However, this is not the true ball position in
the world coordinate system. When robot A has cor-
rect estimation while robot B has incorrect one, robot
A’s estimation become worse because of the informa-
tion sharing. Also there are cases the relative posi-
tion to the robot itself is more important than the ab-
solute position in the world coordinate system. Fur-
ther, it becomes more complex when the robots can ob-
serve each other. If we can assume the simultaneous
observations from several robots are available then we
could use geometrical constraints and reduce errors [3,
4]. In case of robots with limited view angle cameras
and they are moving, we cannot assume it.

Here, we propose that each robot constructs its sub-
jective map and determines its action based on it. For
example, robot A believes its observation for the ball and
calculate position of robot B from the relative position
between the ball and robot B as,

A-';}A = A:EA’ (2)
Azg = “Tpa, (3)
Azp = Pzp+ (Aivbau —F Zpan). (4)

Figures 2 (c) and (d) show the subjective maps of robots
A and B. With these subjective maps, although reduc-
tion of localization error is not achieved, robot A is
not affected by the localization error of robot B and
can use the information from robot B. The subjective
map method is expected to work for such a task and
the environment that the relative positions is important
rather than absolute ones, localization errors sometimes
become large, and geometrical constraints are hard to
use. In the following experiments, we compare the action
decisions by shared map with average position method

X X

contradiction
. (;\ mean place

L 4 Py b
N QO

(b) with averaged
locations

(a) with assump-
tion of no localiza-
tion error

data correction

.‘\ data correction \®
\ 4 >

data correction \!
g N g Q

data correction

(c) the subjective map (d) the subjective
of robot A map of robot B

Figure 2: Constructed map with assumption of no lo-
calization error, with averaged locations, and subjective
map of robots A and B

and decisions by subjective maps in a robot soccer envi-
ronment with four legged robots. Robots determine their
actions from potential field calculated from a shared map
or its own subjective one.

3 A potential field for decision making

We define a potential field which depends on a subjective
map of a robot. Each robot calculates the field from
the map and decide its action according to the field.
A robot has four actions, move forward, turn left, turn
right and shoot a ball. It takes such an action that climbs
the potential field if the ball is far and shoot it to the
opponent goal as it approaches close.

The potential field V(z,y) of robot ¢ consists of three
potentials. One is Vp which is the function of the po-
sition of a teammate j, ‘P; = (“zg,," yr,). The second
is Vo which is the function of the position of an oppo-
nent k, Ry, = (‘zx,’yx). The last one is Vz which is
the function of the ball position ‘Q = (‘zq. yg). All
the positions are derived from its subjective map. In the
following, we give example potentials based on the setup
shown in Figure 3.

Potentials by a teammate Vr and opponent V are
calculated by,

Veley) = — S f(Py), (5)
J(3#1)

Vo(z,y) = =Y f(Ry), (6)
k



Figure 3: True object locations

where,

o 1 —é((i;“’“)ﬂ(%)z)
f(P(xayaO—mO—y))* 27T0'I0'y€ . (7)
These potentialls are to avoid robots in the field. Fig-
ure 4 shows the Vg and Vp of robot A in the example
setup.

The potential from the ball is defined so that the robot
closer to the ball will reach ball while others will go to the
position where it can back up the shoot. The potential
function of robot i is switched depending on if 7 is the
closest to the ball or not,

where Q is the position of the ball, and ‘Q’ is the sup-
port position. ‘Q’ is defined as, 'Q’ = (iQ+G) /2,
where G is the position of target goal. The example po-
tentials of robots A and B are shown in Figures 4 (c)
and (d). Final potential fields are shown in Figures 4 (e)
and (f).

(i is the closest to the ball),
(otherwise),

(8)

4 The experiments

We used the field and the robots for RoboCup SONY
Legged Robot League 2002 (Figure 5) for the experi-
mental setup. In the environment there are six landmark
poles and two goals that can be used for self-localization,
and one ball. The task is to shoot the ball into the goal.
Due to the inadequate lightning condition, it was not
possible for robots to stably detect each other in their lo-
cal vision system. Our self-localization program is based
on Carnegie Melon University’s CM-Pack’01 [5]. Its ap-
proach is a Kalman-filter based self location tracking
with multi hypothesis which start from different points
in the field. For the verification of the method, we put a
color marker on the back of each robot and an overhead
camera to measure the position of robots and the ball
externally.

In the experiments we used two robots A and B and
compared the decision of robot A to the deicision with
correct positions from overhead camera for three meth-
ods,

(a) robots do not share information.

(b) robot B sends information to robot A and robot A
uses the shared map made by taking average,

(¢) robot B sends information to robot A and robot A
uses its subjective map (proposed).

(a) Vg of robot A

ball position

(¢) VB of robot
A, it is highest at
support position

(b) Vo of robot A

ball position

(d) VB of robot
B, it is highest on
the ball

(e) final potential
of robot A

(f) final potential
of robot B

Figure 4: Potential fields of robots.

With this condition we can see whether a method makes
a wrong decision in spite of information sharing. Robots
A and B localize themselves by local vision and large
errors were added to robot B depending on the exper-
imental conditions. We compared the results with the
rate of the time when the decision of robot A matched
with the decision with the overhead camera. Each trial
ended when two minutes elapsed or the ball is kicked
into the goal.

We show the experimental results with three initial
conditions. Figure 6(a) shows the initial condition of
case 1. Robot B localizes itself by local vision. In this
case robot A cannot observe the ball but robot B ob-
serves it. Due to large errors on observation of a robot,
robot A uses the robot B’s position that robot B tells
even when it adopts a subjective map. Then, in this
case, methods (b) and (c¢) have the same map which ball
and robot B’s positions are transfered from robot B.

Figures 6 (b) and (c) show the initial conditions of
cases 2 and 3. Both robots observe the ball. In these
cases, we experimented with two conditions, 1) robot B
localizes itself by local vision and 2) robot B localizes
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Figure 5: The robot and the field for the RoboCup 2002
SONY legged robot league.
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Figure 6: The initail conditions of experiments.

itself but large errors are always added to its position
and direction.

Table 1 shows the rate of time that the robot A’s deci-
sion matched with the decision by the overhead camera.
We experimented ten trials for case 2 and 3 for each con-
dition. We can see that with averaged shared map, when
the large errors are introduced, the rate is worse than
the one without information sharing. However, with the
subjective map, in all conditions, the rate is better than
the one without infomation sharing and the one with
averaged shared map. This indicates the validty of the
subjective map approach.

Figures 7 (a) and (b) show the potential field and
the positions of objects with its non-shared map and

Table 1: The rate of time that the robot A’s decision
matched with the decision with overhead camera

rate of matched time
error and method mean ‘ variance
no share 0.48 0.02
normal | averaged 0.64 0.01
subjective || 0.69 0.01
no share 0.48 0.02
large averaged 0.39 0.01
subjective || 0.59 0.02

robotA robotA

robotB:unknown robotB ball

ball:unknown

(a) without information

sharing

(b) subjective map

Figure 7: Robot A’s potential field and positions of ob-
jects in its map at the initiall condition in case 1. With-
out information sharing (left) and based on subjective
map (right).

the subjective map in case 1. Without information
sharing, robot A did not know the location of the ball
(Figure 7(a)) and could not move to the support posi-
tion. With subjective map, robot A showed the expected
movements as shown in Figure 8.

In case 2, without information sharing, robots bumped
into each other because they did not know where the
other robot was, but they were initially placed at nearly
same distance from the ball. With information sharing
under normal localization errors, they showed coopera-
tive movements. Figure 9 shows such movements.

In case 3, the matched time rate of averaged map
showed small difference to no infomration sharing. While
under conditions that robot B had large localization er-
rors, the result of averaged map and subjective map
showed a big diffrence. Figures 10 (a) and (b) show the
potential field of robot A and the positions of objects in
its averaged map and its subjective map at the initial
position. Due to the robot B’s large localization errors,
robot A also became to have large errors with the aver-
aged map and made wrong decisions. However, as shown
in Figure 10(b), with the subjective map, robot B’s er-
ror did not affect robot A and the rate increased with
information sharing. Figure 12 shows the robots’ move-
ments with subjective map. We can see that robot A
apropreately moved to the supporting position.

5 Discussions and Conclusions

We proposed to use a subjective map in a multi robot
system under dynamically changing environment. Our
experiments with a robot soccer task showed that even
under large error situations, where a shared averaged
map method lost the merit of information sharing, the
proposed subjective map works effectively. Further in-
vestigation for a larger scale of multi robot systems and
comparison with other information sharing methods are
our future work.
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Figure 8: A sequence of robots’ movements with subjective map in case 1.

Figure 9: A sequence of robots’ movemens using subjective map in case 2 under nomal localization error

ball
robot A l

ball
robot A
l robot B

robot B

(a) averaged map (b) subjective map

Figure 10: Robot A’s potential field and positions of
objects in its map at the initiall condition in case 3 with
robot B’s large errors. Based on the averaged map (left)
and the subjective map (right).
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Figure 11: A sequence of robots’ movements using averaged map in case 3 with large error on robot B.

Figure 12: A sequence of robots’ movements using subjective map in case 3 with large error on robot B.
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Abstract

Pseudo-local vision system, which simulates
visual information derived from an on-board
camera of mobile robot based on a ceiling cam-
era image, is proposed. It consists of a vi-
sion server and a client module which com-
municate with each other in the SoccerServer-
like protocol. An image processing module for
the on-board camera in the control program is

replaced with this system. The simulated vi-

m Ethernet LAN
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Computer
Units
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Robot
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Onboard Camera Soccer Field

Figure 1: System of the Team OMNT in 2001 (real local

sual information is not a two-dimensional im- vision)

age data but a one-dimensional array which

represents the nearest edge in each direction

around the robot. However, it contains much Vision Server

of essential information of the on-board cam-

era image. This concept was implemented for Comg/tlftlg: o ‘ “ ‘‘‘‘‘‘‘ : H

our robot system for the RoboCup Small-Size Units =7 [ 7 ]

League. The server can transmit the edge data i

to 10 clients 30 times per 1 second. The time

lag between grabbing image on the server and Robot / ’

extracting visual information on the client is Units @ @ @l @ @

about 10ms. Soccer Field

Figure 2: System of the Team OMNI in 2002 (pseudo-
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Figure 3: Robots in 2001 (L) and 2002 (R)
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Figure 7: Example of ceiling camera image
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Abstract

In order to control robots precisely and rapidly,
an expensive vision system with 60 fps has been
used. In this paper, we present a vision system
with two normal unsynchronized cameras, that
performs as fast as the expensive vision system.
Frame grabbers for each camera are installed on
a PC. Images from the camera are processed at
30 fps. Our two camera vision system processes
robots positions as fast as the expensive vision
system with 60 fps and gives better accuracy in

position prediction than a single vision system.
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Abstract

Recently, multi agent games such as RoboCup
soccer have grown and made great progress
so that their games become very close to hu-
man games. In this paper, we introduce
an compression method on multi agent game
logs for XML data format.

of linear-predictor(LP) and vector quantiza-

Combination

tion(VQ) shows good performance in both com-
pressing rate and errors for this purpose. This
result indicates that teams use cooperative for-

mation play style.
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<?xml version="1.0"7>

<RCG SOME-Properties>

<2go0ZCodeBook>
<Code name='"c00">..vector</Code>
<Code name='"c01">..vector</Code>

</2go0ZCodeBook>

<ShowInfo time="1">
<2go0ZCode>. .Code(c01)..</2go0ZCode>
<Comment>
Comments at this time
by human
</Comment>
</ShowInfo>
<ShowInfo time="2">

</RCG>
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Abstract

This paper shows an analysis result of hu-
man soccer forward player’s behavior in sim-
ulated soccer; RoboCup. We developed an in-
terface system called OZRP /Palm-system that
enabled human pilots to dive into simulated
socder field. Human players could play very
well in spite of several constraints such as lim-
ited information and noise. We showed a priori
cooperation abilities such as dynamic formation
reconfiguration by means of statistical indices.
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Abstract

We propose a hierarchical multi-module leaning
system based on self-interpretation of instruc-
tions given by coach. The proposed method
enables a robot (i) to decompose a long term
task which needs various kinds of information
into a sequence of short term subtasks which
need much less information through its self-
interpretation process for the instructions given
by coach, (ii) to select sensory information
needed to each subtask, and (iii) to integrate
the learned behaviors to accomplish the given
long term task. We show a preliminary result
of a simple soccer situation in the context of
RoboCup [1].

1 Introduction

Reinforcement learning (hereafter, RL) is a fascinating
method for robot behavior acquisition with little or no
a priori knowledge and higher capability of reactive and
adaptive behaviors [2]. However, RL seems difficult to
be applied to real robot tasks because the learning sys-
tem needs a huge monolithic state/action space which
consists of all kinds of sensory information and actua-
tor commands, and such a big exploration space leads
to scale the learning time exponentially. Therefore, it
is hard to realize such learning systems from a practical
viewpoint.

Fortunately, a long time-scale behavior might be of-
ten decomposed into a sequence of simple behaviors in
general, and therefore, the searching space is expected
to be able to be divided into some smaller ones. Con-
nell and Mahadevan [3] decomposed the whole behav-
ior into sub-behaviors each of which can be indepen-
dently learned. However, task decomposition and be-
havior switching procedure are given by the design-
ers. Morimoto and Doya [4] applied a hierarchical
RL method by which an appropriate sequence of sub-
goals for the task is learned in the upper level while
behaviors to achieve the subgoals are acquired in the

lower level. In their system, the human designer has
to define the subtasks based on their own experiences
and insights. Doya et al. [5] have proposed MOdu-
lar Selection And Identification for Control (MOSAIC),
which is a modular RL architecture for non-linear, non-
stationary control tasks. However, the all learning mod-
ules share the same state space. Takahashi and Asada [6,
7] proposed a multi-layered RL system. The modules in
the lower networks are organized as experts to move into
different categories of sensor output regions and learn
lower level behaviors using motor commands. In the
meantime, the modules in the higher networks are orga-
nized as experts which learn higher level behaviors using
lower modules. However, this system tends to produce
not only purposive behavior learning modules but also
many non-purposive ones, and as a result, to require
large computational resources.

When we develop a real robot which learns various
behaviors in its life, it seems reasonable that a human
instructs or shows some example behaviors to the robot
in order to accelerate the learning before it starts to
learn. Whitehead [8] showed that instructions given by
coach significantly encourages the learning and reduces
the learning time. This method, called LBW (Learn-
ing By Watching), reduces the exploration space and
makes learner have experiences to reach the goal fre-
quently. Asada et al. [9] proposed a method, called LEM
(Learning from Easy Mission). This basic idea is that a
learning scheduling such as a robot starts to learn in easy
situations to accomplish a given task at the early stage
and learns in more difficult situations at the later stage
accelerates the learning the purposive behavior. They
applied this idea to a monolithic learning module. In
order to cope with more complicated tasks, this idea can
be extended to a multi-module learning system. That is,
the robot learns basic short term behaviors at the early
stage and learns complicated long term behavior at the
later stage based on instructions given by coach.

In this paper, we propose a behavior acquisition
method based on hierarchical multi-module leaning sys-
tem with self-interpretation of coach instructions. The
proposed method enables a robot to
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1. decompose a long term task into a set of short term
subtasks,

2. select sensory information needed to the current
subtask,

3. acquire a basic behavior to each subtask, and

4. integrate the learned behaviors to a sequence of the
behaviors to accomplish the given long term task.

We show a preliminary result applied to a simple soccer
situation in the context of RoboCup [1].

2 Basic Idea

\&t

Figure 1: Basic concept: A coach gives instructions to
a learner. The learner follows the instruction and find
basic behaviors by itself.

There are a learner and a coach in a simple soccer sit-
uation (Figure 1). The coach has a priori knowledge of
tasks to be played by the learner. The learner does not
have any knowledge on tasks and just follows the instruc-
tions. After some instructions, the learner segments the
whole task into a sequence of subtasks, acquire a behav-
ior for each subtask, find the purpose of the instructed
task, and acquire a sequence of the behaviors to accom-
plish the task by itself. It is reasonable to assume that
the coach will give instructions for easier tasks at the
early stage and give ones for complicated tasks at the
later stage although it does not have any a priori knowl-
edge about the learning system on the agent.

Figure 2 shows the perspective of development of the
learning system through instructions given by coach at
three stages. When the coach gives new instructions,
the learner reuses the learning modules for familiar sub-
tasks, generates new learning modules for unfamiliar
subtasks at lower level and a new module for a sequence
of behaviors of the whole instructed task at the upper
level. After the learning at one stage, the learner adds
newly acquired learning modules to the learning module
database. The learning system iterates this procedure
from easy tasks to more complicated ones.

stage 1
- acquired learning modules
ﬂ a new herarchical structure for task1 ‘\

ning ules

stage 2 -
<| a new herarchical structure for task2 m - acquired learning modules L
4 A A
LM2

-

reuse available acquired|
learning modules
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4| a new herarchical structure for task3

—-LMU3 |

Figure 2: The perspective of of development of the learn-
ing system with staged instructions

3 Hierarchical Multi-Module Learning
System

3.1 Architecture

The basic idea of multi-layered learning system is sim-
ilar to [6, 7). The details of the architecture has been
extended. The robot prepares learning modules of one
kind, makes a layer with these modules, and constructs
a hierarchy between the layers. The hierarchy of the
learning module’s layers can be regarded as a role of task
decomposition. Each module has a forward model (pre-
dictor) which represents the state transition model, and
a behavior learner (policy planner) which estimates the
state-action value function based on the forward model
in an RL manner (Figure 3(b)). The state and the ac-
tion are constructed using sensory information and mo-
tor command, respectively at the bottom level.

The input and output to/from the higher level are the
goal state activation and the behavior command, respec-
tively, as shown in Figure 3. The goal state activation g
is a normalized state value ! , and ¢ = 1 when the sit-
uation is the goal state. When the module receives the
behavior command b from the higher modules, it calcu-
lates the optimal policy for its own goal, and sends action
commands to the lower module. The action command at
the bottom level is translated to an actual motor com-

I The state value function estimates the sum of the discounted
reward received over time when the robot takes the optimal policy,
and is obtained by @ learning.
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Figure 3: A multi-layered learning system

mand, then the robot takes an action in the environment.
An approximated state-action value function Q(s,a)
for a state action pair (s, a) is given by

Qs,a) = > Pl [Rey +ymaxQ(s, )] . (1)

where 75?5, and 7@?5, are the state-transition probabili-
ties and expected rewards, respectively, and the v is the
discount rate.

3.2 A Learning Procedure

The steps of the learning procedure are as follows:

1. Coach instructs some example behaviors to accom-
plish a task.

2. Learner evaluates the availability of learned behav-
iors to accomplish the task by watching the exam-
ples.

3. The learner segments the task into subtasks, and
produces new learning modules at the lower layer if
needed, and learns the behavior for each.

4. The learner produces a learning module at the
higher layer and learns the whole behavior to ac-
complish the task.

5. Go to step 1.

3.3 Avalilability Evaluation

an existing learning module is available

new learning modules are needed

Qth I
(I
\/

ignore

Figure 4: Availability identification during the given
sample behavior

The learner needs to evaluate the availability of
learned behaviors which help to accomplish the task
by itself because the coach neither knows what kind of
behavior the learner has already acquired directly nor
shows perfect example behavior from the learner’s view-
point. The learner should evaluate a module valid if it
accomplishes the subtask even if the greedy policy seems
different from the example behavior. Now, we introduce
@ in order to evaluate how suitable the module’s policy
is to the subtask as follows:

- Q(Saae) —miTLa/Q(S,a/)

Qs ac) = mazy Q(s,a') — ming Q(s,a’)

(2

where a. indicates the action taken in the instructed ex-
ample behavior. @ becomes larger if a, leads to the
goal state of the module while it becomes smaller if
a. leaves the goal state. Then, we prepare a thresh-
old @,;,, and the learner evaluates the module valid for a
period if @ > @, If there are modules whose @) exceeds
the threshold @, simultaneously, the learner selects the
module which keeps Q > @, for longest period among
the modules (see Figure 4).

3.4 Generating new learning modules

If there is no module which has Q > @, for a period,
the learner creates a new module which will be assigned
to the not-learned-yet subtask for the period. In order to
assign a new module to such a subtask, the learner iden-
tifies the state space and the goal state. The following
shows the steps briefly.
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1. Prepare a set of state spaces S and, set their prior-
itiesas S;:1=1,2,---.

2. For each state space S,

(a) Estimate a goal state space G in the state space
S; based on the instructed example behaviors.

(b) If the estimated goal state space G covers all of
the state space S;, increment ¢ and goto step (a).

(c) Construct a learning module and calculate @ val-
ues.

(d) Check the performance of the learned behavior
for the subtask. If the success rate is low, incre-
ment ¢ and go to step (a).

3. Add a new module based on the state space S; and
the goal state space G.

4. Check the availability of modules over the given
task. If there is a period where there is no avail-
able module, go to step 1.

5. Exit.

3.4.1 State Variables Selection

If the number of state variables which construct the
state space is large, the number of state scales up expo-
nentially. We adopt heuristics, that is, only a few state
variables are needed for all subtasks even if large num-
ber of state variables are necessary for the whole task:
We limits the number of variables to only three in this
study.

new learning modules are needed

As

N

s
(value of state variable)

Figure 5: Gradient of a state variable

The system produces state spaces of all combinations
of state variables and check their validities, however, this
procedure takes much time. We introduce other heuris-
tics and set priorities to the set of state spaces as follows:

1. Higher priority is assigned to the state variable
which changes largely from the start to the end
during the example behaviors because it can be re-
garded as an important variable to accomplish the

subtask (see Figure 5).

2. Higher priority is assigned to the state space which
has smaller average of entropy H (s, a) (see equation
3) of the state transition probability P, for the
experienced transition.

H(S, a) = - Z Psas’ (S, a, Sl)logQPsas’ (87 a, SI) (3)
s'eS

The reason is that the learning module acquires
a more purposive behavior with more stable state
transition probability which has lower entropy.

3.4.2 Goal State Space Selection

X, Sequences of
example behaviors

Al

X

goal state
X1

(a) goal state is specified by all
variables x1,z2, T3

sequences of
X3 example behaviors

] /

N7 > Xo

goal state i

X

(b) goal state doesn’t care about
variable xzo

Figure 6: Definition of goal state

It is hard to specify the goal state of the subtask with
limited number of experiences of example behaviors. We
need other heuristics here.

e A state variable of the goal state tends to be the
maximum, the minimum, or the medium.

e If the value of a variable has no consistent one at
the terminate state of the example behavior, the
variable is independent of the goal state.

The system produce a reward model based on these
heuristics.
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3.4.3 Performance Evaluation

Even if we got a module with a proper policy based
on the state transition model and reward one, there is
no assurance that the module acquired a sufficient per-
formance to the subtask. Before the system adds a new
module to the available module database, it checks the
success rate of the module. If the success rate is low, the
system discards the module.

3.5 Learning behavior coordination

93
LM3
o)
LM1
> g2
LM2

9

Figure 7: An example state transition on upper layer
state space

After the procedures mentioned above, there should
be necessary and sufficient modules at the lower layer,
then the learning system puts a new learning module
at the upper layer, and the module learns to coordinate
the lower modules. The upper module has a state space
constructed with the goal state activations of the lower
modules. A set of actions consists of the commands to
the lower modules. For example, there are three mod-
ules at lower level (say LM, LM, and LM3), then the
upper module has a state space based on their goal state
activations (say g1, g2, and g¢3). Figure 7 shows an ex-
ample state transition on the upper layer state space. At
the initial situation, all lower modules activate low. The
system sends a command to the module LM;, then the
goal state activation of LM, that is g;, goes up. Af-
ter LM, finishes its own task, the upper module sends
a command to the module LM,, and accomplishes the
whole task by activating LM; at last.

4 Experiments

4.1 Setting

Figure 8 (a) shows a mobile robot we have designed and
built. The robot has an omni-directional camera sys-
tem. A simple color image processing (Hitachi IP5000)
is applied to detect the ball area and an opponent one
in the image in real-time (every 33ms). Figure 8 (b)
shows a situation with which the learning agent can en-
counter and Figure 8 (c) shows the simulated image of
the camera with the omni-directional mirror mounted
on the robot. The larger and smaller boxes indicate the
opponent and the ball, respectively. The robot has a
driving mechanism, a PWS (Power Wheeled Steering)
system.

Bal |
@)

Opponent agent

@ni ng agent
il

(a) A real robot (b) Top view of the
and a ball field

(c) Simulated camera
image with a omni-
directional mirror

Figure 8: Real robot and simulation environment

The following state variables are prepared in advance:

A;  area of object i on the image

0; angle to object ¢ from the center of image
A;;  difference of areas between objects ¢ and j
§;;  difference of angles between objects ¢ and j

These variables are normalized to [0 : 1]. The area and
the angle are quantized into 30 levels and 12 ones, re-
spectively. The action space is constructed in terms of
two torque values to be sent to two motors corresponding
to two wheels.

4.2 Learning Scheduling and Experiments

The robot receives instructions for the tasks in the order
as follows:

Task 1: ball chasing
Task 2: ball shooting into a goal without obstacles
Task 3: ball shooting into a goal with an obstacle

4.2.1 Task 1: ball chasing

First of all, the coach gives some instructions for the
ball chasing task. There are the learner, a ball, the own
goal, and the opponent goal in the environment. Figure
9 shows instructed behaviors for this task. According to
the learning procedure mentioned in 3, the system pro-
duce one module LM[S(A4;,8;) : G(Maz, Front)], where
S(Ayp, 6,) indicates that the state space consists of area
of ball 4, and angle of the ball 8, from the center of
the image, and G(Maz, Front) indicates that the goal
state is one where A, is the maximum value and 6, is
the front of the robot. So this module acquired the be-
havior of ball chasing. Figure 10 shows the constructed
system for this task 1.
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Figure 9: Example behaviors for task 1

LMI[S(Ay,0) : G(Maz, Front)]
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( World )
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Figure 10: Acquired hierarchical structure (task 1)

4.2.2 Task 2: ball shooting into a goal without
obstacles

At the second stage, the coach gives some instruc-
tions for the shooting task. Figure 12 shows example
behaviors for this task, and Figures 13 and 14 show
Qs of the learning modules during the example behav-
ior performance before and after the addition of new
module, respectively. The arrows on the top of each
series indicate the behavior of the instruction given
by coach. There is no valid module during the time
from 1.7 to 2.8 seconds. The learner produces another
module LM[S(Ap,0s,0b04) : G(Maz, Don't care, Min)]
during the period, where S(As,60s,60,,) indicates that
the state space consists of area of ball, angle of the
ball from the center of the image, and difference be-
tween the angle of the ball and one of the goal, and
G(Maz, Don't care, Min) indicates that the goal state is
one where A is the maximum value, 8 is “Don’t care”,
and 6,4 is the minimum value. This means that the
module has a policy of going around the ball until the
directions to the ball and the goal become same. Fig-
ure 15 shows the constructed hierarchical system for this
task 2. The upper module coordinates these two mod-
ules to accomplish the shooting task. Figure 16 shows
the acquired behaviors for the task, and Figure 17 shows
the transitions of goal state activations and the selected
learning module during the behavior performance.

4.2.3 Task 3: ball shooting into a goal with an
obstacle

At the last stage, the coach gives some instruc-
tions for the shooting task with obstacle avoid-
ance. Figure 18 shows example behaviors for
this task. The learner produces another mod-

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

== —

Figure 11: Learned behaviors for task 1
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rrrrrrrrrrrrrrrrrr

S

—

Figure 12: Example behaviors for task 2

ule LM[S(Acp,bop,0040p):G(Mazx, Don't care, Mazx)],
where S(Aqp, Oop, 8og0p) indicates that the state space
consists of the area of opponent A,,, the angle of the
opponent from the center of the image 6,5, and the dif-
ference between the angle of the opponent and the goal
Bogop, and G(Maz, Don't care, Maz) indicates that the
goal state is one where A4,, is the maximum value, 6,,
is “Don’t care”, and 8,40, is the maximum value. Then
this module acquired the behavior of going to the in-
tersection between the opponent and the goal avoiding
the collision. Figure 19 shows the constructed system
for this task 3. The upper module enables the robot to
shoot a ball into the goal avoiding the opponent. Fig-
ure 20 shows the acquired behaviors for the task, and
Figure 21 shows the transitions of goal state activations
and the selected learning module during the task accom-
plishment.

5 Conclusion

We proposed a hierarchical multi-module leaning sys-
tem based on self-interpretation of instructions given by
coach. We applied the proposed method to our robot
and showed results of a simple soccer situation in the
context of RoboCup.
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Abstract

This paper presents a method for learning the
parameters of rhythmic walking to generate a
purposive motion. The controller consists of
the two layers. Rhythmic walking is realized
by the lower layer controller which adjusts the
speed of the phase on the desired trajectory de-
pending on the sensor information. The upper
layer controller learns (1) the feasible parame-
ter sets that enable a stable walking for a robot,
(2) the causal relationship between the walk-
ing parameters to be given to the lower layer
controller and the change of the sensor infor-
mation, and (3) the feasible rhythmic walking
parameters by reinforcement learning so that a
robot can reach to the goal based on the vi-
sual information. The method was examined
in the real robot, and it learns to reach the ball
and to shoot it into the goal in the context of
RoboCupSoccer competition.

1 Introduction

Recently, a number of humanoid projects have started
and various kinds of humanoid platforms have been de-
veloped. The typical method for real robot adopted
in those platforms is planning the desired trajectory
of each joint based on Zero Moment Point [3, 14]. In
that method, the ZMP trajectory for not falling down
is planned and the trajectory of each joint is calculated
based on the ZMP trajectory. This method needs very
precise dynamics parameters for the robot and much cal-
culation time for planning.

The other method to realize bipedal walking is
rhythmic-walking-based approach. This method doesn
not use the precise structural parameters of a robot. In-
stead, the controller adjusts its inherent frequency de-
pending on the sensor information so that the entrain-
ment between dynamics of the controller and those of en-
vironment takes place. Taga et al. proposed the model of
CPG (Central Pattern Generator) system [2] for human

walking based on the nonlinear dynamics equations [11].
The network system changes its frequency depending on
the sensor information. In the simulation experiment,
this model realizes the stable walking under the various
kinds of disturbances [6]. In the original Taga’s CPG
model, the output value of each neuron is used as a ref-
erence of torque applied to a corresponding joint. While
almost all of the currently existing humanoid robots are
driven by high gain PD controllers, instead of torque
control. Therefore, it is difficult to apply Taga’s CPG
model to real robots directly. However, even such a robot
with high gain PD controllers can realize the stable walk-
ing with a controller which utilizes sensor information
properly. Pratt [9] realizes the energy efficient walking
in real robot with a controller which consists of state
machines. The state transition of the controller occurs
when the swing leg touches the ground. Tsuchiya et al.
[13] realized stable walking based on a method in which
a trajectory controller determines the shape of the tra-
jectory, and a phase controller changes the speed of the
desired angle on the trajectory. In this controller the
phase speed is adjusted by the sensor information.

In rhythmic walking, the control parameters are found
heuristically, not by planning as ZMP approach. This
makes it difficult to construct the upper layer controller
to control the movement of a robot because the walk-
ing parameters such as walking step are not found until
the robot interacts with the real world. Taga [12] and
Fukuoka et al. [4] constructs the upper layer controller
which gives the control parameters to the lower CPG
controller depending the visual information so that the
robot can avoid obstacles or climb over a step. In these
methods, the adjusting parameters were given by the de-
signer in advance. However, for making a more adaptive
robot to the dynamic situations, it is necessary that the
relationship between the parameters of the lower rhyth-
mic walking controller and the resultant change of the
environment should be learned.

In this paper, the layered controller is introduced,
in which the lower controller realizes rhythmic walking
based on the controller proposed by Tsuchiya et al. [13]
and the upper controller learns the parameters of the
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controller of the lower layer based on the visual infor-
mation. There are three points in learning of the upper
layer controller. (1) In the first stage, it learns the feasi-
ble parameters of the lower layer controller which enables
a robot to walk. (2) To accelerate a learning process, the
upper layer controller learns the model of the world : the
relationship between the control parameters given to the
lower rhythmic walking controller and the change of the
visual sensor information. (3) The upper layer controller
learns what parameters should be given to reach a goal
by the reinforcement learning.

The rest of this paper is organized as follows. First,
the lower controller which enables a rhythmic walk is in-
troduced. Next, we describe the upper layer controller in
which the parameters of the lower controller is learned by
reinforcement learning. Then, the suggested controller is
applied to the RoboCupSoccer task [8], ”approaching to
a ball”, and experimental results are shown. Finally,
conclusions are given.

2 Rhythmic walking controller
2.1 Biped robot model

Fig. 1 shows a biped robot model used in the experiment
which has one-link torso, two four-link arms, and two six-
link legs. All joints are single DOF rotation ones. Each
foot has four FSRs to detect reaction force from the floor
and a CCD camera with a fish-eye lens is attached at the
top of the torso.

2.2 Rhythmic walking controller based on
CPG principle

Here, we build a lower-layer controller based on the con-
troller proposed by Tuchiya et al. [13]. The proposed
controller consists of two sub-controllers: a trajectory
controller and a phase controller (Fig. 2). The tra-
jectory controller outputs the desired trajectory of each
limb depending on the phase which is given by the phase
controller. The phase controller consists of four oscilla-
tors, each of which is responsible for movement of each
limb (Fig. 4). Each oscillator changes its speed depend-
ing on the touch sensor signal, and the effects reflected
on the oscillator in each limb. As a result, the desired
trajectory of each joint is adjusted so that global en-
trainment between dynamics of the robot and those of
the environment is realized. In the following, the details
of each controller are explained.

2.2.1 Trajectory controller

The trajectory controller calculates the desired trajec-
tory of each joint depending on the phase given by the
corresponding oscillator in the phase controller.

Here, the trajectory of each joint is characterized by
four parameters as shown in Fig. 3. For joints 3, 4 and
5, of which axes coincide with pitch axis, the desired
trajectory is determined so that in the swing phase the
foot trajectory draws a ellipse that has the radiuses, h in
vertical direction and [ in horizontal direction, respec-
tively. For joints 2 and 4, of which axes coincide with
roll axis, the desired trajectory is determined so that the
leg tilts from —W to W relative to the vertical axis. The

desired trajectory of joint 1 is determined by the ampli-
tude of the oscillation, a. The desired trajectories are
summarized as following functions,

01 = asin(9) (1)
0, = Wisin(g) (2)
0; = fi(d.hp) (i =3,4,5) 3)
¢ = —Wsin(¢p). (4)

The detail of f; is explained in Appendix. Among
four parameters described above, «, which determines
the walking step length, and (3, which determines the
walking direction are selected as rhythmic parameters
of walking. Although these parameters characterize ap-
proximate direction and step length, resultant walking is
not as precisely determined by those parameters because
of the slips between the support leg and the ground.
These parameters are learned in the upper layer learn-
ing module, explained in 3.

2.2.2 Phase controller

The phase which determines the desired value of each
joint is given by the phase controller. The phase con-
troller consists of two oscillators, ¢ for right leg and ¢,
for left leg. The dynamics of each oscillator is determined
by basic frequency, w, the interaction term between two
oscillators, and the feedback signal from sensor informa-
tion,

¢or = w—K(pr—¢r—7)+gr (5)
or = w—K(¢r—¢r — 1)+ gr. (6)

The second term of RHS in above equations keeps the
phases of two oscillators in opposite. The third term,
feedback signal from sensor information, is given as fol-
lows:

| K'Feed; 0< @< dc) 7
9: = —w(l — Feed;) (¢c < ¢ < 2m) (7)
i={R,L},

where K', ¢ and Feed; denote feedback gain, the phase
when the swing leg contacts with the ground, and the
feedback sensor signal, respectively. Feed; returns 1 if
the FSR sensor value of the corresponding leg exceeds
the certain threshold value, otherwise 0. The third term
enables that the mode switching between the free leg
phase and the support one happens appropriately ac-
cording to the ground contact information from the FSR
sensors. In this paper, the value of each parameter is set
as follows; ¢po = m, w = 5.23[rad /sec|, K = 15.7, K’ = 1.

3 Reinforcement learning with
rhythmic walking parameters

3.1 Principle of reinforcement learning

Reinforcement learning has recently been receiving in-
creased attention as a method for robot learning with
little or no a priori knowledge and higher capability of
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reactive and adaptive behaviors. Fig. 5 shows the ba-
sic model of robot-environment interaction [10], where
a robot and environment are modelled by two synchro-
nized finite state automatons interacting in a discrete
time cyclical processes. The robot senses the current
state s; € S of the environment and selects an action
a; € A. Based on the state and action, the environment
makes a transition to a new state sy;11 € S and generates
a reward r; that is passed back to the robot. Through
these interactions, the robot learns a purposive behav-
ior to achieve a given goal. In order for the learning to
converge correctly, the environment should satisfy the
Markovian assumption that the state transition depends
on only the current state and the taken action. The state
transition is modelled by a stochastic function T" which
maps a pair of the current state and the action to take
to the next state (T : S x A — S). Using T, the state
transition probability P;, ., (a;) is given by

PSt,St+1 (at) = PTOb(T(Sta at) = 3t+1)~ (8)

The immediate reward r; is given by the reward func-
tion in terms of the current state by R(s:), that is
r = R(s;). Generally, Py, s, (a;) (hereafter PZ,) and
R(s¢) (hereafter RY,,) are unknown.

The aim of the reinforcement learner is to maximize
the accumulated summation of the given rewards (called

return) given by

oo
return(t) = Z’y”rt_m, (9)
n=0

where v (0 <+ < 1) denotes a discounting factor to give
the temporal weight to the reward.

If the state transition probability is known, the opti-
mal policy which maximize the expected return is given
by finding the optimal value function V*(s) or the opti-
mal action value function Q*(s, a) as follows. The deriva-
tion of them can be found elsewhere [10].

V*(s) = max E{rip1 + YV (St41)]8¢t = s,at = a}
= maxy P, [R + w*(s/)} (10)
Q*(s,a) = E{ri +’YH}L§XQ*(St+1;a/)|St =s,a; = a}

= > P [R“ + VHE&}XQ*(SCCL’)} (11)

3.2 Construction of action space based on
rhythmic parameters

The learning process has two stages. The first one is to
construct the action space consisting of feasible combina-
tions of two rhythmic walking parameters (o, 3). To do
that, we prepared the three-dimensional posture space
sp in terms of the forward length § (quantized into four
lengths: 0, 10, 35 60 [mm]), the turning angle o (quan-
tized into three angles: -10, 0, 10 [deg]) both of which
mean the previous action command, and the leg side
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(left or right). Therefore, we have 24 kinds of postures.
Firstly, we have constructed the action space of the feasi-
ble combinations of (a, 3) excluding the infeasible ones
which cause collisions with its own body. Then, various
combinations of actions are examined for stable walk-
ing in the real robot. Fig. 6 shows the feasible actions
(empty boxes) for each leg corresponding to the previ-
ous actions. Due to the differences in physical properties
between two legs, the constructed action space was not
symmetric although it should be theoretically.
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Figure 6: Experimental result of action rule

3.3 Reinforcement learning with visual
information

Fig. 7 shows an overview of the whole system which con-
sists of two layers: adjusting walking based on the visual
information and generating walking based on neural os-
cillators. The state space consists of the visual informa-
tion s, and the robot posture s,, and adjusted action a is
learned by dynamic programming method based on the
rhythmic walking parameters (o, ). In a case of ball
shooting task, s, consists of ball substates and goal sub-
states both of which are quantized as shown in Fig. 8. In
addition to these substates, we add two more substates,
that is, “the ball is missing” and “the goal is missing”
because they are necessary to recover from loosing their
sight.

Motion modulator system

Learning module

Sensory system
Visual
system

Motion generator system

Encoder

FSR sensor]|

(=

[ Environment J

Figure 7: Biped walking system with visual perception

Learning module consists of a planner which deter-
mines an action a based on the current state s, a state

<@

(b) State space of

(a) State space of
ball goal

Figure 8: State space of ball and goal

transition model which estimates the state transition
probability P2, through the interactions, and a reward
model (see Fig. 9). Based on DP, the action value func-
tion Q(s,a) is updated and the learning stops when no
more changes in the summation of action values.

Qs,0) = Y Piy[Rs +ymaxQ(s',a')], (12)

where R4 denote the expected reward at the state s.

Update policy
value fanction

Dynamic
Programming

ehavior strateg

T o odel
Action State
(5]

Figure 9: Learning module

4 Experiments

4.1 Robot platform and environment set-up

Here, we use a humanoid platform HOAP-1 by Fujitsu
Automation LTD. [7] attaching a CCD camera with a
fish-eye lens at the head. Figs. 10 and 11 show a pic-
ture and a system configuration, respectively. The height
and the weight are about 480[mm] and 6[kg], and each
leg (arm) has six (four) DOFs. Joint encoders have high
resolution of 0.001[deg/pulse] and reaction force sensors
(FSRs) are attached at soles. The colour image process-
ing to detect an orange ball and a blue goal is performed
on the CPU (Pentium3 800MHz) under RT-Linux. Fig.
12 shows an on-board image.

The experimental set-up is shown in Fig. 13 where the
initial robot position is inside the circle whose center and
radius are the ball position and 1000 [mm], respectively,
and the initial ball position is located less than 1500
[mm] from the goal of which width and height are 1800
[mm] and 900 [mm], respectively. The task is to take a
position just before the ball so that the robot can shoot
a ball into the goal. Each episode ends when the robot
succeeds in getting such positions or fails (touches the
ball or the pre-specified time period expires).

4.2 Experimental results

One of the most serious issues in applying the rein-
forcement learning method to real robot tasks is how
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Figure 10: HOAP-1

Fish-eye lens
CCD camera

o

PC
(pentium3 800MHz)
OS:RT-Linux

Motor
T Driver

Motor

FSR r‘ o
SR senso Encoder

Figure 11: Overview of robot system

Figure 12: Robot’s view (CCD camera image through
fish-lens)

Figure 13: Experimental environment

to accelerate the learning process. Instead of using Q-
learning that is most typically used in many applica-
tions, we use a DP approach based on the state tran-
sition model P¢,, that is obtained separately from the
behavior learning itself. Further, we give the instruc-
tions to start up the learning, more correctly, during the
first 50 episodes (about a half hour), the human instruc-
tor avoids the useless exploration by directly specifying
the action command to the learner about 10 times per
one episode. After that, the learner experienced about
1500 episodes. Owing to the state transition model and
initial instructions, the learning converged in 15 hours,
and the robot learned to get the right position from any
initial positions inside the half field.

Fig. 14 shows the learned behaviors from various ini-
tial positions. In Fig. 14, the robot can capture the
image including both the ball and the goal from the ini-
tial position while in Fig. 14 (f) the robot cannot see
the ball or the goal from the initial position.

[ | o | ) |
e O e £

(a) Result 1 (b) Result 2 (c) Result 3

[
e D g

P R e

(d) Result 4 (e) Result 5 (f) Result 6

Figure 14: Experimental results

5 Concluding remarks

A vision-based behavior of humanoid was generated by
reinforcement learning with rhythmic walking parame-
ters. Since the humanoid generally has many DOFs, it
is very hard to control all of them. Instead of using these
DOFs as action space, we adopted rhythmic walking pa-
rameters, which drastically reduces the search space and
therefore the real robot learning was enabled in reason-
able time. In this study, the designer specified the state
space consisting of visual features and robot postures.
State space construction by learning is one of the future
issues.
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Appendix: planning the reference
trajectory around the pitch axis

Figure 15: Joint angles and the reference trajectory of
the foot

The reference trajectories of joints 3, 4 and 5 are deter-
mined by the position of the foot. Let x and z be the posi-
tion of the foot in the plane XZ which is perpendicular to the
pitch axis, the reference trajectory of the foot is given by,

g8

TFo= 5 cos(¢™),

zp = —H+ hsin(¢"),
vs = Lol

zs = —H,

where (zr,zr) and (zs,zs) are the positions of the foot in
the free and support phase, respectively, H is the length from
the ground to the joint 3, 8 is the step length, and h is
the maximum height of the foot from the ground (Fig. 15).
When the position of the foot is determined, the angle of each
joint to be realized is calculated by the inverse kinematics as
follows,

03 = g + atan2(z, z) — atan2(k, 2* + 2* + L — L3)
04, = atan2(k,z® + 2> — LT — L3)
05 = —(03+ 04),

where k is given by the following equation,

k= /(22 + 22 + L2 + L3)2 — 2{(22 + 22)2 + L + L4}

In this research, the value of each parameter is set as

follows; H = 185[mm], h = 8mm|, W = 13[deg], L1 =
100[mm], Ly = 100[mm].
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Abstract

One of the typical cooperative actions is the pass play in
RoboCup small-size league. This paper presents three technical
key features to realize robust pass play between robots. First oneis
the high resolution image processing to detect the positions and 4cm
orientations of the robots. Second one is the control agorithm to
move and adjust the robots for the pass play. Third one is the
mechanism to catch the ball moving at high speed. This paper
discusses these methods and shows the effectiveness of the
methods by experimental results.

Figure 1
105mmx 16.5mm
1 4
8.5mm
[1-5]
PentiumXeon 2GHz Windows2000 PC
SONY, DXC-9000
3.0m
3.2m
Fujinon, WCV-65, x 0.75 Matrox,
GEN/X/00/STD 640(W)
x 480(H) 5mm/pixel
-y

1.4msec
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Since the noise like a straight line of width 1pixel will be
recognized as separated objects, it is easy to remove them by

simple area thresholing.

Figure 5: An example of line noises to be deleted
by the proposed labeling algorithm

Step-2 Step-3
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Table 1 Experimental results of image processing performance

Oo

for the angle [deg]

Experimental item Planned Result
ID recognition ratio 100.00 99.68
inadtill mode [%]

ID recognition ratio 100.00 99.61

in adynamic mode [%]

Maximum deviation 0.50 0.097
for the position [cm]

Maximum deviation 1.00 0.78
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Abstract

Development in real multi-agent system like
robotic soccer in the RoboCup leagues is in-
efficient because of real world uncertainty. In
this paper, we introduce an architecture we de-
veloped in the Sony Four-Legged League 2002.
This architecture designed to unify the real and
virtual environment to accelerate multi-agent
system development and scientific research for
the communities not only for the legged league
one. The architecture consists of the abstrac-
tion layer, common communication protocol,
communication hub, and simulator named open
robot simulator. We implemented it with stan-
dards Java/XML technologies.

1 Introduction

Development in real multi-agent system like robotic soc-
cer in the RoboCup leagues is inefficient because of real
world uncertainty. Considering environment changes,
for example, the changes of the lighting condition af-
fect robot’s behavior seriously in general. In this case,
it is difficult to find out where the problem occurred -
problems in vision module or planning module and so
on. In order to locate the problem, generally, we debug
the target system with the introduction of monitoring
facility like logging. After fixing the system, But how
we can verify whether the problem is fixed. Reproduc-
ing the exactly same situation is almost impossible in
real world because of sensory noise. In multi-agent sys-
tem, obviously this problem becomes more complex. To
focus on scientific problem, we must distinguish a discov-
ered problem is just a programming error or an inherent
one. As a matter of the fact, we experienced a situ-
ation in which a programmer discovered an odd robot
behavior and convinced the problem is fixed with con-
suming 10 hours, but actually the modified source code
had not been compiled at all. This clearly shows that
how real world development is unreliable and uncertain
one. In the previous case, later we found the problem

is in the vision code through real-time monitoring. Al
oriented simulators like SoccerServer [Noda, 1998] may
not help in this case. Here, it is necessary that a de-
velopment environment unify both simulation and real
environment. With unified environment, not only we
can run the same robot program on a real robot and
virtual simulated robot, the same monitoring tool can
be used for both environments. This may accelerate the
development and scientific research.

2 Architecture Design

The main goal of proposed architecture is to unify the
two environments - real and virtual (simulated) environ-
ment. With this abstraction, the same robot program
can be run under the simulated and real environment.
To introduce this abstraction, we prepared the environ-
ment abstraction layer on the top of robot dependent
API such as OPEN-R and our virtual robot API. Before
illustrating a specific part of proposed architecture, we
give the policy of overall our architecture as follows.

e Openness - each part of the system must be expand-
able to introduce new robots, new planning strategy,
new color models, new collision detection module,
new image processing module, etc.

e Distribution in a Network - Since individual robots
exist distributed in a physical space, the architec-
ture must support distribution in a network.

e Rich Information - Provide rich information not
only for programmers but robots as much as pos-
sible in arbitrary abstraction level, to facilitating
machine learning, debug, coordination strategy etc.
For example, information from a joint angle to an
exact global position (z,y, #) in a virtual soccer field
is necessary.

e Rich Debugging Facility - debug supporting func-
tionalities such as taking a snapshot of virtual / real
environment which contains overall information, no
interruption of disconnection/connection of agents
etc are necessary.
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e Heterogeneous Architecture - dependency on spe-
cific OS, programming languages, communication
protocols must be minimized.

e Minimize the Requirements - requirements migrat-
ing existing programs to this architecture must be
minimized.

Under this policy, we developed the architecture and
implemented it with standard/open technologies such
Java and XML.

3 Proposed Architecture

The main idea to unify the both real and virtual environ-
ment is the introduction of an environment abstraction
layer, a common communication protocol, commucation
hub and a vision-based simulator. We also developed the
monitoring tool to visualize local information acquired
from virtual and real robots. Fig. 1 shows an exam-
ple of configuration both virtual and real robots resides
on at the same time. In this configuration, the virtual
robot can be simulated in the simulator, but also with
the simulator, the real robot can be visualized so as to
its estimated position is reflected to the virtual environ-
ment. This allows us simulate the environment based on
synthesized values and real-time sensory values. After
this section, we illustrate the each part of the architec-
ture.

Virtual Robot
running under Linux,
FreeBSD etc.

Agent
Program

Simulator
3D Models

Communication

& Environment
Ab: n Layer
»

Information The/same
A program
- Sony ERS-210
Monitor Tool EventManager Y
Robot

v
Middleware

Il

Agent
Program
Environmet
Abstraction L

eeeeenenp Read/write operations.
4 Send/Listen events.

Middleware

Figure 1: The Architecture Overview

3.1 Communication Hub

The communication hub holds whole environmental in-
formation including from each robot’s estimated position
in the soccer field to camera images generated / acquired
through the simulator or a real robot camera.

e Tree structured: Environmental information is pro-
vided as external representation so as to program-
mer can get information user friendly: it is tree
structured as shown in Fig. 2.

collision

Figure 2: A Tree Representation Example of Environ-
mental Information

<?xml version="1.0"encoding="UTF-8" 7>
<Environment version="0.1" xmlIns="http://www.asura.ac/xethereal™
<Leaf name="/Robo0/robot/head/tilt/value" type="double " scalar="true ">
<i>32.5</i>
</Leaf>
<Leaf name="/Robo0/robot/head/pan/value" type="“double " scalar="true ">
<i>11.4</i>
</Leat>
<Leaf name="/Robo0/robot/leftLeg" type="double" scalar="false* length=3>
<>1.5</i> <i>131.4</i> <i>231.1</i>
</Leaf>

</Environment>

Figure 3: An Example XML Output of Environmental
Information

e Snapshot: The hub also can take a snapshot of its
contents. The snapshot is XML formatted so that
programmers can modify and export. Fig. 3 gives
an example of the XML output result.

e Dynamic connection/disconnection of clients: This
is one reason why we introduce the hub. In develop-
ment cycle, we frequently kill/run the clients. Using
this hub, the system can continue the execution re-
gardless of disconnection because the last state of a
robot is still hold even if it was crashed.

e Dual Communication: We provide two commu-
nication mechanisms - one is synchronous opera-
tions: read() and write() operations to the tree.
These operations are fairly simple. To read value
on the path name of /robotl/camera/yuvimage is
read("/robotl/camera/yuvIimage"). It returns a
byte array container. To gain the performance,
bulky versions of these operations are provided. The
other is an asynchronous event mechanism which
supports send and listen event operations. All
events must be sent with a string label to address
the contents. The event receiver can set a filter
to receive interested events and reduce bandwidth
by specifying a regular expression. Only events
matches the regular expression can be received.

A communication pattern may be used in common is
like that 1) a client receives an update event, and 2) is-
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sues read() operations to get its interested nodes, 3) send
an finish read event. 4) After receiving the finish read
event, a client who wants to write data start to write
the nodes through write() operation. After that, 5) it
sends an update event. The tree held in the communica-
tion hub works as a shared memory. Asynchronous event
mechanism can be used as a synchronization mechanism
between data producer and consumer.

3.2 The Environment Abstraction Layer

The Environment Abstraction Layer (EAL for short) is
provided for two purposes. One is to hide details on a
underlying layer and the other is to give an illusion of a
modeled environment. An example of the modeled en-
vironment is the Sony four-legged league soccer environ-
ment. Fig. 4 shows an example of classes for which an
agent program interacts with the modeled environment.
This layer may be designed in an application specific
way. It lies on the top of the platform dependent API
layer such as OPEN-R API and middleware for commu-
nication. The responsibility of this layer is to correctly
map the operations of a modeled environment to one in
its underlying layers. For example, an implementation
of the EAL in the simulated agent may become a set of
code invokes the communication hub with read() /write()
and send() event operations to reflect its environment in-
formation correctly. On the other hand, while providing
the same interface for an agent program, the EAL in
Sony ERS-210 actually responsible for getting informa-
tion through image processing, self localization, locomo-
tion modules etc. Thus, the EAL definitely defines the
mapping of a modeled environment to actual informa-
tion sources/consumers. Implementation of this layer is
application specific and user responsibility.

Reperesents a soccer field

AbstractEnv SoccerObject SensorInfo
getSelf() getX() getHeadPan()
getBall() getY() P getHeadTilt()
getEnemyDog() getDistance() L1 getRange20bstacle()
getTeamateDog() | getVisionInfo()
getTargetGoal() 1mn getSensorInfo()
getOwnGoal() . \
VisionInfo
1:1

Reperesents an object in the getAreaOfBlob()

soccer field — like goals, getConfidence()
Class name ball, enemy robots.. -
Methodl ()
Method2() Relatively low-level
Method3() information — created from
. image processing module

and many sensors.

Figure 4: An Example Classes Diagram of The Environ-
ment Abstraction Layer

3.3 Middleware

The middleware provides the interface of read()/write()
and sendEvent()/receiveEvent() operations. The mid-
dleware implementation encapsulates floating point rep-
resentation and byte ordering. At this time, Java and
C++ version of middleware is implemented.

3.4 Simulator

The simulator is designed as vision based simulation.
This means that the simulator takes the several control
values as inputs and generates a synthesized image as an
output. These input and output comes in/out from the
communication hub through accessing middleware. Fig.
5 shows a snapshot of running the application. It consists
of global, command line, tree, and local camera views. In
our implementation, the simulator takes five odometory
control values like forward[cm/cycle], left[cm/cycle], ro-
tate[degree/cycle], and tilt-head[degree/cycle] and pan-
head[degree/cycle] from an agent. Virtual robot acquires
the synthesized image from the communication hub and
sends back these control values. Accordingly, the simu-
lator, communication hub and virtual robot forms loop
in simulation. This simulator has several useful features
- plugin support, lisp like simple scripting, several views
etc.

[ opensim Server ... i i i e e i e 2 = ol
Edit Debug
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(set iueLibero/ERS-21010ck 4)
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(set fsystemiprototype Baliactivate ball)
(zet balBallocix 1.5)
(set el Balliocdy 2.5)
| Shortinto | Tyype |Ra| |
© [abon [RobotProtat -
¢ [ blueStriker RobotPratot
[ cetach SimObjects... W
9 Clers-210 ERSZ10Frot
@ Tioc (2439, 0623, 0.00.. L ocationFie.
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—
TreeView | Log
FC=2407

Figure 5: A Screen Snapshot of The Simulator

4 Implementation

To implement the communication hub, simulator and
monitoring tool, we use Java, Java Advanced Imaging
API and Java 3D API. For generating/parsing XML
file in the communication hub, we use the SAX parser.
For an agent programming we use C++ and partially
scheme, a lisp dialect. The agent program can be run
both Sony ERS-210 platform and Linux and FreeBSD
with gcc.

5 Conclusion

With this architecture, we convince successfully intro-
duce heterogeneity by using standard Java, distribu-
tion in a network with TCP/IP, minimized the require-
ments through simple communication operations, pro-
viding rich information through the tree structured ex-
ternal representation, openness with communication hub
and plugin facility in the simulator and rich debugging
facility with the communication hub.
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In the four-legged league in RoboCup 2002, our system
had not been implemented. Now we have a good fun-
damental to experiment new planning and coordination
strategy and so on. At this time, the primary imple-
mentation has been done. As a future work, we have to
evaluate the system in practical. In particular, the effec-
tiveness of combining information real and virtual robot
have to be evaluated.

The authors would like to express our gratitude to
the Information-technology Promotion Agency (IPA),
Japan for sponsor of this project and Professor Takaichi
Yoshida for supporting.
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Abstract

Nowadays various kinds of robots are pub-
licly available such as AIBO, ASIMO and so
on. However, the development of robots is
still difficult because of their complexity, con-
tinual changes of environments, limitation of
resources and so on. To solve this problem,
robot developers often use the simulator that
allows to program and test robots’ program ef-
fectively in the ideal environment where speci-
fied conditions can easily be reproduced. It is
still difficult to realize the simulator regardless
of its usefulness, because the cost of simulator
implementation seems the unexpected cost in
the development of robots. To overcome this
problem, it is need to realize the open robot
simulation environment in which any kind of
robots can be simulated. This paper focuses
on vision-based robot simulation environment
and describes a method to construct it. Finally,
we implemented a simulator for Robocup Sony
4-Legged League by this method.

1 Introduction

Nowadays various robots are publicly available such as
ATBO, ASIMO and so on. However, the development of
robots is still difficult because of their complexity, contin-
ual changes of environments, limitation of resources and
so on. Considering environment changes in vision-based
robot, for example, the changes of the lighting condition
affect robot’s behavior seriously. To clear problems the
robot’s strategies in the real environment, it is need to
check strategies in exactly same environment, because in
each testing time sensory values such as camera images
and the effectors will change.

To solve this problem, there are the robot simulators
that are categorized two types; one aims to simulate the
robot mechanical behavior with accurate robot model
data, the other aims to simulate the vision of the robot
in order to test robot strategy. The simulator allows de-
velopers to program and test robots’ program effectively

in the ideal environment where specified conditions can
easily be reproduced. It is still difficult to realize the
simulator regardless of its usefulness, because the cost
of simulator implementation can be seen the unexpected
cost in robot development. To overcome this problem,
it is need to realize the open robot simulation environ-
ment in which any type of robots can be simulated. This
paper focuses on vision-based robot simulation environ-
ment and describes a method to construct it. The next
section describes concept of open robot simulation envi-
ronment. Section 3 shows design of architecture. Section
4 shows an implementation of the simulator for Robocup
Sony 4-Legged League. Finally, section 5 concludes with
a discussion of our method.

2 What is Open Robot Simulator

The purpose of our simulation environment is to im-
prove the efficiency of the development of vision-based
robots’ strategies in particular. When testing the robot
strategy by simulation, each developer would prepare the
simulator in which accommodate a single kind of robot.
However, each simulator has something in common such
as synthesis of the camera image, effector simulation,
3D object management and so on. Thus, we provide
a general simulation environment to simulate any kind
of robots and customize according to any testing condi-
tion. To archive this environment, we give the policy as
follows:

e Openness that means the simulator reveals itself to
robot developer

e Reproducibility of simulation
e Minimum modification of robot program
e Useful test and monitor tool

The first one is our main subject. With high openness,
developers can manipulate the simulation environment
easily to treat various kinds of robots and customize it
according to real environment. Second, reproducibility
of the simulation environment is very important in order
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Figure 1: The Simulation Environment Architecture

to test the robot strategy correctly because real robot al-
ways affects the change of the environmental condition
such as lighting condition. In development cycle of robot
strategy, robot developers would repeat coding and test-
ing of programs. When developers find out problems in
certain situation, the simulator must support to repro-
duce that situation in short time. Third, to reduce the
cost of simulation, the modification of robot’s agent pro-
gram must be minimized when migrating between real
robot and the simulator. Finally, it is important that
robot developers are able to monitor any information in
the simulator to test the robot strategy effectively.

3 System Design

Figure 1 illustrates our system architecture, which
adopts client/server model and introduces two servers
as follows:

SimServer manages all objects in the virtual envi-
ronment and synthesizes virtual camera images and
simulates the robots’ effector.

Commaunication Hub manages communication be-
tween the SimServer and clients and can capture
messages through it.

In this model, multiple heterogeneous robot agents im-
plemented in various program languages can participate
to this environment because each client lies on the com-
mon communication middleware and connects the Com-
munication Hub via the TCP/IP network. If the sim-
ulation environment communicates with real robots, it
can accommodate both real and simulated robots in the
same simulation environment. To reduce the cost of re-
alization of the simulator, our simulation environment
provides a class library of fundamental component as
follows:

Robot holds cameras, effectors and its position and ori-
entation.

Camera holds parameters such as view angle, resolu-
tion and so on, synthesized images by the Core En-
gine.

robot

n

camera

frontLeftLeg

frontRightLeg

Figure 2: An example of object structure

Effector keeps current value and the range of value. It
also can hold any sub-effector and camera as chil-
dren.

They are implemented with opened interface in order
to operate easily. The SimServer always watches infor-
mation of each object then updates the virtual environ-
ment. This library allows users (i.e. robot developers)
to construct the virtual robot by few steps; preparation
of robot 3D shape model data, combination of several
objects according to each real robot, adjustment of ob-
ject parameter such as camera resolution and the range
of effectors, and corresponding to model data.

The SimServer manages all objects in tree structure
and provides name space according to that structure.
The robot’s agent program and developers can access all
objects and its all attribute information by that name.
Figure 2 shows a part of object structure that represents
Sony ERS-210. In this structure, an agent program ac-
cesses the head camera image to indicate its name likes
/robot/head/camera/rgbImage. This increases open-
ness of the simulator and allows developers to test the
robot strategy with the ideal information such as the
location of robot. To customize the simulation environ-
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Figure 4: The overview of the SimServer

(let
(set /Ball/loc/x
(plus /ribo0/loc/x
(/ (dist /roboO /robol) 2)
)
)
(set /Ball/loc/y
(plus /ribo0/loc/y
(/ (dist /robo0 /robol) 2)
)
)
)

Figure 3: An Example of script language

ment dynamically, any object in the SimServer can be
appended and removed in runtime.

The Communication Hub supports synchronous and
asynchronous communication to provide flexible commu-
nication. The SimServer and clients usually communi-
cate by asynchronous operation (i.e. read/write) to im-
prove communication performance. The event manager
provides synchronous commutation by event sending and
notification if needs to synchronize any information. The
clients can connect and disconnect to the Communica-
tion Hub at any time in order to help development of
strategy program and to provide fault-tolerance. Even if
the client is disconnected, the Communication Hub and
the SimServer keeps all information about the virtual
robot. Consequently, developers can continue to exam-
ine the robot program in the same situation after fix

problems.

Functionality The following functionalities enhance
our simulation environment: plug-in user module, a
script language, persistence of simulation environment
state, communication among the agents and visualiza-
tion of view frustum.

First, developers can insert fragment of program as
plug-in module to the virtual robot in order to customize
its behavior. This allows us to realize strange camera
image and reduction of effector speed. Naturally, these
modules can be appended and removed in runtime.

Second, to provide interaction between developers and
the simulation environment, a script language likes the
S-Expression is introduced. By using this language, de-
velopers can access overall object and its attribute in-
formation. It is possible to adjust the simulation en-
vironment such as lighting condition, simulation speed
and so on. Figure 3 shows an example code to place
a ball between two robots (named roboO and robol).
This functionality allows us to test the robot’s strategy
in the exactly same environment because the simulator
can reproduce it repeatedly.

Third, the Communication Hub can store simulation
environment state to a file in order to reproduce a certain
situation. To this, the Communication Hub watches any
information through it. After storing the file, developer
ever reproduces that situation in any time.

Forth, the Communication Hub provides communica-
tion among the agents. With this functionality, it is
possible to develop a strategy to collaborate the agents
without using the real robots.
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Fifth, when using the active camera, enhancement of
camera motions is important to recognize the virtual en-
vironment. The simulator provides functionality to vi-
sualize the view frustum that each of the cameras is now
seeing. This visualization is useful in order to tune-up
camera motion.

4 Implementation

First, we implemented the SimServer and the Communi-
cation Hub in Java and Java3D[Java3D]. The SimServer
shown Figure 4 consists of four components; global view,
command line panel, the tree view, camera views. On
the global view, user can change own view by mouse op-
erations. The command line panel allows us to interact
with the simulator by the script language described in
the above. The tree view shows information about all
objects in the simulation environment. We also imple-
mented a library for communication between the server
and the client, which supports C++ and Java.

Second, to evaluate our method, we implemented a
simulator for the Robocup Sony 4-Leggued League on
this environment. Then we succeed in migration from
real robot’s agent program [Oda,2002] to the simulator
with a little bit modification. By using robot commu-
nication functionality of the Communication Hub , this
simulator can simulate communication between robots
instead of wireless LAN.

5 Conclusion

On the vision-based robot simulator, it is important to
reduce cost of robot strategy programming. To achieve
this, we proposed the open robot simulation environment
to accommodate any kinds of robots. In this paper, it
has been yet considered physical effects in simulation,
nevertheless, we plan to introduce simple method by us-
ing collision detection.

The authors would like to express our gratitude to
the Information-technology Promotion Agency (IPA),
Japan for sponsor of this project and Professor Takaichi
Yoshida for supporting.
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Abstract

A framework to describe behaviors of civilian
agents in RoboCupRescue simulations is proposed.
In a disaster situation, it is hard to model civilian’s
behaviors as logically. Furthermore, we model the
behaviors by “Scenario”. In the proposed frame-
work, the behaviors are divided into multiple sce-
narios for each goal, in which behavior-rules are
grouped based on situations where the rules are

active.
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Posit = (defposit PositName Rule O )
Rule ::= (defrule RuleName :condition CondiForm
:activation ActivForm
:action ActioForm )
CondiForm ::= ([LogicOP] CondiForm 0 )|(InSensor ...)
ActivForm ::= CalcForm
ActioForm = ([LogicOP] ActioForm 0 )|(OutSensor ...)
LogicOP := and | or | not | progn
InSenor ::= (input sensor name with prefix “07)
OutSenor ::= (output sensor name with prefix “0”)
CalcForm ::=  (number)|Var|(CalcOP CalcForm CalcForm)
CalcOP = + | = x|/|%
Var = (variable name with prefix “0”)

Figure 2: Syntax of Posit
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Abstract boobooooobobobooboooooboobooon
gbooobOobooobooooboboooooooon

In this paper, dynamic stand-up motion is re- 000000000000 0000000000000

alized by a humanoid robot. To avoid hard 000000000000 00000O0000ooonn

impact with the ground, and to overcome the 0o0O0O0O0O00000000000000000000

limits of the joints, a round back is attached 000o0oO0000000O0O00O0O0oo0O0o0ooon

to the robot. Parameters of the back is deter- 000000000000 00000000000000

mined by simulations since the motion analy- 00000000000 0O00O0o0o0oooooonn

sis is quite difficult because of the nonlinearity, 0000000000000 O000000C0000000
friction, and position control. An experimen- oooooOOO0O0O0O000O0O0oO0O0O0o0ono0oooon

tal result is shown that a real humanoid robot 000000000000 O0000000000000

HOAP-1 equipped with the designed back can ooooooo

stand up dynamically.

2 DQUoooobbboooooo
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00000000000 40003000000000
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0000000000000 0O00O0O0OooOOoOoooOn Figure 1: Robot model configuration. 6; (i=1,2,3) indi-
Ooo00000oooon cates joint angles for hip, knee, and ankle, respectively.
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Table 1: Parameters of the simulation robot

. length | weight inertia
link )
[m] kg] [kg m?]
Link0O || 0.31 | 0.76 |6.09 x 1073
Link1 0.15 0.16 |3.00x107*
Link2 || 0.15 | 0.38 [7.13x107*
Link3 0.01 0.11 [833x10°8
joint | range[rad]
hip | 2.950 5.94
knee | 0.3500 3.33
ankle | 1.570 4.71
W= @E'T (. ’ &w T
(a) 0.00 sec (b) 0.10 sec (c) 0.20 sec

(d) 0.30 sec (e) 0.40 sec (f) 0.50 sec
e A A
(g) 0.60 sec (h) 0.70 sec (i) 0.80 sec

(k) 1.00 sec

(j) 0.90 sec

(1) 1.10 sec

Figure 2: A stand up motion in the simulation
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Figure 4: Power change during stand up motion in the

simulation
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w J> Table 2: Parameters of the simulation robot
/ length | weight inertia

link

[m] kg] kg m?]
body 0.20 3.55 | 1.32x 1072
thigh || 0.10 0.7 |5.83x1074
shank | 0.10 1.18 |9.83 x 1074
foot || 0.098 | 0.50 | 1.67 x 107

(a) State A (b) State B (c) State C

Figure 5: Key postures in stand up motion by attaching

a round back
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Figure 6: Robot model with a round back
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Figure 7: A stand up motion in the simulation
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