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Abstract

Speech recognition in reverberant environments
is a difficult task. Reverberation has the effect
of degradation of recognition performance due
to acoustic mismatch. We present an optimiza-
tion method of the wavelet parameters for dere-
verberation in automatic speech recognition
(ASR). By tuning the wavelet parameters to
improve the acoustic model likelihood, wavelet-
based dereverberation methods become more
effective in the ASR application. We evalu-
ate several existing wavelet-based methods and
optimize them, based on our proposed scheme.
Experimental evaluations through ASR experi-
ments demonstrate significant improvement for
all methods with the proposed optimization.

Index Terms: Robustness, Speech recognition, Dere-
verberation

1 Introduction

Reverberation is a phenomenon caused by the reflec-
tion of the speech signal in an enclosed environment.
When analyzing in short time fourier transform (STFT),
the current observed speech frame is smeared with the
speech energy of the preceding frames. This degrades
the acoustic quality of the speech signal and is detrimen-
tal to the ASR system. The reverberant speech model
X(f,t) we adopt is based on the additive effects of the
early Xp(f,t) and late X (f,t) reflection,

X(f,t) =~

~
~

XE(fvt) + D XL(fu t)
SHOH(S0) + 2g=y S(fot — ) H(f, d)
(1)
where S(f,t) and H(f,t) are the frequency response of
the clean speech and the room impulse response (RIR),
respectively. D is the number of frames, over which the
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reverberation (smearing) has an effect. The early reflec-
tion is due to the direct signal and some reflections that
occur at earlier time, while the late reflection, whose
effect spans over frames, can be treated as long-period
noise [1]-[4]. The former is mostly addressed through
Cepstral Mean Normalization (CMN) in the ASR system
as it falls within the frame. In our application, dere-
verberation is defined as suppressing the effects of the
late reflection. Since the late reflection can be treated
as noise, we can apply existing wavelet-based denois-
ing techniques to dereverberation problems based on the
context of our reverberant speech model.

Most of the speech enhancement algorithms are ap-
plied in the frequency domain, using short-time Fourier
transform (STFT) where the time resolution is the same
for all frequency components. Some enhancement meth-
ods are applied in wavelet domain which provides more
flexible time-frequency representation of speech. There
have been a lot of research involving wavelet-based
speech enhancement primarily in denoising [5]-[8]. Orig-
inally, wavelet-based enhancement methods were pro-
posed to address denoising problems. Most recently, it
is expanded to address the effects of reverberation.

Existing wavelet-based methods are generally de-
signed to enhance the speech waveform, but this does
not guarantee an improvement in performance for ASR
application. In this paper, we present a method of op-
timizing the wavelet parameters for dereverberation in
ASR. In our proposed scheme, prior to wavelet-based
dereverberation, the wavelet parameters are optimized
to improve the likelihood of the acoustic model. We ex-
pand existing wavelet-based speech enhancement meth-
ods for the dereverberation application. Then, we incor-
porate the proposed scheme of optimizing the wavelet
parameters for effective dereverberation in the ASR ap-
plication. In this paper, noise and late reflection are
jointly referred to as “contaminant signal”.

The paper is organized as follows; Section 2 gives
the background of the different wavelet-based methods
which we will evaluate and optimize. In Section 3, we
present the optimization method of wavelet parameters.
Experimental set-up and ASR evaluation results are pre-
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sented in Section 4. Finally, we conclude this paper in
Section V.

2 Dereverberation Methods using
Wavelets

In this section, we will discuss existing wavelet-based
methods. Specifically in this paper, we consider five
wavelet-based methods. The last method was previously
proposed by the authors [9].

2.1 WaveShrink

The basic wavelet enhancement approach [10] is based on
the idea that real-world signals do not necessarily require
full resolution treatment. In speech application, a lim-
ited number of wavelet coefficients in the lower band are
deemed sufficient to reconstruct the speech signal. These
coeflicients are characterized by higher values compared
to the contaminant signals (i.e. noise or late reflections).
Thus, by shrinking the contaminant wavelet coefficients,
its effects are removed. In general, the waveshrink ap-
proach is applicable when the contaminant signal is ho-
mogeneously concentrated on the other side of the spec-
trum (e.g. higher frequencies). Problems may arise in
ASR applications, because some parts of speech have
important information in the higher frequencies (i.e con-
sonants and unvoiced regions).

2.2 Thresholding

An improved version of the waveshrink approach is im-
plemented by means of a thresholding algorithm. Unlike
its predecessor, the thresholding approach is more flex-
ible in dealing with the wavelet coeflicients by defining
a threshold criterion. A particular wavelet coefficient of
interest may be shrunk or scaled based on this criterion.
An example based on soft thresholding [11] is defined as

x| < thr

_ 0
v { sign(z)(] x| —thr) @

x| > thr

Based on the threshold thr, Eq. (2) can be interpreted
as setting the contaminant subspace to zero, and im-
plementing a magnitude subtraction in the speech plus
contaminant subspace. The threshold that defines the
subspace of the contaminant signal can be calculated
[11] as

thr = o4/ 2 log(L), (3)

where L is the length of the contaminant signal with
variance 2. Other thresholding criteria are Hard, Firm,
Garrote and Step — garrote. The thresholding technique
has some known problems; If the spectrum of the con-
taminant signal is not uniform, the method has difficulty
in distinguishing the desired subspace from the contam-
inant subspace. Since thresholding is directly applied to
the wavelet coefficients, the quality of the reconstructed
signal is sensitive to the threshold.
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2.3 Improved Wavelet-based Speech
Enhancement System

To address the problems in both the waveshrink and
thresholding methods, a more advanced method is pro-
posed [12]. This system employs an automatic pause de-
tection algorithm using a voice activity detection (VAD)
and introduces several threshold profiles for different
types of contaminant signals. With the VAD, a more ac-
curate estimation of noise power is achieved. In addition
to the VAD, it incorporates speech signal features in the
system. It also implements a mechanism that efficiently
selects suitable parameters for voiced, unvoiced and si-
lence regions, separately. The use of several threshold
profiles enables switching several threshold criteria ac-
cording to the contaminant signal. Consequently, the
system can cope with colored and non-stationary con-
taminant signals.

2.4 Wavelet Extrema Clustering

Another method based on the adoption of the speech
production model is the wavelet extrema clustering. It
assumes that the detrimental effects of the contaminant
signal introduce zeros into the overall system and only
affects the speech excitation sequence (not the all-pole
filter) [13]. A class of wavelets are employed to decom-
pose the LPC residuals to calculate the wavelet extrema.
The underlying impulsive structure of the desired speech
(non-reverberant) are captured by locating the extrema
which has the characteristics of being well clustered. The
extrema at each wavelet scale are effective indicators
of the impulses (clean speech) in the contaminated sig-
nal. These are used to reconstruct the non-reverberant
speech.

2.5 Wavelet Filtering with Wiener Gain
We have previously expanded the multi-band wavelet do-
main filtering [9] to address the dereverberation problem
[14]. The general expression of the Wiener gain at band
m [14] is expressed as

S(v,7)?

m

S(v,7)2, + XL(U,T)fn7

Km = (4)
where S(v,7)2, and XL(U,T)fn are wavelet power esti-
mates for the clean speech and the late reflection, respec-
tively. And v and 7 are the wavelet parameters scale and
shift, which will be explained in Section 3. Wavelet fil-
tering is carried out by weighting the reverberant wavelet
coefficients X (v, 7) with the Wiener gains as,

X (v, T)m(enhanced) = X (0, T)m - (5)

In Eq. (5), the Wiener weighting x,, dictates the degree
of suppression of the late reflection to the observed sig-
nal. If the late reflection power estimate is greater than
the estimate of the speech power, then k,, for that band
may be set to zero or a small value. This attenuates
the effect of the late reflection. Moreover, if the power
of the clean speech estimate is greater, the Wiener gain
will emphasize its effect. The enhanced wavelet coeffi-
cients are converted back to the time domain through

Km -
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Figure 1: Block diagram of the wavelet optimization scheme.

inverse wavelet transform (IWT). In our previous work
[14], the wavelet parameters are not optimized to track
the clean speech and the late reflection given a reverber-
ant observation.

3 Optimizing wavelet Parameters v and
7 based on Acoutsic Model Likelihood

A wavelet is generally expressed as
1y ) 7

al

where ¢ denotes time, v and 7 are the scaling and shifting
parameters respectively. ¥ (t*TT) is often referred to as
the mother wavelet. Assuming that we deal with real-

valued signal, the wavelet transform (WT) is defined as

1 t—T1

U(v,7,t) =

(6)

v

Flo,7) = / FOU(, 7, 1), (7

where F(v,7) is the wavelet coefficients and f(t) is the
time-domain function. With an appropriate training al-
gorithm we can optimize 7 and v so that the wavelet
captures specific characteristics of a certain signal of in-
terest. The resulting wavelet is sensitive in detecting the
presence of this signal given any arbitrary signal.

For illustration purpose, we will only show the op-
timization of the wavelet parameters v and 7 for the
wavelet filtering method discussed in Section 2.5. In the
wavelet filtering method, we are interested in detecting
the power of clean speech and late reflection given a re-
verberant signal.

We optimize the wavelet to detect clean speech and
late reflection separately based on the acoustic model
likelihood as shown in Fig. 1. In ASR, we assume that
the speech does not vary for a certain time-frame. Thus,
optimizing a single wavelet template for speech will be
sufficient. In Fig. 1 (top) we illustrate the optimiza-
tion of the wavelet for clean speech. Wavelet coeflicients
S(v,T), extracted through Eq. (7), are converted back
to time domain s, r. Likelihood scores are computed
using the clean speech acoustic model As. The process
is iterated, adjusting v and 7. The corresponding v=a
and 7=a that result to the highest score are selected.
In the case of the late reflection in Fig. 1 (bottom), D
templates are to be optimized for both scale (vq,...vp)
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and shift (71,...,7p). These correspond to D preced-
ing frames that cause smearing to the current frame of
interest. We note that the effect of smearing is not
constant, thus D templates are created. By estimat-
ing the reverberation time Tgp, we can generate the im-
pulse response and its corresponding late reflection co-
efficients hy. Both T estimation and impulse response
generation are discussed in [15]. Then, late reflection
observations x; are generated by convolving the clean
speech with hy. Next, wavelet coefficients X (v, 7) are
extracted through WT (Eq. (7)). To make sure that
X (v,7) is void of speech characteristics, thresholding
is applied to X (v,7). Speech energy is characterized
with high coefficient values [11] [12] and thresholding
sets these coefficients to zero,
0 ,| X | > thr

XL_{XL X | < thr (8)

thr is calculated similar to that in Eq. (3). The thresh-
olded signal is converted back to time domain Z,, -, and
evaluated against a late reflection model Az,. The pa-
rameters v and 7 are adjusted and the corresponding
v={b1,...bp} and 7={(1,...0p } that result to the highest
likelihood score are selected. We note that the acoustic
model A is trained with clean speech data, while Az,
uses the synthetically generated late reflection data with
thresholding applied.

By using these optimized wavelet parameters, we can
estimate both the clean speech and late reflection power
directly from the observed reverberant signal X (v, )
and use these to estimate the Wiener gain in Eq. (4).
Thus, the speech power estimate becomes

2

m?

S(v,7)? ~ X(a,q) (9)

and the late reflection power X, (v, T)fn estimate

X(blaﬂl)Q ) d=1

d—1 2

—; X (bg,

kild_(f ﬂk) +X(bd56d)$n )
otherwise

X1 (ba, Ba)?, =

(10)
where d (smearing effect) is the d-th frame template (for
k:1,...,D).



Table 1: System specification used in evaluating the system

Sampling frequency

16 kHz

Frame length

25 ms

Frame period

10 ms

Pre-emphasis

1—-0.97271

Feature vectors

12-order MFCC,
12-order AMFCCs
l-order AE

HMM 8256 Gaussian pdfs
Training data Adult by JNAS
Test data Adult by JNAS
T e e e e e  E————— -~
/ Croane
! i
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Figure 2: Overall system diagram (Training and Testing).

Table 2: Recognition performance for different wavelet-based methods (No adaptation).

200 ms 400 ms | 600 ms || average
No processing; clean model 68.6 % 413% | 214 % 43.8 %
No processing; reverberant model 75.4 % 61.2% | 321 % 56.2 %
(1) WaveShrink (Sec. 2.1) 759% | 633% |406% | 60.0%
(14) WaveShrink + wavelet optimization 76.7 % 654 % | 449 % 62.3 %
(2) Soft thresholding (Sec. 2.2) 76.5 % 65.8% | 46.7% | 63.0%
(24) Soft thresholding + wavelet optimization 781 % 671 % | 492 % 64.8 %
(3) Improved wavelet-based speech enhancement (Sec. 2.3) 77.3 % 66.7% | 50.6% | 64.8%
(34) Improved wavelet-based speech enhancement + wav. opt. || 79.1 % % | 68.5 % | 54.0 % 67.2 %
(4) Extrema clustering (Sec. 2.4) 78.4 % 671 % |59.7% | 684%
(4+) Extrema clustering + wavelet optimization 80.8 % 69.8 % | 62.9% 71.1 %
(5) Wavelet filtering (Sec. 2.5) 81.5 % 714% [ 645% | 7125 %
(5+) Wavelet filtering 4+ wavelet optimization 83.2 % 74.6 % | 68.6 % 75.5 %

4 Experimental Evaluations

We have evaluated the proposed scheme and the five
wavelet-based methods described in Section 2. Evalua-
tion is carried out in large vocabulary continuous speech
recognition (LVCSR). The training database is from the
Japanese Newspaper Article Sentence (JNAS) corpus
with a total of approximately 60 hours of speech. The
open test set is composed of 200 utterances uttered by
50 speakers. ASR experiments are carried out on the
Japanese dictation task with a 20K vocabulary. The
language model is a standard word trigram model. The
acoustic model is a phonetically tied-mixture (PTM)
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HMMs with 8256 Gaussians in total.
cation is summarized in Table 1.

System specifi-

We experimented in the condition of reverberation
time: Tgp=200 ms, 400 ms and 600 ms. Reverberant
training data are synthetically produced with the auto-
matically generated RIR as discussed in [15]. Test per-
formance is evaluated using real data recorded in a room
with known reverberation time: Tgo=200 ms, 400 ms and
600 ms. In the experiments, we used a total number of
bands M = 5 which was found to be effective [1][3]. The
wavelet used here is the Daubechies wavelet which was
also used in [14].



Table 3: Recognition performance for different wavelet-based methods (MLLR adaptation).

200 ms 400 ms | 600 ms || average
No processing; clean model 70.3 % 432 % | 24.8% 46.1 %
No processing; reverberant model 76.5 % 632% | 351% 58.2 %
(1) WaveShrink (Sec. 2.1) 76.4 % 64.8% | 41.1% || 60.8 %
(14) WaveShrink + wavelet optimization 779 % 672 % | 464 % 63.8 %
(2) Soft thresholding (Sec. 2.2) 77.8 % 675 % | 471 % 64.1 %
(24) Soft thresholding + wavelet optimization 79.0 % 68.6 % | 51.4% 66.3 %
(3) TImproved wavelet-based speech enhancement (Sec. 2.3) 78.5 % 679% |521% | 65.1%
(34) Improved wavelet-based speech enhancement + wav. opt. || 80.0 % % | 69.56 % | 56.2 % 68.5 %
(4) Extrema clustering (Sec. 2.4) 79.6 % 682% | 61.5% | 69.7%
(44) Extrema clustering + wavelet optimization 81.5 % 70.7% | 64.1 % 721 %
(5) Wavelet filtering (Sec. 2.5) 82.7 % 727% | 66.9% 741 %
(54) Wavelet filtering + wavelet optimization 84.2 % 76.3 % | 69.5 % 76.6 %

The process flow of the experiment is shown in Fig.
2. During training, we optimize the wavelet parame-
ters. Using the optimized wavelet parameters, we im-
plemented the wavelet-based dereverberation methods
discussed in Section 2, then trained individual acoustic
models. During testing, the optimized wavelet parame-
ters were used together with the wavelet-based derever-
beration methods to process the reverberant test data.
Then, processed data were evaluated in ASR. In our ex-
periments, the actual optimization of the wavelet pa-
rameters may vary for each of the different wavelet-
based dereverberation methods, depending on individual
unique requirements. Nevertheless, the criterion of max-
imizing the likelihood for the ASR application is main-
tained for all the methods.

We also implemented a model adaptation based
on Maximum Likelihood Linear Regression (MLLR)
[16][17]). Model adaptation is used to minimize the mis-
match between training and testing conditions. The
MLLR adaptation estimates linear transformations for
groups of model parameters to maximize the likelihood
of the adaptation data. In our adaptation experiment,
we used 50 adaptation utterances.

We show the ASR performance in word accuracy for
all methods in Tables 2-3. The conventional acoustic
model training based on Baum-Welch is used in Table
1 (No adaptation). In Table 2, acoustic model adapta-
tion was implemented using MLLR. In the case of the
MLLR, the adaptation data is limited to using only 10
adaptation utterances. In usual case, several adaptation
utterances are used (more than 10) for improved per-
formance. In this experiment, we only wanted to verify
whether adaptation works in our proposed method.

For reference, we show on the top the results when the
reverberant data are not processed and matched against
clean and reverberant acoustic models, respectively. We
show the results based on waveshrink and thresholding
(Sections 2.1 and 2.2 ) in (1) and (2), respectively. The
improvement in (14) and (2+) from (1) and (2) are
the results when the wavelet parameters are optimized.
The improved wavelet-based enhancement system that
incorporates VAD and threshold profiles (Section 2.3) is
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shown in (3). In (34+), an improvement in performance
is attained when wavelets are optimized as compared to
(3). Another method based on extrema clustering (Sec-
tion 2.4) is provided in (4) together with the optimized
wavelet version in (44). The result of our previous dere-
verberation approach (Section 2.5) [14] is shown in (5),
while the result of incorporating wavelet optimization
discussed in Section 3 is given in (5+).

The results in Tables 2-3 show that all the methods
(1-5) benefit from the proposed method. By optimizing
the wavelet parameters, the dereverberation process is
more tuned to improving the acoustic model likelihood.
As a result, it becomes more effective in the ASR appli-
cation. Moreover, we observe a consistent improvement
in recognition performance when the model adaptation
was conducted. Thus, the proposed optimized derever-
beration method also works in the context of adaptation.

We note that in (1),(2) and (3), dereverberation
is implemented by means of directly thresholding the
wavelet parameters. This may have detrimental effects
to the speech recognition performance due to the non-
smooth nature of the thresholding function. In our
method, thresholding is only used to select the the op-
timal wavelet parameters and not directly applied to
the wavelet coeflicients. The actual weighting of the
wavelet coeflicients is through Wiener filtering, which
is a smoother weighting function based on the power
ratio of the estimated clean speech and late reflection.
Moreover, (1),(2),(3),(4) and (5) are originally based on
improving the speech quality (hearing) of the derever-
berated signal. However, improving the speech quality
may not necessarily translate to improvement in ASR
performance. Thus, when we optimized the system for
ASR, we have achieved improvement in the recognition
performance.

5 Conclusion

Wavelet-based speech enhancement approach has been
successfully used in addressing denoising problems. Its
application has been extended to reverberant scenarios.
Although satisfactory improvement in signal-to-noise ra-



tio has been reported, the existing approach is primar-
ily optimized for improved human perception. In our
method, we are interested in optimizing the wavelet-
based dereverberation for ASR.

We proposed to optimize the wavelet parameters used
in dereverberation in ASR. This scheme guarantees that
the optimized parameters improve the model likelihood
used in ASR. We have evaluated existing wavelet-based
methods. Moreover, we have shown that our approach
is effective in improving the ASR performance when ap-
plied to different wavelet-based dereverberation meth-
ods. In the future, we investigate the effects of contami-
nated noise and extend this work to deal with both noisy
and reverberant environment conditions.
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